Computer Science ›› 2018, Vol. 45 ›› Issue (12): 243-250.doi: 10.11896/j.issn.1002-137X.2018.12.040

• Graphics, Image & Pattern Recognition • Previous Articles     Next Articles

Hyperspectral Image Classification Based on Multi-scale Discriminative Spatial-spectral Features

REN Shou-gang1, WAN Sheng1, GU Xing-jian1, WANG Hao-yun1, YUAN Pei-sen1, XU Huan-liang1,2   

  1. (College of Information Science and Technology,Nanjing Agricultural University,Nanjing 210095,China)1
    (National Engineering and Technology Center for Infomation Agriculture,Nanjing 210095,China)2
  • Received:2018-03-01 Online:2018-12-15 Published:2019-02-25

Abstract: In order to cope with the unevenness of homogenous regions’ area in hyperspectral images,an algorithm based on multi-scale discriminative spatial-spectral features was proposed.First,the image is processed with multi-scale filters.Then discriminative spatial-spectral information is extracted from the filtered images before put into SVM classifiers.At last,classification results of the filtered image are combined with decision fusion strategy.The experimental results on Indian Pines,Kennedy Space Center and University of Pavia indicate the effectiveness of the extracted spatial information.The overall accuracy of this algorithm can reach up to 96% when 10 percent of samples are randomly selected for training.What’s more,the classification accuracy and Kappa coefficient are higher than the comparative algorithms.

Key words: Hyperspectral images, Land cover classification, Multi-scale, Spatial information

CLC Number: 

