
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004

Vol. 3, No. 10, November-December 2004

Cite this column as follows: Donald G. Firesmith: “Generating Complete, Unambiguous, and
Verifiable Requirements from Stories, Scenarios, and Use Cases”, in Journal of Object
Technology, vol. 3, no. 10, November-December 2004, pp. 27-39.
http://www.jot.fm/issues/issue_2004_11/column3

Generating Complete, Unambiguous,
and Verifiable Requirements from
Stories, Scenarios, and Use Cases

Donald Firesmith, Software Engineering Institute, U.S.A.

Abstract
Simple scenarios and stories are typically used for requirements engineering in the
Agile community (e.g., eXtreme Programming). Use case modeling has also been a
popular requirements elicitation and analysis technique for many years. However,
stories, scenarios, and use cases typically exhibit a great informality that violates the
traditional guidance in the requirements engineering community that requirements
should be complete, unambiguous, and verifiable. This is why many professional
requirements engineers use these techniques only as tools for informal requirements
elicitation, analysis, and validation. Instead during requirements analysis and
specification, more experienced requirements engineers tend to develop and specify
more formal textual requirements that are complete, unambiguous, and verifiable.
This column will show how to transform incomplete and vague stories, scenarios, and
use cases into a proper set of complete, unambiguous, and verifiable requirements.

1 THE CHALLENGE

Over the last five years, members of the Agile community (e.g., users of minimal
formality development methods such as eXtreme Programming) have strongly
recommended the production of simple stories and scenarios as the primary form for
requirements during requirements engineering. Proponents claim many benefits for their
use including greatly improved productivity and customer satisfaction. Unlike the more
structured and formal approaches that generate individually identified and specified
textual requirements, stories and scenarios seem to be easier to learn and use. Because
they rely on people’s natural ability to read and tell stories, simple scenarios are often
used by stakeholders with no more training than the reading of a short overview article on
the subject in a popular journal. Coupled with close collaboration with customers and
other stakeholders, stories and scenarios are also claimed to better deal with rapidly
changing requirements.

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_11/column3

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

28 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

Similarly, use case modeling has been a popular requirements elicitation and analysis
technique for even longer, especially in the object community. Use cases can provide
significantly more structure than simple stories, although many developers of use cases
seem to document individual use case paths using little more than a paragraph of
narrative text. In practice, only a relatively small number of use case writers seem to be
careful about (1) including preconditions and postconditions, (2) differentiating
requirements for ancillary information, and (3) adequately specifying exceptional paths
instead of merely documenting the “sunny day scenarios.”

Although stories, scenarios, and use cases do have their uses and advantages, their
informality causes them to violate the common traditional guidance from the
requirements engineering community that states that requirements should be complete,
unambiguous, and verifiable [Firesmith 2003]. Stories, scenarios, and use cases are
usually incomplete because they typically do not contain all information required such as
relevant preconditions and postconditions. For example, an ATM must be able to enable
customers to withdraw money from their bank accounts, but ATMs must only do this
under certain circumstances such as only if the customer has sufficient funds in the
account. Being written in unstructured, simple text, stories, scenarios, and use cases often
contain a great amount of ambiguity that makes it impossible to verify them. In fact, it is
often difficult to decide just what parts of them are intended to be requirements.

Stories, scenarios, and typical use cases are missing important information and rely
on the domain knowledge of their readers. This incompleteness, ambiguity, and lack of
verifiability also means that the readers of requirements “specified” as stories, scenarios,
and use cases must recognize the implicit hidden assumptions and fill in the missing
information. Unfortunately, different readers will interpret the requirements differently,
based on their own individual experiences and assumptions. The resulting system is like a
house built on shifting sands; without a firm foundation of proper requirements, the
architecture, design, implementation, and testing of the resulting system suffers.

It has been well known for many years that the costs and schedule “saved” by
skimping on requirements engineering can be lost many times over during the rest of
development and operations [Boehm and Papaccio 1988]. Perhaps worst of all,
requirements deficiencies can also cause critical safety hazards as systems become more
mission and safety critical. For example, one study of 34 safety incidents showed that
44% of them were primarily due to inadequate requirements specifications [HSE 1995].

This is why many professional requirements engineers use stories, scenarios, and use
cases only as tools for informal requirements elicitation, analysis, and validation. Instead,
the more experienced requirements engineers tend to develop and specify complete,
unambiguous, and verifiable textual requirements during requirements analysis and
specification. Thus, a major challenge for requirements engineers is the task of turning
informal, ambiguous, incomplete, and unverifiable stories, scenarios, and use cases into
complete, unambiguous, and verifiable requirements.

