Computer Science ›› 2018, Vol. 45 ›› Issue (12): 243-250.doi: 10.11896/j.issn.1002-137X.2018.12.040
• Graphics, Image & Pattern Recognition • Previous Articles Next Articles
REN Shou-gang1, WAN Sheng1, GU Xing-jian1, WANG Hao-yun1, YUAN Pei-sen1, XU Huan-liang1,2
CLC Number:
[1]MIYOSHI G T,IMAI N N,TOMMASELLI A M G,et al.Radiometric block adjustment of hyperspectral image blocks in the Brazilian environment[J].International Journal of Remote Sen-sing,2018,39(15-16):1-21. [2]ZHANG Y X,GAO X Y,WANG T,et al.Background self-learning framework for bio information extraction from hyperp-sectral images [C]∥2014 academic annual meeting of Hubei Computer Society.2014:292-296.(in Chinese) 张玉香,高旭杨,王挺,等.一种基于背景自学习的高光谱图像生物信息提取方法[C]∥2014湖北省计算机学会学术年会.2014:292-296. [3]WEN S X,LI S W,JIN X,et al.Research on Anthrax Disease Classification of Dangshan Pear Based on Hyperspectral Imaging Technology [J].Computer Science,2017,44(s1):216-219.(in Chinese) 温淑娴,李绍稳,金秀,等.基于高光谱的砀山酥梨炭疽病害等级分类研究[J].计算机科学,2017,44(s1):216-219. [4]ZHANG X,PAN Z,LU X,et al.Hyperspectral image classification based on joint spectrum of spatial space and spectral space[J].Multimedia Tools & Applications,2018(3):1-19. [5]LI D,CHENG Y,WANG X,et al.Incremental Graph Embedding Based on Spatial-Spectral Neighbors for Hyperspectral Ima-ge Classification[J].IEEE Access,2018,6(99):10996-11006. [6]YANG L,WANG M,YANG S,et al.Hybrid ProbabilisticSparse Coding With Spatial Neighbor Tensor for Hyperspectral Imagery Classification[J].IEEE Transactions on Geoscience & Remote Sensing,2018,PP(99):1-12. [7]ZHONG Z,LI J.Generative Adversarial Networks and Probabilistic Graph Models for Hyperspectral Image Classification[OL].http://www.researchgate.net/publication/323076591_Generative_Adversarial_Networks_and_Probailistic_Graph_Models_for_Hyperspectral_Image_Classification. [8]ZHANG B,LI S,JIA X,et al.Adaptive Markov Random Field Approach for Classification of Hyperspectral Imagery[J].IEEE Geoscience & Remote Sensing Letters,2011,8(5):973-977. [9]LI W,PRASAD S,FOWLER J E.Hyperspectral Image Classification Using Gaussian Mixture Models and Markov Random Fields[J].Geoscience & Remote Sensing Letters IEEE,2014,11(1):153-157. [10]LI J,BIOUCAS-DIAS J M,PLAZA A.Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(3):809-823. [11]XIA J,CHANUSSOT J,DU P,et al.Spectral─Spatial Classification for Hyperspectral Data Using Rotation Forests With Local Feature Extraction and Markov Random Fields[J].IEEE Transactions on Geoscience & Remote Sensing,2015,53(5):2532-2546. [12]IORDACHE M D,BIOUCAS-DIAS J M,PLAZA A.Total Varia-tion Spatial Regularization for Sparse Hyperspectral Unmixing[J].IEEE Transactions on Geoscience & Remote Sensing,2012,50(11):4484-4502. [13]HUANG X,GUAN X,BENEDIKTSSON J A,et al.MultipleMorphological Profiles From Multicomponent-Base Images for Hyperspectral Image Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2014,7(12):4653-4669. [14]FU W,LI S,FANG L.Spectral-spatial hyperspectral image classification via superpixel merging and sparse representation[C]∥Geoscience and Remote Sensing Symposium.IEEE,2015:4971-4974. [15]WANG J,JIAO L,LIU H,et al.Hyperspectral Image Classification by Spatial-Spectral Derivative-Aided Kernel Joint Sparse Representation[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2015,8(6):1-16. [16]JI R,GAO Y,HONG R,et al.Spectral-Spatial Constraint Hyperspectral Image Classification[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(3):1811-1824. [17]KANG X,LI S,BENEDIKTSSON J A.Spectral─Spatial Hyperspectral Image Classification With Edge-Preserving Filtering[J].IEEE Transactions on Geoscience & Remote Sensing,2014,52(5):2666-2677. [18]TARABALKA Y,BENEDIKTSSON J A,CHANUSSOT J.Spectral-Spatial Classification of Hyperspectral Imagery Based on Partitional Clustering Techniques[J].IEEE Transactions on Geoscience & Remote Sensing,2009,47(8):2973-2987. [19]POMALAZA-RAEZ C,MCGILLEM C.An adaptative,nonli-near edge-preserving filter[J].IEEE Transactions on Signal Processing,1984,32(3):571-576. [20]FAUVEL M,BENEDIKTSSON J A,CHANUSSOT J,et al.Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles[J].IEEE Transactions on Geoscience & Remote Sensing,2007,46(11):3804-3814. [21]BAUER E,KOHAVI R.An Empirical Comparison of Voting Classification Algorithms:Bagging,Boosting,and Variants[J].Machine Learning,1999,36(1):105-139. [22]JIMENEZ L O,MORALES-MORELL A,CREUS A.Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit,majority voting,and neural networks[J].IEEE Transactions on Geoscience & Remote Sensing,1999,37(3):1360-1366. [23]PAL M.Ensemble of support vector machines for land coverclassification[J].International Journal of Remote Sensing,2008,29(10):3043-3049. [24]FAUVEL M,CHANUSSOT J,BENEDIKTSSON J A,et al.Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J].IEEE Transactions onGeo-science and Remote Sensing,2008,46(11):3804-3814. [25]IMANI M,GHASSEMIAN H.Discriminant analysis in morphological feature space for high-dimensional image spatial-spectral classification[J].Journal of Applied Remote Sensing,2018,12(1):1. [26]LI J,BIOUCAS-DIAS J M,PLAZA A.Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression With Active Learning[J].IEEE Transactions on Geoscience & Remote Sensing,2010,48(11):4085-4098. [27]SOOMRO B N,XIAO L,HUANG L,et al.Bilayer Elastic Net Regression Model for Supervised Spectral-Spatial Hyperspectral Image Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing,2017,9(9):4102-4116. [28]DIETTERICH T G.Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms[J].Neural Computation,1998,10(7):1895-1923. |
[1] | LI Yao, LI Tao, LI Qi-fan, LIANG Jia-rui, Ibegbu Nnamdi JULIAN, CHEN Jun-jie, GUO Hao. Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network [J]. Computer Science, 2022, 49(8): 257-266. |
[2] | WANG Xin-tong, WANG Xuan, SUN Zhi-xin. Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network [J]. Computer Science, 2022, 49(8): 314-322. |
[3] | WEI Kai-xuan, FU Ying. Re-parameterized Multi-scale Fusion Network for Efficient Extreme Low-light Raw Denoising [J]. Computer Science, 2022, 49(8): 120-126. |
[4] | SUN Fu-quan, CUI Zhi-qing, ZOU Peng, ZHANG Kun. Brain Tumor Segmentation Algorithm Based on Multi-scale Features [J]. Computer Science, 2022, 49(6A): 12-16. |
[5] | FANG Lian-hua, LIN Yu-mei, WU Wei-zhi. Optimal Scale Selection in Random Multi-scale Ordered Decision Systems [J]. Computer Science, 2022, 49(6): 172-179. |
[6] | FAN Xin-nan, ZHAO Zhong-xin, YAN Wei, YAN Xi-jun, SHI Peng-fei. Multi-scale Feature Fusion Image Dehazing Algorithm Combined with Attention Mechanism [J]. Computer Science, 2022, 49(5): 50-57. |
[7] | SHAO Hai-lin, JI Yi, LIU Chun-ping, XU Yun-long. Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network [J]. Computer Science, 2022, 49(2): 248-255. |
[8] | HU Yan-li, TONG Tan-qian, ZHANG Xiao-yu, PENG Juan. Self-attention-based BGRU and CNN for Sentiment Analysis [J]. Computer Science, 2022, 49(1): 252-258. |
[9] | WANG Dong, ZHOU Da-ke, HUANG You-da , YANG Xin. Multi-scale Multi-granularity Feature for Pedestrian Re-identification [J]. Computer Science, 2021, 48(7): 238-244. |
[10] | YUAN Xing-xing, WU Qin. Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information [J]. Computer Science, 2021, 48(4): 174-179. |
[11] | ZHU Rong, YE Kuan, YANG Bo, XIE Huan, ZHAO Lei. Feature Classification Method Based on Improved DeeplabV3+ [J]. Computer Science, 2021, 48(11A): 382-385. |
[12] | YANG Kun, ZHANG Juan, FANG Zhi-jun. Multi-patch and Multi-scale Hierarchical Aggregation Network for Fast Nonhomogeneous ImageDehazing [J]. Computer Science, 2021, 48(11): 250-257. |
[13] | ZHANG Yang, MA Xiao-hu. Anime Character Portrait Generation Algorithm Based on Improved Generative Adversarial Networks [J]. Computer Science, 2021, 48(1): 182-189. |
[14] | WU Hao-hao and WANG Fang-shi. Application of Multi-scale Dilated Convolution in Image Classification [J]. Computer Science, 2020, 47(6A): 166-171. |
[15] | CHENG Zhong-Jian, ZHOU Shuang-e and LI Kang. Sparse Representation Target Tracking Algorithm Based on Multi-scale Adaptive Weight [J]. Computer Science, 2020, 47(6A): 181-186. |
|