计算机科学 ›› 2018, Vol. 45 ›› Issue (6A): 465-470.

• 大数据与数据挖掘 • 上一篇    下一篇

TEFRCF:标签熵特征表示的协同过滤个性化推荐算法

何明,杨芃,要凯升,张久伶   

  1. 北京工业大学信息学部 北京100124
  • 出版日期:2018-06-20 发布日期:2018-08-03
  • 作者简介:何 明(1975-),男,博士,副教授,主要研究方向为推荐系统、数据挖掘、机器学习,E-mail:[email protected];杨 芃(1994-),男,硕士生,主要研究方向为推荐系统、机器学习;要凯升(1994-),男,硕士生,主要研究方向为推荐系统、数据挖掘;张久伶(1990-),男,硕士生,主要研究方向为推荐系统、迁移学习。
  • 基金资助:
    国家自然科学基金项目(91646201,91546111),北京市教委科研计划一般项目(KM201710005023)资助

TEFRCF:Collaborative Filtering Personalized Recommendation Algorithm Based on Tag
Entropy Feature Representation

HE Ming,YANG Peng,YAO Kai-sheng,ZHANG Jiu-ling   

  1. Faculty of Information Technology,Beijing University of Technology,Beijing 100124,China
  • Online:2018-06-20 Published:2018-08-03

摘要: 标签作为Web 2.0时代信息分类和检索的有效方式,已经成为近年的热点研究对象。标签推荐系统旨在利用标签数据为用户提供个性化推荐。现有的基于标签的推荐方法在预测用户对物品的兴趣度时往往倾向于赋予热门标签及其对应的热门物品较大的权重,导致权重偏差,降低了推荐结果的新颖性,未能充分反映用户个性化的兴趣。针对上述问题,定义了标签熵的概念来度量标签的不确定性,提出了标签熵特征表示的协同过滤个性化推荐算法。该算法通过引入标签熵来解决权重偏差问题,利用三分图形式描述用户-标签-项目之间的关系;构建基于标签熵特征表示的用户和项目特征表示,并通过特征相似性度量方法计算项目的相似性;最后利用用户标签行为和项目的相似性线性组合预测用户对项目的偏好值,并根据预测偏好值排序生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐准确性和新颖性,满足用户的个性化需求。

关键词: 标签, 熵, 推荐系统, 协同过滤

Abstract: Tags are served as an effective way for information classification and information retrieval at the age of Web2.0.Tag recommendation systems aim to provide personalized recommendation for users by using tag data.Theexi-sting tag-based recommendation methods tend to assign the popular tags and their corresponding items more larger weight in predicting users’ interest on the items,resulting in weight deviations,reducing the novelty of the results and being unable to fully reflect users’ personalized interest.In order to solve the problems above,the concept of tag entropy was defined to measure the uncertainty of tags,and the collaborative filtering personalized recommendation algorithm based on tags entropy feature representation was proposed.This method solves the problem of weight deviation by introducing tag entropy,and then the tripartite graphs are used to describe the relationship among users,tags and items.The representation of users and items is constructed based on tag entropy feature representation,and the similarity of items is calculated by the feature similarity measure method.Finally,the user preferences for items are predicted by the linear combination of tags behaviors and similarity of items,and then the recommended list is generated according to the rank of preferences.The experimental results on Last.fm show that the proposed algorithm can improve recommendation accuracy and novelty,and satisfy the requirement for users.

Key words: Collaborative filtering, Entropy, Recommendation systems, Tag

中图分类号: 

