
Vol. 8, No. 5, July–August 2009

An Overview of Feature-Oriented Software
Development

Sven Apel, Department of Informatics and Mathematics, University of Passau,
Germany
Christian Kästner, School of Computer Science, University of Magdeburg,
Germany

Feature-oriented software development (FOSD) is a paradigm for the construction,
customization, and synthesis of large-scale software systems. In this survey, we give
an overview and a personal perspective on the roots of FOSD, connections to other
software development paradigms, and recent developments in this field. Our aim is to
point to connections between different lines of research and to identify open issues.

1 INTRODUCTION

Feature-oriented software development (FOSD) is a paradigm for the construction,
customization, and synthesis of large-scale software systems. The concept of a fea-
ture is at the heart of FOSD. A feature is a unit of functionality of a software system
that satisfies a requirement, represents a design decision, and provides a potential
configuration option. The basic idea of FOSD is to decompose a software system
in terms of the features it provides. The goal of the decomposition is to construct
well-structured software that can be tailored to the needs of the user and the appli-
cation scenario. Typically, from a set of features, many different software systems
can be generated that share common features and differ in other features. The set
of software systems generated from a set of features is also called a software product
line [45, 101].

FOSD aims essentially at three properties: structure, reuse, and variation. De-
velopers use the concept of a feature to structure design and code of a software
system, features are the primary units of reuse in FOSD, and the variants of a
software system vary in the features they provide. FOSD shares goals with other
software development paradigms, such as stepwise and incremental software develop-
ment [128,98,99,105], aspect-oriented software development [58], component-based
software engineering [65, 118], and alternative flavors of software product line engi-
neering [45,101], whose differences to FOSD we will discuss.

Historically, FOSD has emerged from different lines of research in programming
languages, software architecture, and modeling. So it is not surprising that current
developments in FOSD comprise concepts, methods, language, tools, formalisms,
and theories from many different fields. An aim of this article is to provide a
historical overview of FOSD as well as a survey of current developments that have

Cite this article as follows: Sven Apel, Christian Kästner: An Overview of Feature-Oriented
Software Development, in Journal of Object Technology, vol. 8, no. 5, July–August 2009,
pages 49–84,
http://www.jot.fm/issues/issue 2009 07/column5/

http://www.jot.fm/issues/issue_2009_07/column5/

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

emerged from the different lines of FOSD research. Due to the sheer volume and
diversity of work on FOSD and related fields, we cannot hope for completeness.
Instead, we provide a personal view on recent interesting developments in FOSD.
Also we do not aim at a comprehensive discussion of individual approaches but at
highlighting connections between different lines of FOSD research and identifying
open issues.

2 CONCEPTS AND TERMINOLOGY

2.1 What is a Feature?

FOSD is not a single development method or technique, but a conglomeration of
different ideas, methods, tools, languages, formalisms, and theories. What connects
all these developments is the concept of a feature. Due to the diversity of FOSD
research, there are several definitions of a feature [42], e.g. (ordered from abstract
to technical):

1. Kang et al. [70]: “a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems”

2. Kang et al. [71]: “a distinctively identifiable functional abstraction that must
be implemented, tested, delivered, and maintained”

3. Czarnecki and Eisenecker [47]: “a distinguishable characteristic of a concept
(e.g., system, component, and so on) that is relevant to some stakeholder of
the concept”

4. Bosh [35]: “a logical unit of behaviour specified by a set of functional and
non-functional requirements”

5. Chen et al. [40]: “a product characteristic from user or customer views, which
essentially consists of a cohesive set of individual requirements”

6. Batory et al. [30]: “a product characteristic that is used in distinguishing
programs within a family of related programs”

7. Classen et al. [42]: “a triplet, f = (R,W, S), where R represents the require-
ments the feature satisfies, W the assumptions the feature takes about its
environment and S its specification”

8. Zave [129]: “an optional or incremental unit of functionality”

9. Batory [24]: “an increment of program functionality”

10. Apel et al. [21]: “a structure that extends and modifies the structure of a
given program in order to satisfy a stakeholder’s requirement, to implement
and encapsulate a design decision, and to offer a configuration option”

50 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

2 CONCEPTS AND TERMINOLOGY

Figure 1: Problem and solution space [47].

From top to bottom, the definitions become less abstract and more technical.
While the first seven definitions reflect that features are abstract concepts of the
target domain, used to specify and distinguish software systems, the last three def-
initions capture the fact that features must be implemented in order to satisfy
requirements. This tension between abstract and implementation view is not acci-
dental. It stems from the different uses of features. For example, in feature modeling,
features are used to describe the variability of a software product line for commu-
nication with stakeholders, independent of any implementation, as we will discuss
in Section 4.1. In feature-oriented programming, a feature is a first-class language
construct for structuring source code, as we will discuss in Section 4.3.

Czarnecki’s and Eisenecker’s distinction between problem space and solution
space, as illustrated in Figure 1, is useful for the classification of the definitions pre-
sented above [47]. The problem space comprises concepts that describe the require-
ments on a software system and its intended behavior. The solution space comprises
concepts that define how the requirements are satisfied and how the intended be-
havior is implemented. The first seven definitions describe the feature concept from
the perspective of the problem space. Here, features are used to describe what is ex-
pected from a software system. The last three definitions describe features from the
perspective of the solution space, i.e., how features provide/implement the desired
functionality.

2.2 What is Feature-Oriented Software Development?

The concept of a feature is useful for the description of commonalities and variabil-
ities in the analysis, design, and implementation of software systems. FOSD is a
paradigm that favors the systematic application of the feature concept in all phases
of the software life cycle. Features are used as first-class entities to analyze, design,
implement, customize, debug, or evolve a software system. That is, features not only
emerge from the structure and behavior of a software system, e.g., in the form of
the software’s observable behavior, but are also used explicitly and systematically to

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 51

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

define variabilities and commonalities, to facilitate reuse, and to structure software
along these variabilities and commonalities. A distinguishing property of FOSD is
that it aims at a clean (ideally one-to-one) mapping between the representations of
features across all phases of the software life cycle. That is, features specified during
the analysis phase can be traced through design and implementation.

The idea of FOSD was not proposed as such in the first place but emerged from
the different uses of features. A main goal of this survey is to convey the idea of
FOSD as a general development paradigm. The essence of FOSD can be summarized
as follows: on the basis of the feature concept, FOSD facilitates the structure, reuse,
and variation of software in a systematic and uniform way.

2.3 Phases of the FOSD Process

The FOSD process comprises four phases: (1) domain analysis, (2) domain design
and specification, (3) domain implementation, and (4) product configuration and
generation. As stated before, a distinguishing property of FOSD is that the feature
concept pervades all of these phases. Domain analysis determines which features are
part of the software system or software product line. This includes also a domain
scoping step that defines the dimension of the domain, i.e., which features are sup-
ported and not supported. For example, a company may find it more effective to
concentrate on a product line of database systems for automotive systems instead of
databases in general. Furthermore, developers gather relevant knowledge about how
features relate (e.g., which features require the presence or absence of other features;
see Section 4.1). For example, in a database product line, the feature for transac-
tion management is selectable only if the database supports writing access since in
a read-only database no transactions are needed [109,108]. In the design and imple-
mentation phases, the developers typically create a set of first-class feature artifacts
that encapsulate design and implementation information (see Sections 4.2 and 4.3).
In our database example there would be a modular design and implementation of
a basic database system and modular designs and implementations of features like
transaction management, storage management, and query processing. Based on the
domain knowledge and the feature artifacts, applications can be generated almost
automatically. Due to the clean mapping between features and feature artifacts,
the user only needs to specify the desired features by name (see Section 4.4) and,
based on the domain knowledge, a generator can pick the corresponding feature
artifacts and create an efficient and reliable software product (see Section 4.4). In
the database scenario, a generator could, for example, automatically select a B-tree
index in favor of a hash map because, in the case of large amounts of data, the
B-tree grants faster access.

In Figure 2, we illustrate the phases of the FOSD process. For each phase, we
show some key technologies, which are explained in the next sections. Rather than
explaining them here, the figure is designed to be a reference and signpost for the
remaining paper. Note that theory is not a distinct phase (box at the bottom of

52 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

2 CONCEPTS AND TERMINOLOGY

Figure 2), but provides a foundation for all phases. One may say that the process
model is too simplistic for real-world circumstances. This is true, but its purpose is
to structure our survey and not to define the development process in a company.

2.4 Why is FOSD Special?

There is a substantial overlap of FOSD with other software development paradigms.
We explain key differences to some popular alternatives.

The idea of stepwise and incremental software development (SISD) is to encap-
sulate individual development steps that implement distinct design decisions [128,
98, 99, 105]. The result is usually a total (or at least a partial) order of encapsu-
lated development steps (a.k.a. refinements or layers [98, 30]). The goals of this
approach are to structure software in order to support change (by removing and
adding layers).1 FOSD shares these goals (and has further goals such as reuse and
variation). However, many ideas and concepts of FOSD emerged from SISD. In fact,
FOSD is the forcefully broadened development of these early ideas in the context of
large-scale software synthesis and software product lines.

Aspect-oriented software development (AOSD) aims at the modularization of
crosscutting concerns. A crosscutting concern is a concern that does not align
well with the structure established by object-oriented or functional decomposi-
tion [81, 119]. It has been observed that features are frequently crosscutting con-
cerns [116, 91, 18, 74], so the implementation of features can benefit from aspect-
oriented techniques [96, 18]. While, initially, variation and reuse have not been the
main goals of AOSD, there have been considerable efforts in this direction [61,90,87].
We believe that, at some point, both paradigms became difficult to distinguish at
the implementation level but FOSD’s aim at simplicity [6, 18], automated software
synthesis (see Section 4.4), and algebraic models (see Section 4.5) are still distin-
guishing characteristics.

