
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2006

Vol. 5, No. 6, July - August 2006

Cite this column as follows: Dave Thomas, “The API Field of Dreams – Too Much Stuff! It’s Time to
Reduce and Simplify APIs!”, in Journal of Object Technology, vol. 5, no. 6, July-August 2006, pp. 23-27
http://www.jot.fm/issues/issue_2006_07/column3

The API Field of Dreams – Too Much
Stuff!
It’s Time to Reduce and Simplify APIs!

Dave Thomas, Bedarra Research Labs

1 THE PROMISE

The benefits of well-designed class libraries and frameworks are a major selling feature
for Object Technology. Further, the availability of class libraries in source code provides
the benefits of open source, allowing developers to learn from the implementation, fix
problems-, and make improvements through specialization via subclassing, delegation or,
if absolutely necessary, direct modifications. Frameworks allow the definition of a
domain-specific language. The packaging of classes with well-defined interfaces enables
reuse in product lines and binary components. Standards such as OSGi promise
components which can be assembled on the fly in devices ranging from phones to super
computers. SOA once again speaks to the promise of thousands of services which can be
discovered, composed and orchestrated.

Language and Tool Support

Modern languages such as Java and C# provide Interfaces which directly support the
separation of implementation from usage as well as substitution of alternative conforming
implementations, minimizing the impact on the client. Languages also provide control
over the visibility and extensibility of base classes allowing designers to exercise at least
some control over extensions of their classes. The ability to use meta data allows
developers to embed pragmatics of the class design and intended use directly within the
code.

Tool support enables continuous improvement. JIT compilation enables shortened
compile times and the ability to quickly make a modification and execute a test case.
Refactoring enables frameworks to be rapidly improved. Continuous Integration and Test
is facilitated by JUnit and FIT, ANT reduces the risk of refactoring and provide the
means of assuring code is both unit and acceptance tested as it is developed.

THE API FIELD OF DREAMS – TOO MUCH STUFF! IT’S TIME TO REDUCE AND SIMPLIFY ABIs!

24 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

2 THE REALITY

Unfortunately, the reality of frameworks and class libraries is far removed from the
promise. With very few exceptions, OO libraries are bloated, poorly documented, very
difficult to use and modify, and have disappointing performance. This accidental
complexity makes using some of the popular frameworks challenging even for experts,
let alone for normal application developers.

DLL hell has been replaced by API version hell! To use and extend frameworks
requires intimate knowledge of the framework internals. The huge number of
dependencies between class libraries results in bloated runtimes, and limits the ability to
provide incremental software delivery. Once again this results in the need to ship the full
boatload once a year.

Writing a simple application in J2EE or .NET requires an encyclopedic knowledge
of hundreds of APIs. Just as developers become familiar with one set of libraries or
frameworks, the rug gets pulled out from under them as a new, improved version of a
competing framework appears. Should I use Struts, JFace, OpenAjax, RCP, or
Swing/SWT? What about Spring vs. JBOSS vs. Websphere? Developers are paralyzed by
choice, despite the fact that in every case there is substantial duplication between
competing libraries.

Despite the promise of SOA there are very few examples of true binary components
which can be used as black boxes.

JSR Madness – The API Generator

While in principle the Sun JSR process is well intentioned and offers an opportunity for
companies and individuals to work together, innovation and design is seldom a collective
activity. Too often JSRs are a means to gain a control point as part of a business
enablement or blocking strategy. JSRs with patents just below the surface make the use of
libraries a potential license nightmare, e.g. Mobile JSRs.

Open Source – The Framework Field of Dreams

Each year a talented group identifies a problem in a complex framework and produces a
(hopefully) better one. This creates endless framework wars as well as maintenance and
evolution problems. Should we use Spring, JBOSS or pure J2EE? Should we use Swing
or SWT? Should we use Hibernate or JDBC? We are trapped in framework hell! The
problems become even more challenging when one assembles a new application
consisting of different best-of-breed frameworks, which have different underlying
component models, and may require different class library versions. Open source class
libraries and frameworks present a configuration management challenge as old projects
merge and diverge and new ones evolve.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 25

It is clear that these problems are not uniquely confined to open source developers.
One IBM product, which is built on the very respected and popular Eclipse platform, is a
whale, containing over 2000 plug-ins, which will stress the RAM and clock speed of a
high performance server, let alone a desktop.

3 WHY? CLASS LIBRARY, FRAMEWORK AND COMPONENT
DESIGN ARE HARD!

It is clear from 20 years of experience that high quality class libraries, frameworks and
components are hard to create, requiring very good people and lots of time. Typically 2 to
3 versions are needed before they are really ready for prime time. Rather than seeking
minimalism and compactness, most libraries are over-engineered and full of
unanticipated dependencies, thus forcing the inclusion of large wads of code.

Instead of a single, simple, consistent API, developers provide multiple APIs,
helpers, and trivial and often useless extensions of base class libraries. Component
Design is even harder because of the accidental and intentional coupling in frameworks.
Despite the availability of language tools, far too often one finds OO code with few if any
interfaces, just class definitions.

While much has been written about the design of frameworks, we have very little
good work explaining how to use a framework properly. Frameworks have all sorts of
API orderings, object instantiations, event sequencing, and thread assumptions which are
seldom explicitly documented. Over time they are reverse engineered and documented in
books and examples, but these quickly become out of date.