  • TP391
[1]ADOMAVICIUS G,TUZHILIN A.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[C]∥Proceedings of the IEEE Transactions Knowledge and Data Engineering.2005:734-749.<br /> [2]L L,MEDO M,YEUNG C H,et al.Recommender systems[J].Physics Reports,2012,519(1):1-49.<br /> [3]SU X,KHOSHGOFTAAR T M.A survey of collaborative filtering techniques [J].Advances in Artificial Intelligence,2009,2009(12):4.<br /> [4]WEI C,HSU W,LEE M L.A unified framework for recommendationsbased on quaternary semantic analysis[C]∥Proceedings of the 34<sup>th</sup> International ACM SIGIR Conference on Research and Development InInformation Retrieval.Beijing,China,2011:1023-1032.<br /> [5]WANG L C,MENG X W,ZHANG Y J.Context-Aware recommender systems:A survey of the state-of-the-art and possible extensions[J].Journal of Software,2012,23(1):1-20.<br /> [6]LIN J,SUGIYAMA K,KAN M Y,et al.Addressing cold-start in apprecommendation:latent user models constructed from twitterfollowers[C]∥Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.Dublin,Ireland,2013:283-292.<br /> [7]MISTRY O,SEN S.Tag recommendation for social book marking:Probabilistic approaches [J].Multiagent and Grid Systems,2012,8(2):143-163.<br /> [8]于洪,李俊华.一种解决新项目冷启动问题的推荐算法[J].软件学报,2015,26(6):1395-1408.<br /> [9]ZHANG Z K,ZHOU T,ZHANG Y C.Personalized recommendation via integrated diffusion on user-item-tag tripartite graphs[J].Physica A:Statistical Mechanics and its Applications,2010,389(1):179-186.<br /> [10]ZHANG Z K,LIU C,ZHANG Y C,et al.Solving the cold-start problem in recommender systems with social tags [J].EPL (Europhysics Letters),2010,92(2):28002.<br /> [11]ZHANG Z K,ZHOU T,ZHANG Y C.Tag-Aware recommender systems:A state-of-the-art survey [J].Journal of Computer Science and Technology,2011,26(5):767-777.<br /> [12]JOMSRI P,SANGUANSINTUKUL S,CHOOCHAIWATTA- NA W.A framework for tag-based research paper recommender system:An IR approach[C]∥Proceedings of the 2010 IEEE 24th Int’l Conf.on Advanced Information Networking and Applications Workshops.2010:103-108.<br /> [13]蔡强,韩东梅,李海生,等.基于标签和协同过滤的个性化资源推荐[J].计算机科学,2014,41(1):69-71,110.<br /> [14]李慧,马小平,胡云,等.融合主题与语言模型的个性化标签推荐方法研究[J].计算机科学,2015,42(8):70-74.<br /> [15]叶剑虹,叶双.基于混合模式的流媒体缓存调度算法[J].计算机科学,2013,40(2):61-64.<br /> [16]KIDEOK C,HAKYUNG J,et al.How can an ISP merge with a CDN?[J].IEEE Communications,2011,49(10):156-162.<br /> [17]李瑞敏,林鸿飞,闫俊.基于用户-标签-项目语义挖掘的个性化音乐推荐[J].计算机研究与发展,2014(10):2270-2276.
[1] 程章桃, 钟婷, 张晟铭, 周帆.
基于图学习的推荐系统研究综述
Survey of Recommender Systems Based on Graph Learning
计算机科学, 2022, 49(9): 1-13. https://doi.org/10.11896/jsjkx.210900072
[2] 王冠宇, 钟婷, 冯宇, 周帆.
基于矢量量化编码的协同过滤推荐方法
Collaborative Filtering Recommendation Method Based on Vector Quantization Coding
计算机科学, 2022, 49(9): 48-54. https://doi.org/10.11896/jsjkx.210700109
[3] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[4] 李其烨, 邢红杰.
基于最大相关熵的KPCA异常检测方法
KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion
计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175
[5] 武红鑫, 韩萌, 陈志强, 张喜龙, 李慕航.
监督和半监督学习下的多标签分类综述
Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning
计算机科学, 2022, 49(8): 12-25. https://doi.org/10.11896/jsjkx.210700111
[6] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[7] 方义秋, 张震坤, 葛君伟.
基于自注意力机制和迁移学习的跨领域推荐算法
Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning
计算机科学, 2022, 49(8): 70-77. https://doi.org/10.11896/jsjkx.210600011
[8] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[9] 帅剑波, 王金策, 黄飞虎, 彭舰.
基于神经架构搜索的点击率预测模型
Click-Through Rate Prediction Model Based on Neural Architecture Search
计算机科学, 2022, 49(7): 10-17. https://doi.org/10.11896/jsjkx.210600009
[10] 齐秀秀, 王佳昊, 李文雄, 周帆.
基于概率元学习的矩阵补全预测融合算法
Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning
计算机科学, 2022, 49(7): 18-24. https://doi.org/10.11896/jsjkx.210600126
[11] 孙晓寒, 张莉.
基于评分区域子空间的协同过滤推荐算法
Collaborative Filtering Recommendation Algorithm Based on Rating Region Subspace
计算机科学, 2022, 49(7): 50-56. https://doi.org/10.11896/jsjkx.210600062
[12] 余本功, 张子薇, 王惠灵.
一种融合多层次情感和主题信息的TS-AC-EWM在线商品排序方法
TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information
计算机科学, 2022, 49(6A): 165-171. https://doi.org/10.11896/jsjkx.210400238
[13] 阙华坤, 冯小峰, 刘盼龙, 郭文翀, 李健, 曾伟良, 范竞敏.
Grassberger熵随机森林在窃电行为检测的应用
Application of Grassberger Entropy Random Forest to Power-stealing Behavior Detection
计算机科学, 2022, 49(6A): 790-794. https://doi.org/10.11896/jsjkx.210800032
[14] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[15] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!