Component-based software engineering (CBSE) aims at the vision of construct-
ing software systems on demand using off-the-shelf components [65, 118]. Work
on service-oriented architectures is a modern instance of this vision [57]. A main
difference to FOSD is that components/services are typically black boxes. While
this facilitates independent development and deployment, it hinders encapsulating
crosscutting features of a software system [100,14]. For example, detaching the code
of the transaction management from a database system and encapsulating it in a
dedicated component is not possible in practice [74,109]. It has been observed that
features are often program slices, i.e., crosscutting concerns [5]. That is, features of-
ten do not align well with the decomposition imposed by component models. Using
components anyway leads to a non-trivial mapping between features and compo-
nents [60,34,4, 1].

The paradigms of software product line and domain engineering aim at families

1A recent branch of this paradigm is change-oriented software engineering [56].

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 53

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

M
a

n
u

a
l

P
u

lls
 T

ra
ile

r
E

n
g

in
e

E
le

c
tric

G
a

s
o

lin
e

C
a

r

p
u
s
h
(n

 : N
o
d
e
) : v

o
id

s
h
u
p
(n

 : N
o
d
e
) : v

o
id

L
is

t
L

is
t

firs
t : N

o
d
e

firs
t : N

o
d
e

la
s
t : N

o
d
e

L
is

t

la
s
t : N

o
d
e

s
h
u
p
(n

 : N
o
d
e
) : v

o
id

N
o

d
e

p
re

v
 : N

o
d
e

n
e
x
t : N

o
d
e

p
u
s
h
(n

 : N
o
d
e
) : v

o
id

N
o

d
e

n
e
x
t : N

o
d
e

N
o

d
e

p
re

v
 : N

o
d
e

F
O

S
D

 T
h

e
o

ry

B
o

d
y

T
ra

n
s
m

is
s
io

n

A
u

to
m

a
tic

...

F
e
a
tu

re
 M

o
d
u
le

s
, A

s
p
e
c
ts

, ...

A
n
n
o
ta

tio
n
s
, P

re
p
ro

c
e
s
s
o
rs

L
ifte

rs
 / D

e
riv

a
tiv

e
s

D
o

m
a

in
 D

e
s
ig

n

a
n

d
 S

p
e

c
ific

a
tio

n

P
ro

d
u

c
t C

o
n

fig
u

ra
tio

n

a
n

d
 G

e
n

e
ra

tio
n

K
eyless E

n
try =

>
 P

o
w

er L
o
cks

D
o
m

a
in

 S
c
o
p
in

g

A
u
to

m
a
te

d
 R

e
a
s
o
n
in

g
...

F
e
a
tu

re
 M

o
d
e
lin

g

a
n
n
o
ta

te
d
 fe

a
tu

re
s

fe
a
tu

re
 m

o
d
u
le

s

...
T

y
p
e
 C

h
e
c
k
in

g
, T

e
s
tin

g

F
e
a
tu

re
 S

e
le

c
tio

n
, O

p
tim

iz
a
tio

n

D
o

m
a

in
 Im

p
le

m
e

n
ta

tio
n

D
o

m
a

in
 A

n
a

ly
s
is

C
o
m

p
o
s
itio

n
, T

ra
n
s
fo

rm
a
tio

n

G
e
n
V

o
c
a
, A

H
E

A
D

, F
e
a
tu

re
 A

lg
e
b
ra

, F
O

M
D

D
, ...

l
a
y
e
r

R
e
v
e
r
s
e
;

r
e
f
i
n
e
s

c
l
a
s
s

L
i
s
t

{

.
.
.

}

r
e
f
i
n
e
s

c
l
a
s
s

N
o
d
e

{

.
.
.

}

M
o
d
e
l−

D
riv

e
n
 D

e
v
e
lo

p
m

e
n
t

F
o
rm

a
l S

p
e
c
ific

a
tio

n

...

M
o
d
e
lin

g
 / U

M
L

B
o

d
y

T
ra

n
s
m

is
s
io

n

A
u

to
m

a
tic

M
a

n
u

a
l

P
u

lls
 T

ra
ile

r
E

n
g

in
e

E
le

c
tric

G
a

s
o

lin
e

C
a

r

F
igu

re
2:

P
h
ases

of
th

e
F
O

S
D

p
ro

cess.

54 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

3 THE ROOTS OF FOSD

of software systems instead of on a single system and emphasize the similarities
between the systems instead of their differences [47,45,101]. FOSD is a development
paradigm that can be used to develop product lines and to do domain engineering.
However, product line and domain engineering are not limited to FOSD. Especially,
the role of features is not central to them. For example, many software product
lines are designed with features in mind but implemented without making features
explicit. For example, the code base could be implemented with functions, classes,
aspects, or components. Concrete products are implemented individually (instead
of being generated) and reuse these common artifacts. Usually, there is not clean
mapping between features and design and implementation artifacts [47, 34]. The
result is that features need to be traced in code [60, 4, 1]. In contrast, FOSD aims
at the automated generation of software products. Hence, the programmer does not
need to assemble and integrate feature implementations manually, e.g., by writing
glue or boilerplate code.

3 THE ROOTS OF FOSD

There are three major lines of research that have contributed to the state of the art
of FOSD: feature modeling, feature interaction, and feature implementation.

3.1 Feature Modeling

In their seminal work on feature-oriented domain analysis (FODA), Kang et al.
were the first to introduce and use the concept of a feature for the description
of the commonalities and variabilities of software systems [70]. Their aim was to
structure the problem space (cf. Figure 1). They introduced the notion of a feature
model describing the relationships and dependencies of a set of features belonging
to a particular domain. In Figure 3, we show a standard example of the feature
modeling community in a commonly used feature diagram notation [47]: a feature
model that describes the variability of a simple car, i.e., the variants of cars that
can be produced in this domain. The root of the tree denotes the concept that is
modeled. All other boxes denote features, where child features depend on parent
features. There are different types of model elements that describe constraints on
the way in which features can be combined, as shown in Figure 3. For example,
every car has a body, transmission, and engine (filled circle), but a car does not
necessarily have a trailer (empty circle) or the engine may be powered with gasoline
or with electricity or with both (filled arc).

In contrast to FOSD, the early work on FODA did not make features explicit in
design and code, which led to a complex mapping between features and design and
implementation artifacts. Nevertheless, feature models have been used successfully
in many academic and industrial projects and drive the research and best practice
in software product line engineering [70,47,86,121]. They are the de facto standard

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 55

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

Transmission

Automatic Manual

Pulls Trailer Engine

ElectricGasoline

Car

mandatory

optional

OR

XOR

Body

Figure 3: A feature model of a simple car.

1 class List {

2 Node first;

3 void push(Node n) {

4 n.next = first; first = n;

5 }

6 }

7 class Node {

8 Node next;

9 }

Figure 4: A singly linked list.

1 class List {

2 Node last;

3 void shup(Node n) {

4 n.prev = last; last = n;

5 }

6 }

7 class Node {

8 Node prev;

9 }

Figure 5: A reversely linked list.

in modeling variability in product line engineering, and further work on FOSD will
build on this success. Since the introduction of feature models, several refinements
and extensions have been proposed, some of which we will discuss in Section 4.1.

3.2 Feature Interaction

In a different line, researchers and practitioners – mainly from the telecommunica-
tions industry – have developed the notion of feature interaction [36,39]. Although
largely developed independently of the work of Kang et al., they use features in a
similar sense but with focus on their run time interaction. A feature interaction is a
situation in which two or more features exhibit unexpected behavior that does not
occur when the features are used in isolation. The standard example is a phone with
– beside basic functionality – two features call waiting and call forwarding : when
used in isolation, both features work fine, but when used in combination, it is un-
clear what to do with an incoming call on a busy line. The call is either forwarded
or announced; in either case, the expected behavior of one of the two features is
compromised.

Let us illustrate the problem of feature interaction further by means of a simple
code example, which we learned about from Wolfgang Scholz in personal commu-
nication. Suppose we have a straightforward implementation of a singly linked list,
as shown in Figure 4 (feature Single). Further suppose an implementation of a re-
versely linked list, as shown in Figure 5, which is also implemented straightforwardly
(feature Reverse). Both features, Single and Reverse, work without problems
as long as they are isolated. But having both features in a single implementation,
henceforth called a doubly linked list, leads to an unexpected behavior. In Figure 6,
we show the list implementation including both features. In this case, the code of

56 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

3 THE ROOTS OF FOSD

1 class List {

2 Node first; Node last;

3 void push(Node n) {

4 n.next = first; first = n;

5 }

6 void shup(Node n) {

7 n.prev = last; last = n;

8 }

9 }

10 class Node {

11 Node next; Node prev;

12 }

Figure 6: A doubly linked list with
accidental feature interaction.

1 class List {

2 Node first; Node last;

3 void push(Node n) {

4 if(first==null) last=n; else first.prev = n;

5 n.next = first; first = n;

6 }

7 void shup(Node n) {

8 if(last==null) first=n; else last.next = n;

9 n.prev = last; last = n;

10 }

11 }

12 class Node {

13 Node next; Node prev;

14 }

Figure 7: A doubly linked list with
resolved feature interaction.

the two features is simply merged (i.e., a structural union); in other examples, the
merging is more difficult. Adding an element to the end or in front of the doubly
linked list does not preserve the connectivity between the list elements. The reason
is that, when adding an element in front of the list with method push, the backward
reference prev is not adjusted accordingly and the reference to the last element is
not set properly in the case the list is empty – a similar problem occurs in the op-
posite case. In Figure 7, we show the implementation containing the two features
– but now we have fixed the problem by adjusting the references properly. Note
that the fixes (underlined) are effective only when both features are present. So the
additional code is neither part of feature Single nor of feature Reverse when used
in isolation.