4 HOW CAN WE STRIVE TO REDUCE THE API MOUNTAIN?

It is surprising given the importance of API design how little has been written about the
subject [1 - 5]. Techniques such as Design by Contract, Design Patterns, and Dependency
Inversion provide best practices for designing and extending library frameworks.

KISS

Not surprisingly KISS applies to APIs as it does to most things. Take a “Just in Time”
approach to API design, and try not to look too far ahead, anticipating future
requirements that may never exist. Provide just enough function to solve the problem at
hand and no more. Users will always let you know when you have left something out, but
will seldom bother to tell you that you have included something they never use. It is
important to provide only the API that is absolutely needed. Make each API prove to you
that it is really required. Use Interfaces but don’t go overboard. Make a clear distinction
about who owns/manages the objects, be it the client or implementer. It is important to
provide one consistent way to do a thing rather than three different ways to do the same
thing. This only creates more code to maintain and often confuses the user of your API.

THE API FIELD OF DREAMS – TOO MUCH STUFF! IT’S TIME TO REDUCE AND SIMPLIFY ABIs!

26 JOURNAL OF OBJECT TECHNOLOGY VOL. 5, NO. 6

Make it a goal to introduce as few new nouns and verbs as possible. The more names ,
the more the developer needs to learn and remember. Where a name is in common use
but the meaning is different avoid overloading that name, use a different one which
makes your intent clear

1

.

Uniformity

Seek to leverage/extend existing API models which are familiar to the developer and
which provide a more uniform API. There is a tendency to make each API very specific
to a standard of some sort when in practice they are a special case of a more common
generic abstraction. For example, use the lesson of Unix, Plan 9 and HTTP, and provide a
simple uniform file system like abstractions for everything that can be made to look and
feel like a file system. These APIs are already well understood. Why should there need to
be very different WebDav, LDAP APIs etc. when a common directory/file API can be
used and extended only where needed through additional parameters or special APIs.
Relational and Collection APIs are also well understood and the same operations apply to
many situations. As another common example, many APIs deal with selection, insertion
or removal of objects from a tree or a graph. Why not use a generic tree/graph visitor API
and a few element-specific operations? Developers already have far too much to
remember, don’t add to the burden with gratuitous invention. Generics and Iterators are
language features assists the development of uniform interfaces.

5 SUMMARY

Don’t fall victim to a closed, defensive programming style. Use an open and extensible
design that allows downstream users to extend your code instead of having to invent yet
another framework or API to do a similar thing. Achieving this goal will be more work,
and undoubtedly require several refactorings, but it is well worth the effort. Build the
services you need today, while trying to leave things open for future extension where
needed.

Use the language supported documentation facilities to make it clear to extenders
what how best to make extensions of your framework. While the code is essential it
doesn’t capture all of your assumptions. Provide a set of examples and test cases with
your framework which clearly show its intended usage.

1 Alan Kay is quoted as saying that creating new names should require a permit, recommending that every
time a new class or method name is defined the developer should first be presented with a list of similar
names and their dictionary definition.

VOL. 5, NO. 6 JOURNAL OF OBJECT TECHNOLOGY 27

REFERENCES

[1] Joshua Bloch, How to design a good API and why it Matters, OT 2004 Conference
Keynote

[2] Bill Venners, API Design with Java, http://www.artima.com/apidesign/index.html

[3] Eamonn McManus, Java API Design Guidelines, http://www.artima.com/
weblogs/viewpost.jsp?thread=142428

[4] Jim des Rivieres http://www.eclipse.org/eclipse/development/apis/API-First.pdf

[5] Java Collections FAQ, http://java.sun.com/j2se/1.5.0/docs/guide/collections/
designfaq.html

[6] Krzysztof Cwalina, Brad Abrams, Framework Design Guidelines: Conventions,
Idioms, and Patterns for Reusable .NET Libraries, Microsoft Net
Development Series

About the author
Dave Thomas is cofounder/chairman of Bedarra Research Labs
(www.bedarra.com), www.Online-Learning.com and the Open
Augment Consortium (www.openaugment.org) and a founding director
of the Agile Alliance (www.agilealliance.com). He is an adjunct
research professor at Carleton University, Canada and the University of
Queensland, Australia. Dave is the founder and past CEO of Object

Technology International (www.oti.com) creator of the Eclipse IDE Platform, IBM
VisualAge for Smalltalk, for Java, and MicroEdition for embedded systems. Contact him
at dave@bedarra.com or www.davethomas.net.

http://www.artima.com/apidesign/index.html
http://www.artima.com/weblogs/viewpost.jsp?thread=142428
http://www.artima.com/weblogs/viewpost.jsp?thread=142428
http://www.eclipse.org/eclipse/development/apis/API-First.pdf
http://java.sun.com/j2se/1.5.0/docs/guide/collections/%0Bdesignfaq.html
http://java.sun.com/j2se/1.5.0/docs/guide/collections/%0Bdesignfaq.html
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Krzysztof%20Cwalina&rank=-relevance%2C%2Bavailability%2C-daterank/002-5445387-3110466
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Brad%20Abrams&rank=-relevance%2C%2Bavailability%2C-daterank/002-5445387-3110466
http://www.bedarra.com/