THE CHALLENGE

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 29

The next two sections of this column will use a standard example to illustrate the use
of stories, scenarios, and use cases. Then the next section will turn the resulting stories,
scenarios, and use cases into complete, unambiguous, and verifiable requirements.

2 SIMPLE STORIES AND SCENARIOS

ATM Example

We will use the requirements for an automated teller machine (ATM) as our example in
this column to clarify the weaknesses of stories, scenarios, and use cases as ways to
specify requirements. The ATM has several advantages as an example. It is large enough
to illustrate most aspects of requirements elicitation and analysis without being too large
and overwhelming. And because ATMs are familiar to everyone, no special domain
knowledge is required.

Restricting ourselves to the most common user of the ATM (i.e., a customer as
opposed to the role of someone servicing the ATM), there are typically 4 different ways
of using an ATM. For the purpose of this column, we will restrict ourselves to the most
common case of withdrawing money from an account.

Simple Textual Story

A typical simple textual story for withdrawing funds from the ATM might go something
like the following:
• A customer walks up to an ATM and inserts his bank card. The ATM responds by

welcoming the customer and requesting that he enters his PIN number. After
authenticating the customer using information on the bank card, the ATM displays
several options and asks the customer what he would like to do. Once the customer
decides to withdraw funds, the ATM displays the customer accounts and asks the
customer which account he would like to withdraw funds from. Once the customer
selects the account, the ATM asks how much money he would like to withdraw from
the account. The customer chooses $60. The ATM forwards the request to the Bank,
which approves the withdrawal. The ATM dispenses the withdrawn amount, prints
out a receipt, and asks the customer if he would like another transaction. The
customer declines, and the ATM displays a greeting for the next customer.

The preceding example story has several potential problems from a requirements
standpoint:
• First of all, it assumes a traditional ATM architecture which uses bank cards to

identify customers and the entry of PIN numbers to authenticate the customer’s
identity. This architecture constraint mandates the least secure (worst) approach to
access control and precludes the current or future use of much more secure and
convenient security controls such as the use of biometrics (e.g., thumb print reader).
There is also ambiguity because if bank card is used. For example, the ATM can

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

30 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

either not temporarily take the bank card (swipe card) or else temporarily hold the
bank card and then return it upon completion of transactions.

• The story ignores preconditions implementing bank rules such as the need for
sufficient funds, the absence of a hold on the account, and having not already
exceeded the daily maximum withdrawal amount. It also assumes that the ATM can
communicate with the bank, that the bank’s computer is not down, that the ATM
stores sufficient funds, and that the receipt printer has paper.

• The story does not state what interactions are trigger events (i.e., what the customer
and bank computer do) and what interactions are requirements (i.e., how the ATM
must respond to these triggers). Requirements are not explicitly stated as such (e.g.,
using the word “shall”). Requirements are also not explicitly identified with a project-
unique identifier (PUID).

Simple Scenario

Unlike stories, scenarios are typically more specific in that they use actual objects and
data. A typical simple scenario for withdrawing funds from the ATM might go something
like the following:
• Mr. John David Smith walks up to ATM number 15856 and provides adequate

information for the ATM to successfully identify him and authenticate his identity.
The ATM welcomes Mr. Smith by name and requests that Mr. Smith select a type of
transaction (i.e., withdrawal funds from an account, deposit funds into an account,
obtain account balance, or transfer funds). Once Mr. Smith selects withdraw funds,
the ATM displays Mr. Smith’s accounts including: checking account number 1593
4782 1594 1947, savings account number 1593 4782 1853 9977, and vacation
account number 1593 4782 2292 2999. Mr. Smith selects his checking account, which
has an available balance of $3,496.75. The ATM presents 5 options including
withdraw $20, withdraw $40, withdraw $60, withdraw $100, and “enter an amount to
withdraw in increments of $20 up to a maximum of $200.” Mr. Smith selects $60.
The ATM builds a withdrawal authorization transaction requesting the $60 from Mr.
Smith’s checking account that includes the date and time (8 October 2004 at
4:16PM), the ATM identifier (15856), the transaction type (withdrawal), the account
type (checking), the account number (1593 4782 1594 1947), the transaction amount
($60), and the new available balance ($3,436.75). The ATM encrypts the transaction
information, digitally signs the transaction, and sends it to the bank computer on the
leased line connecting them. The ATM receives an encrypted and digitally signed
response approving the withdrawal amount at 8 October 2004 at 4:17PM. After
decrypting the response, verifying that it was sent by the bank, and verifying that it
was not corrupted, the ATM dispenses three $20 bills and prints out a receipt with the
date and time (8 October 2004 at 4:17PM), the ATM identifier (15856), the last 4
digits of the account number (1947), the ATM location (100 Main Street, Metropolis,
New York, 10010), the withdrawal amount ($60), and the new available balance
($3,436.75). The ATM asks Mr. Smith if he would like another transaction. Mr.