Feature interaction, as illustrated above, poses a major problem in the develop-
ment of feature-oriented software systems [36, 39, 89, 88, 82, 79]. There are several
techniques for detecting and handling interactions that address this issue (see Sec-
tion 4.3).

3.3 Feature Implementation

Prehofer was the first who recognized the need for making features (and feature
interactions) explicit at the programming language level [104]. He proposed to treat
the additional code elements, which a features applies to a base program, as first-
class entities and to separate them from the base code. This allows a developer to
trace features easily from the problem space to the solution space, which had been a
longstanding problem [60]. The problem of separating the code of different features
follows the seminal principle of separation of concerns , credited to Dijkstra [54] and
Parnas [98,99].

Furthermore, Prehofer explored the feature interaction problem at the level of
the static program structure. He proposed to factor out code that is necessary to
control the interaction of two features in a separate module, called a lifter [104]. In

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 57

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

selection
user’s feature

derivation A
B

F
D

C
E

D

F

C
B

A

feature implementations program program program

...
A
B
E

E

Figure 8: Feature-oriented programming.

our linked list example, a lifter would contain the code for adjusting the references
to the next and previous elements (underlined in Figure 7).

Technically, Prehofer’s approach builds on the concept of collaboration-based
design [106, 126, 116] and mixin techniques [38, 59] to separate feature-related code
from the base program. There is a wide variety of work on components and software
composition that predates or complements Prehofer’s work and that pursued related
ideas, e.g., GenVoca [29], subject-oriented programming [63], aspect-oriented pro-
gramming [81], adaptive plug-and-play components [95], and role components [126].
All aim at the modularization of software at a greater scale than functions and
classes. Although not intended for FOSD, these approaches can be used to imple-
ment features cohesively in order to be able to compose them in different combi-
nations, as illustrated in Figure 8. Interestingly, Batory’s work on GenVoca led to
several FOSD languages, tools, and theories, which we discuss in the next sections.

3.4 Discussion

Although the three roots of FOSD appear different at first glance, they all share the
concept of a feature to describe and implement commonalities and variabilities of
software systems. Only in recent work the different lines begin to converge toward
a unified development methodology, as illustrated in Figure 9. An aim of this
survey is to guide and accelerate this process and to strengthen the identity of
the FOSD community. In the following sections, we bring together some influential
and promising work in the field of FOSD.

4 RECENT DEVELOPMENTS IN FOSD

We structure our discussion of recent work on FOSD along the distinct phases of
the FOSD process. We begin with domain analysis and proceed over domain design
and implementation toward product configuration and generation. An exception is
our discussion of FOSD theory at the end, which “cuts across” all phases of FOSD.

58 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

Feature

Modeling

Feature

Interaction

Feature

Implementation

2010

2000

1990

FOSD

Convergence

Figure 9: The roots of FOSD and their emerging convergence.

4.1 Domain Analysis

Feature modeling is the central activity in domain analysis. The aim is to identify
and capture the variabilities and commonalities of a domain, in the case of FOSD,
in the form of a feature model. FODA was the first analysis method that came
with its own kind of feature model, as shown in Figure 3. Several analysis methods
and processes emerged from FODA, e.g., FORM [71] and FeatureRSEB [62]. These
mainly refine and extend the domain analysis process, but features remain the cen-
tral concept of both approaches. Schobbens et al. compare different kinds of feature
models and provide a unifying formal semantics [111].

Recently, on the basis of FODA, several extensions of feature modeling and fea-
ture models were proposed. A major line of research aimed at enriching feature
models with additional information, e.g., regarding feature cardinalities [48], propo-
sitional constraints [24], and non-functional properties of features [113]. The idea is
to use this information in the product configuration and generation process in order
to rule out invalid or suboptimal product variants (see Section 4.4). Nevertheless,
there is a trade-off between expressiveness and simplicity of feature models. The
more information is exposed in the model, the more it can guide the configuration
and generation process, but the more complex the model becomes. That is, more
expressive models are often not “management compatible”, which was their initial
strength. In further work, this trade-off should be explored in depth.

As feature models became larger, the necessity of automated reasoning became
apparent [33, 28]. Mannion [92] and Batory [24] were among the first to note the
connection between feature models and propositional formulas. A translation of a
feature model into a proposition enables tools to reason about properties of the fea-
ture model automatically. For example, tools can answer questions such as: Does a
feature selection satisfy constraints imposed by a feature model [24]? How many vari-
ants can be generated [32]? Are two feature models identical [122]? Which features
and relationships have to be changed to fix an inconsistent feature model [127]? Fur-
thermore, several researchers noted the relationship to grammars and design wizards

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 59

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

(i.e., tools that automate the selection of features in order to optimize non-functional
properties) and presented approaches to generate, based on feature models, design
wizards that present and constrain the configuration options [52, 3, 34, 24, 80]. A
subproblem of large feature models is that automated reasoning is time consuming
since, in many cases, computing interesting properties is NP-complete (e.g., the
satisfiability and equivalence of feature models). Hence, several researchers have
explored how to reason about feature models efficiently. For example, binary deci-
sion diagrams [94], satisfiability solvers [93], constraint satisfaction solvers [32], or
simplified reasoning [122] were used to reason about feature models of up to 10 000
features. In order to guarantee the correctness of analyses and manipulations per-
formed on large-scale feature models, Trinidad et al. propose a framework for the
automated error detection [123].

Like any other kind of software artifact, feature models evolve. Hence, program-
mers need support for refactoring and reverse engineering. The biggest issue is to
guarantee that changes to a feature model do not produce errors. Recently, some
researchers addressed this issue by providing proper tool support based on efficient
reasoning approaches (see above) [51,50,122].

To summarize, feature modeling has received much attention by researchers and
practitioners in recent years. A trend is to extend and use feature models for au-
tomatic product generation, but this complicates the use of features for users who
are not domain experts (e.g., managers or customers). While this trend has to be
followed in order to realize the full potential of FOSD, it is also important to explore
the trade-off between expressiveness and simplicity.

4.2 Domain Design and Specification

Domain design and specification is the process of defining the architecture of a soft-
ware product line. In the context of FOSD, this means that the essential structural
and behavioral properties of the involved features are specified using a formal or
informal specification and/or modeling language. Remarkably, there has not been
much work in this direction. FOSD researchers concentrated mainly on feature
modeling and feature implementation. That is, once the features and their rela-
tionships have been set in a feature model, the features are implemented. This is
in stark contrast to non-FOSD approaches, in which developers have to design a
product line architecture first in order to define the granularity of components or
extension points in a common framework [101]. In FOSD, features structure the
design of the software system. Hence, modeling and specification activities do not
aim at defining a variable architecture (this is given by the decomposition into fea-
tures) but at defining the structure and behavior of features and their interactions.
Modeling and specification languages have to take features and their potential for
combinations and interactions into account.

First attempts have been made to specify and model the structure and behavior
of a feature in isolation and to ensure the safe composition of features without con-

60 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

next : Node

Node

prev : Node

Node

next : Node

List List

first : Node first : Node

last : Nodepush(n : Node) : void

List

last : Node

push(n : Node) : void

shup(n : Node) : void

Node

shup(n : Node) : void

prev : Node

Figure 10: Feature composition involves model merging.

sidering the implementation. Poppelton proposed an approach for feature-oriented
specification [102]. He extends Event-B, a widely used formal specification language
for safety critical systems, with support for feature composition. The (yet un-
reached) goal is to propagate proven feature correctness properties through feature
composition to the generated software product.

Recent work of Trujillo et al. aims at connecting FOSD with model-driven devel-
opment (MDD) [124]. The key idea is to unify features with MDD transformations.
Features are vertical transformations (which elaborate one representation); MDD
transformations are horizontal transformations (which map one representation to a
different representation). Both are functions, but they are used in different circum-
stances. Batory et al. proposed a foundation based on category theory to describe
the interplay of and constraints on features and MDD transformations [25, 26, 27].
In Batory’s work it is not considered how a feature itself is modeled or specified.
Diskin et al. used a similar model to solve some problems in model versioning [55],
in which features correspond to updates applied to models.

Furthermore, Apel et al. explored how features can be modeled using standard
modeling techniques such as the unified modeling language (UML) [8]. The idea
is not to model the individual programs that can be derived from a product line
but the individual features (e.g., using class, state, and sequence diagrams) and
so on, and to merge the models in a prescribed way when a product is generated.
Left of the equality in Figure 10, we show the class diagrams of the two features
Single and Reverse of our list example (‘•’ denotes feature composition). Right
of the equality, we show the merged model that contains the two features and that
describes a doubly linked list. The (de)composition of models into features is related
to other fields such as aspect-oriented modeling [41,83,68,67].

An alternative approach to represent features in modeling is not to decompose a
model along features but to annotate a given model with information on features [46,
64, 112]. This way, we do not have multiple model fragments that correspond to
individual features but a single, superimposed model which contains annotations
pointing to features.

Finally, there is a significant body of work on specifying and resolving feature in-
teractions at the design/specification level [39,107]. The problem is that, especially

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 61

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

in distributed systems, the accidental interaction of features becomes only apparent
at run time in the form of misbehavior. In order to detect such misbehavior, it is
necessary to specify/model the intended behavior. Since the early work on feature
interaction, much progress has been made in detecting and resolving feature inter-
actions, for example, using static analysis [69] and model checking [85]. Most of
this work aims at networks and distributed systems and is outside the scope of this
paper. The connection to other subfields of FOSD, such as feature modeling and im-
plementation, has not been drawn yet. Some work on specification and verification
addresses also the feature interaction problem. We discuss this work in Section 4.4
together with other approaches that aim at correct product generation.

To summarize, there are many open issues in modeling and specifying features.
For example: How can we verify that a composition of features satisfies the specifi-
cation of the individual features and the desired product? We hope that this survey
will encourage more work in this direction.