  • TP751.1
[1]MIYOSHI G T,IMAI N N,TOMMASELLI A M G,et al.Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment[J].International Journal of Remote Sen-sing,2018,39(15-16):1-21.
[2]ZHANG Y X,GAO X Y,WANG T,et al.Background self-learning framework for bio information extraction from hyperp-sectral images [C]∥2014 academic annual meeting of Hubei Computer Society.2014:292-296.(in Chinese)
张玉香,高旭杨,王挺,等.一种基于背景自学习的高光谱图像生物信息提取方法[C]∥2014湖北省计算机学会学术年会.2014:292-296.
[3]WEN S X,LI S W,JIN X,et al.Research on Anthrax Disease Classification of Dangshan Pear Based on Hyperspectral Imaging Technology [J].Computer Science,2017,44(s1):216-219.(in Chinese)
温淑娴,李绍稳,金秀,等.基于高光谱的砀山酥梨炭疽病害等级分类研究[J].计算机科学,2017,44(s1):216-219.
[4]ZHANG X,PAN Z,LU X,et al.Hyperspectral image classification based on joint spectrum of spatial space and spectral space[J].Multimedia Tools & Applications,2018(3):1-19.
[5]LI D,CHENG Y,WANG X,et al.Incremental Graph Embedding Based on Spatial-Spectral Neighbors for Hyperspectral Ima-ge Classification[J].IEEE Access,2018,6(99):10996-11006.
[6]YANG L,WANG M,YANG S,et al.Hybrid ProbabilisticSparse Coding With Spatial Neighbor Tensor for Hyperspectral Imagery Classification[J].IEEE Transactions on Geoscience & Remote Sensing,2018,PP(99):1-12.
[7]ZHONG Z,LI J.Generative Adversarial Networks and Probabilistic Graph Models for Hyperspectral Image Classification[OL].http://www.researchgate.net/publication/323076591_Generative_Adversarial_Networks_and_Probailistic_Graph_Models_for_Hyperspectral_Image_Classification.
[8]ZHANG B,LI S,JIA X,et al.Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery[J].IEEE Geoscience & Remote Sensing Letters,2011,8(5):973-977.
[9]LI W,PRASAD S,FOWLER J E.Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields[J].Geoscience & Remote Sensing Letters IEEE,2014,11(1):153-157.
[10]LI J,BIOUCAS-DIAS J M,PLAZA A.Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(3):809-823.
[11]XIA J,CHANUSSOT J,DU P,et al.Spectral─Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields[J].IEEE Transactions on Geoscience & Remote Sensing,2015,53(5):2532-2546.
[12]IORDACHE M D,BIOUCAS-DIAS J M,PLAZA A.Total Varia-tion Spatial Regularization for Sparse Hyperspectral Unmixing[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(11):4484-4502.
[13]HUANG X,GUAN X,BENEDIKTSSON J A,et al.MultipleMorphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2014,7(12):4653-4669.
[14]FU W,LI S,FANG L.Spectral-spatial hyperspectral image classification via superpixel merging and sparse representation[C]∥Geoscience and Remote Sensing Symposium.IEEE,2015:4971-4974.
[15]WANG J,JIAO L,LIU H,et al.Hyperspectral Image Classification by Spatial-Spectral Derivative-Aided Kernel Joint Sparse Representation[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2015,8(6):1-16.
[16]JI R,GAO Y,HONG R,et al.Spectral-Spatial Constraint Hyperspectral Image Classification[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(3):1811-1824.
[17]KANG X,LI S,BENEDIKTSSON J A.Spectral─Spatial Hyperspectral Image Classification With Edge-Preserving Filtering[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(5):2666-2677.
[18]TARABALKA Y,BENEDIKTSSON J A,CHANUSSOT J.Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience & Remote Sensing,2009,47(8):2973-2987.
[19]POMALAZA-RAEZ C,MCGILLEM C.An adaptative,nonli-near edge-preserving filter[J].IEEE Transactions on Signal Processing,1984,32(3):571-576.
[20]FAUVEL M,BENEDIKTSSON J A,CHANUSSOT J,et al.Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J].IEEE Transactions on Geoscience & Remote Sensing,2007,46(11):3804-3814.
[21]BAUER E,KOHAVI R.An Empirical Comparison of Voting Classification Algorithms:Bagging,Boosting,and Variants[J].Machine Learning,1999,36(1):105-139.
[22]JIMENEZ L O,MORALES-MORELL A,CREUS A.Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit,majority voting,and neural networks[J].IEEE Transactions on Geoscience & Remote Sensing,1999,37(3):1360-1366.
[23]PAL M.Ensemble of support vector machines for land coverclassification[J].International Journal of Remote Sensing,2008,29(10):3043-3049.
[24]FAUVEL M,CHANUSSOT J,BENEDIKTSSON J A,et al.Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J].IEEE Transactions onGeo-science and Remote Sensing,2008,46(11):3804-3814.
[25]IMANI M,GHASSEMIAN H.Discriminant analysis in morphological feature space for high-dimensional image spatial-spectral classification[J].Journal of Applied Remote Sensing,2018,12(1):1.
[26]LI J,BIOUCAS-DIAS J M,PLAZA A.Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning[J].IEEE Transactions on Geoscience & Remote Sensing,2010,48(11):4085-4098.
[27]SOOMRO B N,XIAO L,HUANG L,et al.Bilayer Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral Image Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2017,9(9):4102-4116.
[28]DIETTERICH T G.Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms[J].Neural Computation,1998,10(7):1895-1923.
[1] LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266.
[2] WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322.
[3] WEI Kai-xuan, FU Ying. Re-parameterized Multi-scale Fusion Network for Efficient Extreme Low-light Raw Denoising [J]. Computer Science, 2022, 49(8): 120-126.
[4] SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16.
[5] FANG Lian-hua, LIN Yu-mei, WU Wei-zhi. Optimal Scale Selection in Random Multi-scale Ordered Decision Systems [J]. Computer Science, 2022, 49(6): 172-179.
[6] FAN Xin-nan, ZHAO Zhong-xin, YAN Wei, YAN Xi-jun, SHI Peng-fei. Multi-scale Feature Fusion Image Dehazing Algorithm Combined with Attention Mechanism [J]. Computer Science, 2022, 49(5): 50-57.
[7] SHAO Hai-lin, JI Yi, LIU Chun-ping, XU Yun-long. Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network [J]. Computer Science, 2022, 49(2): 248-255.
[8] HU Yan-li, TONG Tan-qian, ZHANG Xiao-yu, PENG Juan. Self-attention-based BGRU and CNN for Sentiment Analysis [J]. Computer Science, 2022, 49(1): 252-258.
[9] WANG Dong, ZHOU Da-ke, HUANG You-da , YANG Xin. Multi-scale Multi-granularity Feature for Pedestrian Re-identification [J]. Computer Science, 2021, 48(7): 238-244.
[10] YUAN Xing-xing, WU Qin. Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information [J]. Computer Science, 2021, 48(4): 174-179.
[11] ZHU Rong, YE Kuan, YANG Bo, XIE Huan, ZHAO Lei. Feature Classification Method Based on Improved DeeplabV3+ [J]. Computer Science, 2021, 48(11A): 382-385.
[12] YANG Kun, ZHANG Juan, FANG Zhi-jun. Multi-patch and Multi-scale Hierarchical Aggregation Network for Fast Nonhomogeneous ImageDehazing [J]. Computer Science, 2021, 48(11): 250-257.
[13] ZHANG Yang, MA Xiao-hu. Anime Character Portrait Generation Algorithm Based on Improved Generative Adversarial Networks [J]. Computer Science, 2021, 48(1): 182-189.
[14] WU Hao-hao and WANG Fang-shi. Application of Multi-scale Dilated Convolution in Image Classification [J]. Computer Science, 2020, 47(6A): 166-171.
[15] CHENG Zhong-Jian, ZHOU Shuang-e and LI Kang. Sparse Representation Target Tracking Algorithm Based on Multi-scale Adaptive Weight [J]. Computer Science, 2020, 47(6A): 181-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!