SIMPLE STORIES AND SCENARIOS

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 31

Smith declines another transaction, his session ends, and the ATM displays a standard
greeting for the next customer.

This example scenario has several advantages over the example story from a
requirements standpoint:
• First of all, it no longer contains an architectural constraint in the sense of a specific

mechanism for performing identification and authentication.
• It is much more specific about what happens.
However, the example scenario also has several potential problems from a requirements
standpoint:
• The scenario is at too low of a level of abstraction. Although it contains more details

than the story, the scenario still does not clearly distinguish mandatory requirements
from ancillary information.

• The scenario is actually more of a specification of a single test case than a
specification of the requirement(s) being tested.

• As before, the scenario does not clarify preconditions and postconditions. It also
makes the same “sunny day” assumptions that every thing works properly. It does not
explicitly identify requirements as such and distinguish them from ancillary
information.

3 USE CASE MODELING

A use case is a general way of using a system to achieve a goal (i.e., something of benefit
to an actor). Although a use case is typically represented as a named oval on a use case
diagram, a use case is actually typically specified as a collection of normal and
exceptional paths (a.k.a., courses) through the use case. Extra important information such
as preconditions and postconditions can and should also be specified. If you think of a
use case as a very large procedure, then use case paths can be thought of as execution
paths through the use case. Use case paths can be either normal (i.e., successful in that the
goal is achieved) or exceptional (i.e., the use case fails). Use case paths also define
associated equivalence classes of test scenarios (i.e., each scenario in the equivalence
class flows down the same execution path through the use case).

If we select “Withdraw Funds” as our use case, then some of the possible use case
paths include:

• Normal Paths:
⎯ Preset amount of funds successfully withdrawn
⎯ Customer determined amount of funds successfully withdrawn

• Exceptional Paths:
⎯ Account Overdrawn
⎯ Withdrawal Amount Requested Would Result in Insufficient Funds
⎯ Excessive Daily Withdrawals

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

32 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

⎯ Hold on Account
⎯ Connection to Bank Lost
⎯ ATM has Insufficient Funds
⎯ Etc.

Note that there are typically many more “rainy day” paths than “sunny day” paths
through a use case. This is because there are typically many more ways for things to go
wrong than to go right.

A use case path can be specified in multiple ways. In addition to using paragraphs of
narrative text (i.e., stories), two better and more popular approaches are to use swim lane
diagrams and structured lists of interactions between actors and the system being
specified.

Use Case Path as a Swim Lane Diagram

A common way to document a use case path is to use a sequence diagram or equivalently
a swim lane diagram. Each swim lane documents the actions performed by either the
system or one of its actors. The following is a possible swim lane diagram for the
“Customer determined amount of funds successfully withdrawn” “sunny day” path
through the “Withdraw Funds” use case.

Customer Automatic Teller Machine Bank

Identify and authenticate
self to ATM

 Verify authenticated identity

 Request transaction category

Select withdrawal

 Request withdrawal account

Select customer account

 Notify preset withdrawal
amounts

Build and then request
withdrawal amount

 Build secure withdrawal
authorization transaction

 Send withdrawal authorization
transaction to bank

USE CASE MODELING

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 33

 Authorize transaction

 Build secure withdrawal
authorization transaction

 Send withdrawal
authorized transaction to
ATM

 Dispense money and record of
transaction

 Query further transaction

Answer no

 Display greeting for next
customer

The example swim lane specification of a use case path has several advantages over the
example story and scenario from a requirements standpoint:

• Its structure clearly differentiates the differing responsibilities for the customer,
ATM, and bank.

• It is succinct, avoiding both implementation constraints and superfluous test data.
• Note that in this case, this example swim lane diagram has included optional

internal actions (e.g., the building of secure transactions). Some proponents of use
case modeling recommend that only externally visible interactions be used,
arguing that requirements only involve externally visible behavior. However, this
information is usually implicit in the interactions and provides useful information
regarding preconditions.