4.3 Domain Implementation

As stated before, Prehofer was the first to note the necessity of making features ex-
plicit in code [104]. The goal is to establish a one-to-one mapping between features
that appear during the domain analysis and features that appear at the implementa-
tion level. Prehofer proposed first-class language constructs to represent the changes
and additions a feature makes when being added to a program. Since then, much
progress has been made in this direction.

There are several languages that support the concept of features explicitly. They
all share the goal to provide better abstraction and modularization mechanisms for
features. For example, Jak is a language that extends Java by feature-oriented
mechanisms [30]. Code belonging to a particular feature is stored in a dedicated
directory, called a containment hierarchy [30]. Typically, a containment hierarchy
contains multiple class and refinement declarations. A refinement declaration is a
way to apply the changes a feature makes to a program subsequently, without chang-
ing the program’s code. In Figures 11 and 12, we show our list example implemented
in Jak. In Figure 11, we have the two classes List and Node of feature Single.
These classes are identical to the ones implemented in plain Java (cf. Figure 4),
except the layer declaration, which specifies the enclosing feature. In Figure 12,
there are the two refinement declarations of feature Reverse that add fields and
methods to the classes of feature Single. The result of composing the features
Single and Reverse behaves like the code shown in Figure 6.

Beside Jak, also feature-oriented language extensions were proposed for C++,
called FeatureC++ [17], and for XML, called Xak [2]. Basically, feature-oriented
languages rely on programming mechanisms such as mixins [38, 59] and collabora-
tions [106,116,126], but also aspects and subjects became popular in FOSD [61,96,
87, 90, 74, 12, 18]. However, the connection of the original mechanisms to the other
phases of the FOSD process is typically not made explicit.

62 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

1 layer Single;

2 class List {

3 Node first;

4 void push(Node n) {

5 n.next = first; first = n;

6 }

7 }

8 class Node {

9 Node next;

10 }

Figure 11: A singly linked list im-
plemented in Jak.

1 layer Reverse;

2 refines class List {

3 Node last;

4 void shup(Node n) {

5 n.prev = last; last = n;

6 }

7 }

8 refines class Node {

9 Node prev;

10 }

Figure 12: A reversely linked list
implemented using refinements.

An interesting recent trend is to explore the principles of feature modularity
independently of a particular language [30, 91, 7, 15, 37]. The AHEAD tool suite
was the first to take advantage of a language-independent model of features (see
Section 4.5) and provides support for implementing features in different languages,
e.g., Java and grammar specifications [30]. However, the integration of new lan-
guages into the AHEAD tools suite was ad hoc and tedious. The FeatureHouse tool
suite follows the lead of AHEAD and provides an easy-to-use plug-in mechanism for
new languages, based on attribute grammars [15]. This way, many very different
languages like C, Haskell, JavaCC, or XHTML could be prepared for implementing
and composing features [15,8, 10].

The work on implementing features has been influenced by the work on feature
interactions. Prehofer was the first to note the relevance of feature interactions for
implementing features [104]. He observed that, in the presence of feature interac-
tions, the implementation of a feature may vary, as in the example of the doubly
linked list (see Section 3.3). Prehofer proposed to separate interaction code from
basic feature code in dedicated modules called lifters , i.e., to implement multiple
modules per feature, which is a slight departure from the initial goal of work on
FOSD (namely, a one-to-many instead of a one-to-one mapping between features
and feature artifacts). Liu et al. extended the notion of lifters to derivatives in
order to capture higher-order interactions (i.e., interactions between pieces of inter-
action code) and presented a theory for feature interactions [88] (see Section 4.5).
In Figure 13, we show the lifter/derivative SingleReverse that fixes the interac-
tion between the features Single and Reverse by overriding the methods push

and shup and adding code for adjusting the references properly (Super(Node) refers
to the method that is been refined.). SingleReverse is only present when both
Single and Reverse are present.

Implementing features in separate feature artifacts (e.g., flavors of modules, con-
tainers, or components) is not the only way to make features explicit in the im-
plementation. A view on feature implementation that differs from feature-oriented
programming emerged from simple variant and configuration mechanisms like the
C preprocessor. The idea is not to implement features using dedicated abstraction
and modularization mechanisms, but to annotate code with information on fea-

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 63

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

1 layer SingleReverse;

2 refines class List {

3 void push(Node n) {

4 if(first==null) last=n; else first.prev = n;

5 Super(Node).push();
6 }

7 void shup(Node n) {

8 if(last==null) first=n; else last.next = n;

9 Super(Node).shup();
10 }

11 }

Figure 13: Fixing the interaction between Single and Reverse with a derivative
in Jak.

tures [72,16], which is basically like annotating models with feature information, as
discussed in Section 4.2. For example, in the code base of a database system, one
could annotate all code lines with #ifdef-like directives that implement transaction
safety. This way, transaction management can be switched on and off at compile
time using a single flag. That is, two variants of the database system can be gen-
erated, one with and one without transaction management. Additionally, a simple
search mechanism can be used to find all code belonging to the transaction feature.
Annotation mechanisms such as the C preprocessor are used widely in industry to
implement features. An advantage is the fine-grained model of extensions (even
statements and expressions can be annotated) [75] and the easy adoption [44]. A
disadvantage is that features are not encapsulated in cohesive units but scattered
across the code base [72,16]. There seems to be a trade-off between modularity and
expressiveness or ease of use that is an interesting open research issue.

Commercial product line tools like Gears [84] or pure::variants [34] also support
the annotation of code with features. Furthermore, both connect feature models
to annotations to achieve a mapping between features in the problem and solution
space, but the mapping is usually complex and annotations obfuscate the source
code, which results in code that is criticized as “#ifdef hell” [117]. Recently, ad-
vances have been made to address these problems [75]. The idea is to provide
first-class feature support in an integrated development environment, implemented
in a tool called Colored IDE (CIDE), and to separate annotations from code in order
not to pollute the code base. Annotations are managed externally and displayed
using background colors. A principle of “disciplined” annotations limits annota-
tions to meaningful code fragments [75] and, like in FeatureHouse, CIDE has been
designed extensible in order to be able to integrate new languages rapidly [78, 77].
In Figure 14, we show the implementation of the list example using CIDE. Code
belonging to the features Single and Reverse has been colored. Interestingly, the
problem of varying feature implementations in the presence of feature interactions
occurs also in the context of annotation-based approaches [82]. In particular, nested
annotations indicate interactions (see Figure 14). The inner-most nest corresponds
to a lifter. In CIDE, feature interactions become apparent when colors denoting dif-
ferent feature overlap (the colors are blended in the overlapping region, cf. Figure 7).

64 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

Figure 14: Implementing a doubly linked list in CIDE.

To summarize, feature implementation has been receiving much attention in
recent years, by programming language designers and tool developers. An open issue
is how to combine annotation-based and composition-based approaches in a unified
and efficient framework. Furthermore, the idea of factoring feature interaction code
via lifters and derivatives is promising, but it is not clear whether this approach
scales to a large number of features with many interactions.

4.4 Product Configuration and Generation

In FOSD, generation plays a key role. The vision is that, following a user’s feature
selection, an efficient software system is generated automatically, as illustrated in
Figure 15. This differs from the traditional approach of domain and application
engineering, in which the user is in charge of assembling, adapting, and integrating
the reusable assets produced by domain engineering. Full automation is one of the
key goals of FOSD.

Several steps are needed to generate an efficient software system from a user’s
feature selection. First, to assist the user in selecting a set of desired features, tools
need to present the available features as well as their constraints and relationships
clearly. Ideally, invalid feature selections are reported and rejected interactively, i.e.,

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 65

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

Figure 15: Automatic product generation on the basis of a feature selection [30].

during the feature selection process. Tools like GUIDSL [24], pure::variants [34],
FeatureIDE [80], CIDE [76], and many others present available features in the form
of interactive feature models (represented as radio buttons and check boxes or trees)
and assist users in finding a valid selection by evaluating the relationships in the
background, visualizing relationships, and hiding invalid options.

The next step is to compute a complete, valid feature selection on the basis
of a partial feature selection by evaluating possible complete feature combinations
and judging their appropriateness. The background is that real-world product lines
have many hundreds or even thousands of features, whose sheer number certainly
overburden the average user. The simplest approach would be to present all feature
selections to the user that are possible. More appropriate would be to use domain
knowledge in order to determine which features work well with other features. In
the latter scenario, the word ‘well’ is the key. What does it mean for two features to
work well? Clearly more information than just the feature model is needed. Non-
functional properties of features, provided by the user and/or computed by a tool,
can guide the feature selection process, as proposed by Siegmund et al. [114] and
Sincero et al. [115]. For example, profiling reveals that certain index structures (e.g.,
B-tree, T-tree, hash map) of a database system obey different footprint and perfor-
mance characteristics in different situations (e.g., amount of data, access patterns,
query types). This knowledge can be used during feature selection to optimize the
generated database system either toward maximal performance or minimal foot-
print. Another strategy for automatically selecting the ‘best’ features is to analyze
the context in which the variant is to be used [110].

The process of optimizing a feature selection is a form of architectural metapro-
gramming. Architectural metaprogramming (a.k.a. computational design) is a gen-
eral approach to software development that provides a unifying view on FOSD,
MDD, and refactoring [26, 27]. Architectural metaprogramming can be explained
by contrasting it to programming in the small. The basic idea is that programming
in the small is creating objects and writing methods that update these objects or
that translate objects of one type to another. Programming in the large is where ob-

66 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

jects represent system designs, and methods are transformations that update these
designs or translate designs in one representation to that of another. In this view,
a feature selection represents a system design or architecture and optimization is a
transformation that updates or changes the design or architecture.

Once we have a proper feature selection, the desired software system is generated .
Variant generation (a.k.a. product derivation) concerns all kinds of artifacts, from
code over models to documentation. As stated in Section 4.3, the work on AHEAD
was the first that aimed at an integrated FOSD tool for software artifacts written
in different languages. The next generation are tools like FeatureHouse and CIDE,
which automate also the integration of new languages to build language-independent
composition or generation tools.

An important question during generation is whether the generated code is cor-
rect.2 There are three levels of correctness: (1) syntactic correctness, i.e., the gen-
erated software system is correct with respect to the language’s syntax, (2) type
correctness, i.e., the generated software system is well-typed with respect to the
language’s type system, and (3) behavioral correctness, i.e., the generated software
system behaves correctly according to a formal or informal specification. Further-
more, it is desirable to guarantee correctness properties for the entire product line
instead of checking each product variant in isolation. The reason is that generating
all systems is not feasible due to the potentially large number of valid feature selec-
tions (already for 33 independent, optional features, a variant can be generated for
every person on the planet).

With regard to syntactic and type correctness of product lines, researchers made
considerable progress in recent years [49, 120, 73, 13, 53, 78, 11]. Most prominently,
Pietroszek and Czarnecki [49] and Thaker et al. [120] implemented type systems
for UML- and AHEAD-based product lines. Also, attempts have been made to
formalize type systems for feature-oriented product lines [73, 53, 11]. In contrast,
behavioral correctness is difficult to guarantee, due to the lack of feature support of
contemporary specification, verification, and validation techniques, but first steps
have been made. For example, configuration lifting is a technique that translates
feature information into metaprograms and uses established verification techniques
to ensure correctness [103]. Classen et al. propose to merge the transition systems
representing the behaviors of different features into a single, superimposed transition
system and to use information on features and model checking techniques for effi-
cient verification [43]. Alternative approaches, that propose to generate proofs, are
promising but have not been considered with regard to software product lines [23].

Another approach of attaining confidence in the generation process is to test or
validate a product line [101]. While tests cannot guarantee the absence of errors,
they can provide a certain degree of confidence. However, as with type checking,
testing all variants of a software product line is in the most cases not feasible.
Instead, meaningful subsets [101], model-based and composable tests [97, 125] have

2Note that we could have discussed this issue also in Section 4.3, as it is at the fringe between
implementation and generation.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 67

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

to be used. The problem of feature interaction is important in this context since
features tested in isolation may obey the desired behavior but their combination
may not, as the list example has taught us. It is an open issue whether the entire
code base of a product line can be tested instead of generating and testing products
individually.

To summarize, in recent years techniques and tools from the fields of feature
modeling and feature implementation begin to converge toward a unified framework
for FOSD. The main challenges are how to specify, verify, and test the correctness
of software products generated from product lines, ideally without generating all
products. Further important issues are how to represent domain knowledge and
how to generate efficient software products based on this information.

4.5 Theory

The first theory on FOSD, even though at the time it was not called FOSD, was
GenVoca. GenVoca models the changes that a feature applies as function application
and feature composition as function composition, denoted by •. For example, a
product line of telecommunication systems consisting of the three features Phone,
CallWaiting, and CallForwarding is modeled as a set:

{Phone,CallWaiting,CallForwarding}

Different variants of telecommunication systems are modeled by composing functions
(that represent features) in different combinations:

Phone

CallWaiting •Phone

CallForwarding •Phone

CallWaiting •CallForwarding •Phone

. . .

Currently, it is not clear whether the order of features plays or should play a role in
modeling product lines. In the case of the list example, the composition order does
not matter. In other cases, this may be different [9]. Generally, it has been shown
that the order of features depends on the implementation mechanism [15] and that
it can be changed by refactorings [22, 82, 9]. But should the user be aware of the
order, or should the user just pick the features she needs?

AHEAD is the successor of GenVoca. It aims at language independence in that
it represent the changes that a feature applies as nested records, in which each
element denotes a certain type of artifact. For example, the record below represents
feature Single of the list example (including two Java classes and a documentation
in HTML):

Single : { Java : { List : { first, push }, Node{ next } }, HTML : { List.html } }

68 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

4 RECENT DEVELOPMENTS IN FOSD

push : Method

List : Class

first : Fieldnext : Field

Node : Class

Single : Feature

Figure 16: The feature structure tree of feature Single.

Another approach is to use specific trees, called feature structure trees [19, 15], as
shown in Figure 16.

Both approaches (nested records and feature structure trees) share many similar-
ities but also differ in some respects, This is reflected in the fact that two different
algebras have been developed [31, 21]. In both algebras, features are represented
by algebraic expressions and feature composition is performed by dedicated opera-
tions. For example, in the feature algebra of Apel et al. [21, 20], feature Single is
represented has follows:

Single := Node.next : Field ⊕ Node : Class ⊕
List.push : Method ⊕ List.first : Field ⊕ List : Class

Feature Reverse is represented analogously. The composition of the two features
is the addition (using operator ⊕) of the summands of the two features’ algebraic
expressions.

The initial idea of using algebra for describing and comparing programming tech-
niques is due to Lopez-Herrejon et al. [91]. A benefit of algebraic models is that they
provide insight into the fundamental properties of feature composition, e.g., why fea-
ture composition is usually not commutative. Furthermore, algebra has been used
to model and reason about feature interactions [89, 88] and product line variabil-
ity [66]. Finally, in order to realize the vision of architectural metaprogramming,
formal models like the feature algebra are essential [26].

Trujillo et al. extended the AHEAD theory toward model-driven development,
called feature-oriented model-driven development (FOMDD) [124]. The idea is to
integrate software artifacts that reside on different abstraction levels (levels in the
model stack) and to model transformations of them uniformly. Beside features, also
model refinement involves a transformation. FOMDD reveals their relationship, as
illustrated in Figure 17.

Still an open issue is how to connect theories at different levels, e.g., at the feature
model level [66], the design/modeling level [124], or the implementation level [31,21],
into a consistent unified theory that describes all structures and mechanisms used
in the FOSD process.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 69

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

Java Code

 Node first;

 void push(Node n) {

 ...

 }

}

class Node {

 Node next;

}

List

first : Node

push(n : Node) : void

List

Node

next : Node

Node

first : Node

last : Node

push(n : Node) : void

shup(n : Node) : void

prev : Node

next : Node

class List {

 Node first;

 Node last;

 void push(Node n) {

 ...

 }

 void shup(Node n) {

 ...

 }

}

class Node {

 Node next;

 Node prev;

}

Single Reverse Single

UML Model

class List {

Figure 17: Feature-oriented model-driven development of the list example.

5 PERSPECTIVE

Since the concept of a feature was first proposed in software engineering, the field
of FOSD has been developed forcefully. Researchers from different disciplines have
contributed to the current state and success of FOSD. Nevertheless, further steps
have to be made in order to realize the full potential of FOSD and to accelerate its
adoption in industry and its acceptance in other research fields. We have identified
and condensed the following list of key issues, which is ordered following the phases
of the FOSD process:

• Domain analysis: Feature models are useful for the communication between
stakeholders and for the automation of the development process. This twofold
usage of feature models imposes a challenge for their further development.
On the one hand, feature models should be simple so that stakeholders can
understand their meaning. On the other hand, it is useful to enrich feature
models with further information in order to guide the generation process, e.g.,
for domain-specific optimization. The way researchers and practitioners deal
with this trade-off will be significant for the success of FOSD. Open issues are:
What kind of model (granularity) is needed? Is a single model enough or do
we need multiple mapped models? What kind of information is useful and
how is this information presented and user?

70 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

5 PERSPECTIVE

• Domain design and specification: The specification of the structure and
behavior of features and their interactions is an important activity that has
received too little attention in the past. What are the best techniques for
modeling and specifying the desired behavioral and structural properties of
features as well as their intended and accidental interactions? How can we
verify that a composition of features satisfies the specification of the individual
features and of the desired product? Answering these questions will be crucial
to convincing practitioners of the usefulness of FOSD.

• Domain implementation: Researchers have developed many languages and
tools for the implementation of features. Each language and tool has individ-
ual strengths and weaknesses, but researchers only begin to understand the
implications for successful FOSD, not to speak of the average user. A further
problem is that, typically, the different languages and tools do not interoper-
ate well and cannot be integrated with tools from other phases of the FOSD
process. Recently, first attempts have been made to unify different implemen-
tation approaches and to integrate them into the FOSD process. Researchers
should follow this line of work. Furthermore, the idea of factoring feature inter-
action code via lifters and derivatives is promising, but it is not clear whether
this approach scales to large numbers of features with many interactions or
whether we need something completely different.

• Product configuration and generation: In recent years, techniques and
tools from the fields of feature modeling and feature implementation begin to
converge toward a unified framework for FOSD. The main challenges are how
to specify, verify, and test the correctness of software products generated from
product lines, ideally without generating all products. A key problem of FOSD
is that the flexibility of feature composition leads to a progressively increas-
ing number of variants, which must be handled by programmers and tools.
Further important issues are how to represent domain knowledge, provided by
domain experts, and how to generate efficient software products based on this
information.

• FOSD theory: Finally, first formal models of FOSD are being developed,
mostly focusing on specific issues. How are their theories related? How can
they be integrated into a unified theory that describes all structures and mech-
anisms used in the FOSD process? A unified theory of FOSD is the prerequisite
for realizing the vision of FOSD: the generation of efficient and correct software
on the basis of a set of feature artifacts and a user’s feature selection.

Of course, there are further issues and details that have to be addressed. However,
we believe the above list forms an important subset to guide further research.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 71

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

6 CONCLUSION

The goal of this article has been to provide an overview of FOSD. Beginning from
the roots of FOSD, we have systematically summarized several promising works on
FOSD. We hope that our survey will help to reveal connections between different
approaches to FOSD, to identify and address open issues, and to guide further work
and cooperations between different researchers. The ultimate goal is to establish an
identity of the FOSD community and to drive further the convergence of work on
FOSD.