However, the example swim lane specification of a use case path still has several
potential problems from a requirements standpoint:

• The use case path specification still ignores preconditions implementing bank
rules such as the need for sufficient funds, the absence of a hold on the account,
and having not already exceeded the daily maximum withdrawal amount. It also
assumes that the ATM can communicate with the bank, that the bank’s computer
is not down, that the ATM has sufficient funds, and that the receipt printer has
paper. Even if the author of the use case path had included use case level
preconditions, these preconditions would not apply to exceptional paths, which
violate the use case preconditions and have their own exceptional preconditions.

• The use case path specification still fails to explicitly state what interactions are
trigger events (i.e., what the customer and bank computer do) and what
interactions are requirements (i.e., how the ATM must respond to these triggers).

• The interactions are very brief, making them potentially cryptic and very
ambiguous to those unfamiliar with the application domain. Because the reader is

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

34 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

almost certainly familiar with ATMs and their associated rules, the reader can fill
in this missing information. Unfortunately, this does not work when building
systems in less familiar application domains. Neither does it ensure that different
readers will make the same assumptions.

Use Case Path as a List of Use Case Path Interactions

A more complete and less ambiguous version of the use case path specification would be
a sequence of interactions in the conversation between the system and its actors. The
most obvious addition is the use of complete sentences. The interaction between two
entities (system and actor) is made explicit by listing both in the sentence. The initiator of
the interaction that was previously shown by positioning the action in a swim lane is
made clear by making the initiator the subject of the sentence. The difference between
ancillary information (interactions initiated by actors) versus requirements (interactions
initiated by the system) is optionally made explicit by the use of the word “shall” on
those interaction sentences, the subject of which is the system under discussion.

1. The customer identifies and authenticates himself/herself to the ATM.
2. The ATM (requests / shall request) the type of transaction be selected by the

customer.
3. The customer selects to make a withdrawal from the ATM.
4. The ATM (presents / shall present) the withdrawal options to the customer.
5. The customer builds a withdrawal amount that is divisible by 20 that is less than

the ATM maximum withdrawal amount.
6. The customer notifies the ATM of this withdrawal amount.
7. The ATM (shall build /builds) a secure withdrawal authorization transaction.
8. The ATM (shall send /sends) the secure withdrawal authorization transaction to

the bank.
9. The bank sends a secure withdrawal authorized transaction back to the ATM.
10. The ATM (dispenses / shall dispense) the selected money to and print out a record

of the transaction for the customer.
11. The ATM (queries / shall query) the customer if a further transaction is desired.
12. The customer signifies that he or she is finished to the ATM.
13. The ATM (displays / shall display) a standard greeting for next customer.

The example list of use case path interactions has several advantages over the story,
scenario, and swim lane use case path examples from a requirements standpoint:

• Its standard structure as a list of interactions makes it easier to know how to
produce it; just write down the interactions in chronological order.

• It avoids implementation constraints and superfluous test data.
• It is becoming clearer that interactions initiated by external actors are not

requirements, but rather ancillary information, whereas interactions initiated by
the system should be viewed as mandatory requirements.

USE CASE MODELING

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 35

However, the example list of use case path interactions still has several potential
problems from a requirements standpoint:

• Preconditions and postconditions are still implicit. Yet, the path’s preconditions
are the reasons why that specific path was taken through the use case and thus
critical to understanding the use case path. Also, some preconditions and
postconditions must be valid at specific points in the path and should therefore be
connected to their associated transactions.

• The differences between preconditions, triggers, resulting system actions, and
postconditions are not yet obvious

4 BUILDING TEXTUAL REQUIREMENTS

Now, we take the preceding stories, scenarios, and paths through use cases and turn them
into more properly specified requirements. This will be done by a combination of adding
missing information and being more rigorous about how the information is specified.

A summary of the use case path can be produced by including the interaction’s
preconditions. The result is either how goal is achieved for normal paths or a failure to
achieve the goal for exceptional paths.

Finally, a set of relatively complete textual requirements can be produced from the
use case path interactions by using the following standard format: “If a trigger occurs
when certain preconditions hold, then the system shall perform a required set of actions
and shall be left in a required set of postconditions.” Various quality requirements (e.g.,
performance, security) can be added to the triggers, preconditions, required actions, and
postconditions as appropriate or else defined elsewhere.

Use Case: Withdraw Funds

Use Case Path: Customer Determined Amount of Funds Successfully Withdrawn

Result: The ATM enables authorized customers to successfully withdraw customer-
determined amounts from their accounts.

Path-Defining Preconditions:
1) The ATM is in service.
2) The customers have been successfully identified and authenticated.
3) The requested amounts can be dispensed using the denominations stored by the ATM.
4) The ATM can securely communicate with the bank.