ACKNOWLEDGMENTS

We thank Don Batory, Krzysztof Czarnecki, Christian Lengauer, Jörg Liebig, Roberto
Lopez-Herrejon, Wolfgang Scholz, and Salvador Trujillo for their helpful comments
on earlier drafts of this paper. Furthermore, we acknowledge Wolfgang Scholz as
inventor of the list example. The first author’s research is sponsored in part by the
German Science Foundation (DFG), # AP 206/2-1.

REFERENCES

[1] N. Aizenbud-Reshef, B. Nolan, J. Rubin, and Y. Shaham-Gafni. Model Trace-
ability. IBM Systems Journal, 45(3):515–526, 2006.

[2] F. Anfurrutia, O. Dı́az, and S. Trujillo. On Refining XML Artifacts. In
Proceedings of International Conference on Web Engineering (ICWE), volume
4607 of Lecture Notes in Computer Science, pages 473–478. Springer-Verlag,
2007.

[3] M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature Modeling Plug-In
for Eclipse. In Proceedings of the OOPSLA Workshop on Eclipse Technology
eXchange (ETX), pages 67–72. ACM Press, 2004.

[4] G. Antoniol, E. Merlo, Y.-G. Guéhéneuc, and H. Sahraoui. On Feature Trace-
ability in Object Oriented Programs. In Proceedings of the International Work-
shop on Traceability in Emerging Forms of Software Engineering (TEFSE),
pages 73–78. ACM Press, 2005.

[5] S. Apel. The Role of Features and Aspects in Software Development. PhD
thesis, School of Computer Science, University of Magdeburg, 2007.

[6] S. Apel. How AspectJ is Used: An Analysis of Eleven AspectJ Programs.
Journal of Object Technology (JOT), 9(1), 2010.

72 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[7] S. Apel and D. Hutchins. An Overview of the gDeep Calculus. Technical
Report MIP-0712, Department of Informatics and Mathematics, University of
Passau, 2007.

[8] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model Superimposition in
Software Product Lines. In Proceedings of the International Conference on
Model Transformation (ICMT), volume 5563 of Lecture Notes in Computer
Science, pages 4–19. Springer-Verlag, 2009.

[9] S. Apel, C. Kästner, and D. Batory. Program Refactoring using Functional
Aspects. In Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering (GPCE), pages 161–170. ACM Press,
2008.

[10] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Feature (De)composition
in Functional Programming. In Proceedings of the International Conference
on Software Composition (SC), volume 5634 of Lecture Notes in Computer
Science, pages 9–26. Springer-Verlag, 2009.

[11] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type-Safe Feature-
Oriented Product Lines. Technical Report MIP-0909, Department of Infor-
matics and Mathematics, University of Passau, 2009.

[12] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect Refinement - Unifying
AOP and Stepwise Refinement. Journal of Object Technology (JOT) – Special
Issue: TOOLS EUROPE 2007, 6(9):13–33, 2007.

[13] S. Apel, C. Kästner, and C. Lengauer. Feature Featherweight Java: A Calculus
for Feature-Oriented Programming and Stepwise Refinement. In Proceedings
of the International Conference on Generative Programming and Component
Engineering (GPCE), pages 101–112. ACM Press, 2008.

[14] S. Apel, C. Kästner, and C. Lengauer. Research Challenges in the Tension
Between Features and Services. In Proceedings of the ICSE Workshop on
Systems Development in SOA Environments (SDSOA), pages 53–58. ACM
Press, 2008.

[15] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse: Language-Independent,
Automated Software Composition. In Proceedings of the International Confer-
ence on Software Engineering (ICSE), pages 221–231. IEEE CS Press, 2009.

[16] S. Apel, C. Kästner, and C. Lengauer. Vergleich und Integration von Komposi-
tion und Annotation zur Implementierung von Produktlinien. In Software En-
gineering 2009 – Fachtagung des GI-Fachbereichs Softwaretechnik, volume P-
143 of GI-Edition – Lecture Notes in Informatics, pages 101–112. Gesellschaft
für Informatik, 2009.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 73

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[17] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++: On the Sym-
biosis of Feature-Oriented and Aspect-Oriented Programming. In Proceedings
of the International Conference on Generative Programming and Component
Engineering (GPCE), volume 3676 of Lecture Notes in Computer Science,
pages 125–140. Springer-Verlag, 2005.

[18] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE Transac-
tions on Software Engineering (TSE), 34(2):162–180, 2008.

[19] S. Apel and C. Lengauer. Superimposition: A Language-Independent Ap-
proach to Software Composition. In Proceedings of the International Sympo-
sium on Software Composition (SC), volume 4954 of Lecture Notes in Com-
puter Science, pages 20–35. Springer-Verlag, 2008.

[20] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner. An Algebra
for Feature-Oriented Software Development. Technical Report MIP-0706, De-
partment of Informatics and Mathematics, University of Passau, 2007.

[21] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra for Features
and Feature Composition. In Proceedings of the International Conference on
Algebraic Methodology and Software Technology (AMAST), volume 5140 of
Lecture Notes in Computer Science, pages 36–50. Springer-Verlag, 2008.

[22] S. Apel and J. Liu. On the Notion of Functional Aspects in Aspect-Oriented
Refactoring. In Proceedings of the ECOOP Workshop on Aspects, Dependen-
cies, and Interactions (ADI), pages 1–9. Computing Department, Lancaster
University, 2006.

[23] N. Basir, E. Denney, and B. Fischer. Constructing a Safety Case for Au-
tomatically Generated Code from Formal Program Verification Information.
In Proceedings of the International Conference on Computer Safety, Reliabil-
ity, and Security (SAFECOMP), volume 5219 of Lecture Notes in Computer
Science, pages 249–262. Springer-Verlag, 2008.

[24] D. Batory. Feature Models, Grammars, and Propositional Formulas. In Pro-
ceedings of the International Software Product Line Conference (SPLC), vol-
ume 3714 of Lecture Notes in Computer Science, pages 7–20. Springer-Verlag,
2005.

[25] D. Batory. From Implementation to Theory in Product Synthesis. In Proceed-
ings of the International Symposium on Principles of Programming Languages
(POPL), pages 135–136. ACM Press, 2007.

[26] D. Batory. Program Refactoring, Program Synthesis, and Model-Driven De-
velopment. In Proceedings of the International Conference on Compiler Con-
struction (CC), volume 4420 of Lecture Notes in Computer Science, pages
156–171. Springer-Verlag, 2007.

74 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[27] D. Batory, M. Azanza, and J. Saraiva. The Objects and Arrows of Com-
putational Design. In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MODELS), volume 5301 of Lec-
ture Notes in Computer Science, pages 1–20. Springer-Verlag, 2008.

[28] D. Batory, D. Benavides, and A. Ruiz-Cortes. Automated Analysis of Feature
Models: Challenges Ahead. Communications of the ACM (CACM), 49(12):45–
47, 2006.

[29] D. Batory and S. O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodology (TOSEM), 1(4):355–398, 1992.

[30] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering (TSE), 30(6):355–371, 2004.

[31] D. Batory and D. Smith. Finite Map Spaces and Quarks: Algebras of Program
Structure. Technical Report TR-07-66, Department of Computer Science,
University of Texas at Austin, 2007.

[32] D. Benavides. On the Automated Analysis of Software Product Lines using
Feature Models. A Framework for Developing Automated Tool Support. PhD
thesis, Department of Computer Languages and Systems, University of Seville,
2007.

[33] D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Automated Reasoning on
Feature Models. In Proceedings of the International Conference on Advanced
Information Systems Engineering (CAiSE), volume 3520 of Lecture Notes in
Computer Science, pages 491–503. Springer-Verlag, 2005.

[34] D. Beuche, H. Papajewski, and W. Schröder-Preikschat. Variability Man-
agement with Feature Models. Science of Computer Programming (SCP),
53(3):333–352, 2004.

[35] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. ACM Press / Addison-Wesley, 2000.

[36] T. Bowen, F. Dworack, C. Chow, N. Griffeth, and G. Herman Y.-J. Lin. The
Feature Interaction Problem in Telecommunications Systems. In Proceedings
of the International Conference on Software Engineering for Telecommunica-
tion Switching Systems (SETSS), pages 59–62. IEEE CS Press, 1989.

[37] S. Boxleitner, S. Apel, and C. Kästner. Language-Independent Quantification
and Weaving for Feature Composition. In Proceedings of the International
Symposium on Software Composition (SC), volume 5634 of Lecture Notes in
Computer Science, pages 45–54. Springer-Verlag, 2009.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 75

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[38] G. Bracha and W. Cook. Mixin-Based Inheritance. In Proceedings of the In-
ternational Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA) and the European Conference on Object-Oriented
Programming (ECOOP), pages 303–311. ACM Press, 1990.

[39] M. Calder, M. Kolberg, E. Magill, and S. Reiff-Marganiec. Feature Inter-
action: A Critical Review and Considered Forecast. Computer Networks:
The International Journal of Computer and Telecommunications Networking,
41(1):115–141, 2003.

[40] K. Chen, W. Zhang, H. Zhao, and H. Mei. An Approach to Constructing
Feature Models Based on Requirements Clustering. In Proceedings of the
International Conference on Requirements Engineering (RE), pages 31–40.
IEEE CS Press, 2005.

[41] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and Design. The Theme
Approach. Addison-Wesley, 2005.

[42] A. Classen, P. Heymans, and P. Schobbens. What’s in a Feature: A Require-
ments Engineering Perspective. In Proceedings of the International Conference
on Fundamental Approaches to Software Engineering (FASE), volume 4961 of
Lecture Notes in Computer Science, pages 16–30. Springer-Verlag, 2008.

[43] A. Classen, P. Heymans, T. Tun, and B. Nuseibeh. Towards Safer Compo-
sition. In Companion Volume of the International Conference on Software
Engineering (ICSE), pages 227–230. IEEE CS Press, 2009.

[44] P. Clements and C. Krueger. Point/Counterpoint. IEEE Software, 19(4):28–
31, 2002.

[45] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, 2002.

[46] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template
Approach Based on Superimposed Variants. In Proceedings of the Interna-
tional Conference on Generative Programming and Component Engineering
(GPCE), volume 3676 of Lecture Notes in Computer Science, pages 422–437.
Springer-Verlag, 2005.

[47] K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, 2000.

[48] K. Czarnecki, S. Helsen, and U. Eisenecker. Formalizing Cardinality-Based
Feature Models and their Specialization. Software Process: Improvement and
Practice, 10(1):7–29, 2005.

76 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[49] K. Czarnecki and K. Pietroszek. Verifying Feature-Based Model Templates
Against Well-Formedness OCL Constraints. In Proceedings of the Interna-
tional Conference on Generative Programming and Component Engineering
(GPCE), pages 211–220. ACM Press, 2006.

[50] K. Czarnecki, S. She, and A. Wasowski. Sample Spaces and Feature Models:
There and Back Again. In Proceedings of the International Software Product
Line Conference (SPLC), pages 22–31. IEEE CS Press, 2008.

[51] K. Czarnecki and A. Wasowski. Feature Diagrams and Logics: There and Back
Again. In Proceedings of the International Software Product Line Conference
(SPLC), pages 23–34. IEEE CS Press, 2007.

[52] M. de Jonge and J. Visser. Grammars as Feature Diagrams. In Proceed-
ings of the ICSR Workshop on Generative Programming (GP), pages 23–24.
Department of Computer Science, University of Texas at Austin, 2002.

[53] B. Delaware, W. Cook, and D. Batory. A Machine-Checked Model of Safe
Composition. In Proceedings of the International Workshop on Foundations
of Aspect-Oriented Languages (FOAL), pages 31–35. ACM Press, 2009.

[54] E. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[55] Z. Diskin, M. Antkiewicz, and K. Czarnecki. Model Versioning-in-the-large:
Algebraic Foundations and the Tile Notation. In Proceedings of the Interna-
tional Workshop on Comparison and Versioning of Software Models (CVSM).
IEEE CS Press, 2009.

[56] P. Ebraert, J. Vallejos, P. Costanza, E. Van Paesschen, and T. D’Hondt.
Change-Oriented Software Engineering. In Proceedings of the International
Conference on Dynamic languages (ICDL), pages 3–24. ACM Press, 2007.

[57] T. Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall, 2005.

[58] R. Filman, T. Elrad, S. Clarke, and M. Aksit, editors. Aspect-Oriented Soft-
ware Development. Addison-Wesley, 2005.

[59] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proceed-
ings of the International Symposium on Principles of Programming Languages
(POPL), pages 171–183. ACM Press, 1998.

[60] O. Gotel and A. Finkelstein. An Analysis of the Requirements Traceability
Problem. In Proceedings of the International Conference on Requirements
Engineering (ICRE), pages 94–101. IEEE CS Press, 1994.

[61] M. Griss. Implementing Product Line Features by Composing Aspects. In
Proceedings of the International Software Product Line Conference (SPLC),
pages 271–288. Kluwer Academic Publishers, 2000.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 77

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[62] M. Griss, J. Favaro, and M. d’Alessandro. Integrating Feature Modeling with
the RSEB. In Proceedings of the International Conference on Software Reuse
(ICSR), pages 76–85. IEEE CS Press, 1998.

[63] W. Harrison and H. Ossher. Subject-Oriented Programming: A Critique
of Pure Objects. In Proceedings of the International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
pages 411–428. ACM Press, 1993.

[64] F. Heidenreich, J. Kopcsek, and C. Wende. FeatureMapper: Mapping Features
to Models. In Companion Proceedings of the International Conference on
Software Engineering (ICSE), pages 943–944. ACM Press, 2008.

[65] G. Heineman and W. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001.

[66] P. Höfner, R. Khedri, and B. Möller. Feature Algebra. In Proceedings of the
International Symposium on Formal Methods (FM), volume 4085 of Lecture
Notes in Computer Science, pages 300–315. Springer-Verlag, 2006.

[67] J.-M. Jezequel. Model Driven Design and Aspect Weaving. Software and
Systems Modeling (SoSyM), 7(2):209–218, 2008.

[68] A. Jossic, M. Del Fabro, J.-P. Lerat, J. Bezivin, and F. Jouault. Model Inte-
gration with Model Weaving: A Case Study in System Architecture. In Pro-
ceedings of the International Conference on Systems Engineering and Modeling
(ICSEM), pages 79–84. IEEE CS Press, 2007.

[69] H. Jouve, P. Le Gall, and S. Coudert. An Automatic Off-line Feature Inter-
action Detection Method by Static Analysis of Specifications. In Proceedings
of the International Conference on Feature Interactions in Software and Com-
munication Systems (ICFI), pages 131–146. IOS Press, 2005.

[70] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

[71] K. Kang, S. Kim, J. Lee, K. Kim, G. Kim, and E. Shin. FORM: A Feature-
Oriented Reuse Method with Domain-Specific Reference Architectures. Annals
of Software Engineering, 5(1):143–168, 1998.

[72] C. Kästner and S. Apel. Integrating Compositional and Annotative Ap-
proaches for Product Line Engineering. In Proceedings of the Workshop on
Modularization, Composition, and Generative Techniques for Product Line
Engineering (McGPLE), pages 35–40. University of Passau, 2008.

[73] C. Kästner and S. Apel. Type-Checking Software Product Lines – A For-
mal Approach. In Proceedings of the International Conference on Automated
Software Engineering (ASE), pages 258–267. IEEE CS Press, 2008.

78 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[74] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing Features
using AspectJ. In Proceedings of the International Software Product Line
Conference (SPLC), pages 223–232. IEEE CS Press, 2007.

[75] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in Software Product
Lines. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 311–320. ACM Press, 2008.

[76] C. Kästner, S. Apel, and S. Trujillo. Visualizing Software Product Line Vari-
abilities in Source Code. In Proceedings of the SPLC Workshop on Visualiza-
tion in Software Product Line Engineering (ViSPLE), pages 303–313. Lero,
University of Limerick, 2008.

[77] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Language-
Independent Safe Decomposition of Legacy Applications into Features. Tech-
nical Report 02/2008, School of Computer Science, University of Magdeburg,
2008.

[78] C. Kästner, S. Apel, S. Trujillo, M. Kuhlemann, and D. Batory. Guaranteeing
Syntactic Correctness for all Product Line Variants: A Language-Independent
Approach. In Proceedings of the International Conference on Objects, Models,
Components, Patterns (TOOLS EUROPE), volume 33 of Lecture Notes in
Business and Information Processing, pages 175–194. Springer-Verlag, 2009.

[79] C. Kästner, S. Apel, S. ur Rahman, M. Rosenmüller, D. Batory, and G. Saake.
On the Impact of the Optional Feature Problem: Analysis and Case Studies.
In Proceedings of the International Software Product Line Conference (SPLC).
Software Engineering Institute, Carnegie Mellon University, 2009.

[80] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel. FeatureIDE: Tool Framework for Feature-Oriented Software Develop-
ment. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 611–614. IEEE CS Press, 2009.

[81] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Proceedings of the Euro-
pean Conference on Object-Oriented Programming (ECOOP), volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer-Verlag, 1997.

[82] C. Kim, C. Kästner, and D. Batory. On the Modularity of Feature Interactions.
In Proceedings of the International Conference on Generative Programming
and Component Engineering (GPCE), pages 23–34. ACM Press, 2008.

[83] D. Kolovos, R. Paige, and F. Polack. Merging Models with the Epsilon Merg-
ing Language (EML). In Proceedings of the International Conference on Model
Driven Engineering Languages and Systems (MODELS), volume 4199 of Lec-
ture Notes in Computer Science, pages 215–229. Springer-Verlag, 2006.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 79

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[84] C. Krueger. The BigLever Software Gears Unified Software Product Line
Engineering Framework. In Proceedings of the International Software Product
Line Conference (SPLC), pages 353–353. IEEE CS Press, 2008.

[85] A. Layouni, L. Logrippo, and K. Turner. Conflict Detection in Call Control
Using First-Order Logic Model Checking. In Proceedings of the International
Conference on Feature Interactions in Software and Communication Systems
(ICFI), pages 66–82. IOS Press, 2007.

[86] J. Lee and D. Muthig. Feature-Oriented Variability Management in Product
Line Engineering. Communications of the ACM (CACM), 49(12):55–59, 2006.

[87] K. Lee, K. Kang, M. Kim, and S. Park. Combining Feature-Oriented Analysis
and Aspect-Oriented Programming for Product Line Asset Development. In
Proceedings of the International Software Product Line Conference (SPLC),
pages 103–112. IEEE CS Press, 2006.

[88] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring of Legacy
Applications. In Proceedings of the International Conference on Software En-
gineering (ICSE), pages 112–121. ACM Press, 2006.

[89] J. Liu, D. Batory, and S. Nedunuri. Modeling Interactions in Feature-Oriented
Designs. In Proceedings of the International Conference on Feature Interac-
tions in Software and Communication Systems (ICFI), pages 178–197. IOS
Press, 2005.

[90] D. Lohmann, O. Spinczyk, and W. Schröder-Preikschat. Lean and Efficient
System Software Product Lines: Where Aspects Beat Objects. Transactions
on Aspect-Oriented Software Development (TAOSD), 2(1):227–255, 2006.

[91] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating Support for Features
in Advanced Modularization Technologies. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP), volume 3586 of Lec-
ture Notes in Computer Science, pages 169–194. Springer-Verlag, 2005.

[92] M. Mannion. Using First-Order Logic for Product Line Model Validation. In
Proceedings of the International Software Product Line Conference (SPLC),
volume 2379 of Lecture Notes in Computer Science, pages 176–187. Springer-
Verlag, 2002.

[93] M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-based Analysis of Fea-
ture Models is Easy. In Proceedings of the International Software Product Line
Conference (SPLC). Software Engineering Institute, Carnegie Mellon Univer-
sity, 2009.

[94] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan. Efficient Com-
pilation Techniques for Large Scale Feature Models. In Proceedings of the
International Conference on Generative Programming and Component Engi-
neering (GPCE), pages 13–22. ACM Press, 2008.

80 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[95] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evo-
lutionary Software Development. In Proceedings of the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 97–116. ACM Press, 1998.

[96] M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. In Proceedings of the International Symposium on
Foundations of Software Engineering (FSE), pages 127–136. ACM Press, 2004.

[97] E. Olimpiew and H. Gomaa. Model-Based Testing for Applications Derived
from Software Product Lines. SIGSOFT Software Engineering Notes, 30(4):1–
7, 2005.

[98] D. Parnas. On the Design and Development of Program Families. IEEE
Transactions on Software Engineering (TSE), SE-2(1):1–9, 1976.

[99] D. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering (TSE), SE-5(2):264–277, 1979.

[100] R. Pichler, K. Ostermann, and M. Mezini. On Aspectualizing Component
Models. Software Practice and Experience (SPE), 33(10):957–974, 2003.

[101] K. Pohl, G. Böckle, and F. van der Linden. Software Product Line Engineering.
Foundations, Principles, and Techniques. Springer-Verlag, 2005.

[102] M. Poppleton. Towards Feature-Oriented Specification and Development with
Event-B. In Proceedings of the International Working Conference on Require-
ments Engineering: Foundation for Software Quality (REFSQ), volume 4542
of Lecture Notes in Computer Science, pages 367–381. Springer-Verlag, 2007.

[103] H. Post and C. Sinz. Configuration Lifting: Verification meets Software Con-
figuration. In Proceedings of the International Conference on Automated Soft-
ware Engineering (ASE), pages 347–350. IEEE CS Press, 2008.

[104] C. Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), volume 1241 of Lecture Notes in Computer Science, pages 419–443.
Springer-Verlag, 1997.

[105] V. Rajlich. Changing the Paradigm of Software Engineering. Communications
of the ACM (CACM), 49(8):67–70, 2006.

[106] T. Reenskaug, E. Andersen, A. Berre, A. Hurlen, A. Landmark, O. Lehne,
E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar, and P. Stenslet.
OORASS: Seamless Support for the Creation and Maintenance of Object-
Oriented Systems. Journal of Object-Oriented Programming (JOOP), 5(6):27–
41, 1992.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 81

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[107] S. Reiff-Marganiec and M. Ryan, editors. Proceedings of the International
Conference on Feature Interactions in Software and Communication Systems
(ICFI). IOS Press, 2005.

[108] M. Rosenmüller, C. Kästner, N. Siegmund, S. Sunkle, S. Apel, T. Leich,
and G. Saake. SQL á la Carte – Toward Tailor-made Data Management.
In Datenbanksysteme in Business, Technologie und Web – Fachtagung des
GI-Fachbereichs Datenbanken und Informationssysteme, volume P-144 of GI-
Edition – Lecture Notes in Informatics, pages 117–136. Gesellschaft für Infor-
matik, 2009.

[109] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich,
O. Spinczyk, and G. Saake. FAME-DBMS: Talor-made Data Management
Solutions for Embedded Systems. In Proceedings of EDBT Workshop on Soft-
ware Engineering for Tailor-made Data Management (SETMDM), pages 1–6.
ACM Press, 2008.

[110] H. Schirmeier and O. Spinczyk. Tailoring Infrastructure Software Product
Lines by Static Application Analysis. In Proceedings of the International Soft-
ware Product Line Conference (SPLC), pages 255–260. IEEE CS Press, 2007.

[111] P.-Y. Schobbens, P. Heymans, and J.-C. Trigaux. Feature Diagrams: A Survey
and a Formal Semantics. In Proceedings of the International Requirements
Engineering Conference (RE), pages 136–145. IEEE CS Press, 2006.

[112] N. Siegmund, C. Kästner, M. Rosenmüller, F. Heidenreich, S. Apel, and
G. Saake. Bridging the Gap between Variability in Client Application and
Database Schema. In Datenbanksysteme in Business, Technologie und Web –
Fachtagung des GI-Fachbereichs Datenbanken und Informationssysteme, vol-
ume P-144 of GI-Edition – Lecture Notes in Informatics, pages 297–306.
Gesellschaft für Informatik, 2009.

[113] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and G. Saake.
Integrated Product Line Model for Semi-Automated Product Derivation Us-
ing Non-Functional Properties. In Proceedings of the Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS), ICB Research Report,
pages 25–31. University of Duisburg-Essen, 2008.

[114] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and G. Saake.
Measuring Non-functional Properties in Software Product Lines for Product
Derivation. In Proceedings of the International Asia-Pacific Software Engi-
neering Conference (APSEC), pages 187–194. IEEE CS Press, 2008.

[115] J. Sincero, O. Spinczyk, and W. Schröder-Preikschat. On the Configuration
of Non-Functional Properties in Software Product Lines. In Proceedings of
the International Software Product Line Conference (SPLC) – Second Volume
(Workshops), pages 167–173. IEEE CS Press, 2007.

82 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

6 CONCLUSION

[116] Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Imple-
mentation Technique for Refinements and Collaboration-Based Designs. ACM
Transactions on Software Engineering and Methodology (TOSEM), 11(2):215–
255, 2002.

[117] H. Spencer and G. Collyer. #ifdef Considered Harmful, or Portability Expe-
rience With C News. In Proceedings of the USENIX Summer 1992 Technical
Conference, pages 185–197. USENIX Association, 1992.

[118] C. Szyperski, D. Gruntz, and S. Murer. Component Software – Beyond Object-
Oriented Programming. ACM Press / Addison-Wesley, 2nd edition, 2002.

[119] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 107–119. IEEE CS Press,
1999.

[120] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product
Lines. In Proceedings of the International Conference on Generative Program-
ming and Component Engineering (GPCE), pages 95–104. ACM Press, 2007.

[121] S. Thiel and K. Pohl, editors. Proceedings of the International Software Prod-
uct Line Conference (SPLC). Lero, University of Limerick, 2008.

[122] T. Thüm, D. Batory, and C. Kästner. Reasoning about Edits to Feature Mod-
els. In Proceedings of the International Conference on Software Engineering
(ICSE), pages 254–264. IEEE CS Press, 2009.

[123] P. Trinidad, D. Benavides, A. Duran, A. Ruiz-Cortes, and M. Toro. Automated
Error Analysis for the Agilization of Feature Modeling. Journal of Systems
and Software (JSS), 81(6):883–896, 2008.

[124] S. Trujillo, D. Batory, and O. Dı́az. Feature Oriented Model Driven De-
velopment: A Case Study for Portlets. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 44–53. IEEE CS Press,
2007.

[125] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory. Testing Software Prod-
uct Lines Using Incremental Test Generation. In Proceedings of the Interna-
tional Symposium on Software Reliability Engineering (ISSRE), pages 249–
258. IEEE CS Press, 2008.

[126] M. VanHilst and D. Notkin. Using Role Components in Implement
Collaboration-based Designs. In Proceedings of the International Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 359–369. ACM Press, 1996.

VOL 8, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 83

AN OVERVIEW OF FEATURE-ORIENTED SOFTWARE DEVELOPMENT

[127] J. White, D. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortes. Auto-
mated Diagnosis of Product-line Configuration Errors in Feature Models. In
Proceedings of the International Software Product Line Conference (SPLC),
pages 225–234. IEEE CS Press, 2008.

[128] N. Wirth. Program Development by Stepwise Refinement. Communications
of the ACM (CACM), 14(4):221–227, 1971.

[129] P. Zave. An Experiment in Feature Engineering. In Programming Methodology,
pages 353–377. Springer-Verlag, 2003.

ABOUT THE AUTHORS

Sven Apel is a post-doctoral associate at the Chair of Program-
ming at the University of Passau, Germany. He received a Ph. D.
in Computer Science from the University of Magdeburg, Germany
in 2007. His research interests include advanced programming
paradigms, software product lines, and algebra for software con-
struction. He can be reached at apel@uni-passau.de. See also
http://www.infosun.fim.uni-passau.de/cl/staff/apel/.

Christian Kästner is a Ph.D. student in Computer Science at
the University of Magdeburg, Germany. His research interests in-
cludes languages and tools for software product lines and (virtual)
separation of concerns. He can be reached at kaestner@iti.cs.

uni-magdeburg.de. See also http://wwwiti.cs.uni-magdeburg.

de/∼ckaestne/.

84 JOURNAL OF OBJECT TECHNOLOGY VOL 8, NO. 5

mailto:protect �egingroup catcode ` active def { }catcode `%active let %%let %%catcode `#active def
apel@uni-passau.de
mailto:protect �egingroup catcode ` active def { }catcode `%active let %%let %%catcode `#active def
http://www.infosun.fim.uni-passau.de/cl/staff/apel/
mailto:protect �egingroup catcode ` active def { }catcode `%active let %%let %%catcode `#active def
kaestner@iti.cs.uni-magdeburg.de
kaestner@iti.cs.uni-magdeburg.de
http://wwwiti.cs.uni-magdeburg.de/~ckaestne/
http://wwwiti.cs.uni-magdeburg.de/~ckaestne/