1 Note that the ATM system itself only enforces a small number of bank rules (e.g., ensuring that the
customer is successfully identified and authenticated, ensuring that the requested amount does not exceed
single ATM withdrawal maximum, and ensuring that the ATM can dispense the requested withdrawal
amount). The majority of the bank rules (e.g., requiring sufficient funds, not going over daily withdrawal

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

36 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

5) The bank computer approves the transactions.1
6) The bank’s responses have not been corrupted.
7) The bank’s responses can be verified to have come from the bank.

Textual Requirements

ID Trigger Preconditions Actions Postconditions
1 If a customer identifies

and authenticates
himself to the ATM

when the ATM is in
service,

then the ATM shall
verify the authentication
and request that the
customer chooses a
transaction type (i.e.,
withdrawal, deposit,
balance query, transfer)

and the ATM shall record
the customer’s
authenticated identification.

2 If the customer selects
to make a withdrawal
from the ATM

when the ATM stores the
customer’s authenticated
identification,

then the ATM shall
request that the
customer select one of
the customer’s account
from which to make the
withdrawal

and the ATM shall record
the choice of ‘withdrawal’
made by the identified and
authenticated customer.

3 If the customer selects
an account from which
to withdraw the funds

when the ATM stores the
choice of withdrawal
made by the identified and
authenticated customer,

then the ATM shall
request the customer to
select or build the
desired withdrawal
amount

and the ATM shall record
the choice of account from
which to make the
withdrawal.

4 If the customer requests
a withdraw amount

when the withdrawal
amount is a multiple of the
denomination that the
ATM can dispense and
less than the ATM
maximum individual
withdraw amount, and the
ATM stores the choice of
withdrawal from a specific
account made by the
identified and
authenticated customer,

then the ATM shall
build a secure
2withdrawal
authorization
transaction for the
requested amount from
the requested account
and send the transaction
to the bank

and the ATM shall record
that the withdrawal
authorization transaction
was sent to the bank.

5 If the bank sends a
secure notification to
the ATM that the
withdrawal request is
authorized

when the ATM has not
waited too long3 for
authorization for the
customer’s withdrawal
request, the bank
notification has not been

then the ATM shall
dispense the approved
funds and dispense a
written record of the
transaction to the
customer

and the ATM shall debit the
withdrawal amount from its
recorded cash inventory and
ask if the customer wishes
another transaction.

maximums, account open, no hold on the account, etc.) are verified by the bank, which uses these rules to
determine if the customer is authorized to make the requested withdrawal. Note also that communication
between the ATM and the bank is typically minimized because of transaction costs so the ATM’s actions
can largely be grouped into two sequential sets: (1) building a secure transaction request and (2) acting on
the bank’s response.
2 The definition of the term ‘secure’ can be found in separate security requirements.
3 The definition of too long can be either defined here or found in separate performance requirements.

BUILDING TEXTUAL REQUIREMENTS

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 37

corrupted, and the bank
response can be verified as
actually having come from
the bank,

6 If the customer signifies
to the ATM that he is
done,

 then the ATM shall
prepare for the next
customer

and the ATM will no longer
have possession of the
customer’s means of
identification and
authentication.

The following table uses a single common interaction to clearly show the difference
between the four approaches. The story is simple and at a very high level of abstraction.
The scenario provides much more detail at the level of a test case. The swim lane version
of the use case path interactions is at an extremely high level of abstraction, whereas the
interaction list version uses complete sentences. The final textual requirements version is
complete in terms of its inclusion of trigger events, preconditions, mandatory system
actions, and mandatory system postconditions.

Approach Interaction

Story The ATM forwards the request to the Bank, which approves the withdrawal.

Scenario The ATM builds a withdrawal authorization transaction requesting the $60
from Mr. Smith’s checking account that includes the date and time (8
October 2004 at 4:16PM), the ATM identifier (15856), the transaction type
(withdrawal), the account type (checking), the account number (1593 4782
1594 1947), the transaction amount ($60), and the new available balance
($3,436.75). The ATM encrypts the transaction information, digitally signs
the transaction, and sends it to the bank computer on the leased line
connecting them.

Use Case Path
Swim Lanes

Build secure withdrawal authorization transaction.
Send withdrawal authorization transaction to bank.

Use Case Path
Interaction List

The ATM shall build a secure withdrawal authorization transaction.
The ATM shall send the secure withdrawal authorization transaction to the
bank.

Textual
Requirement

If the customer requests a withdraw amount when the withdrawal amount is
a multiple of the denomination that the ATM can dispense and less than the
ATM maximum individual withdraw amount, and the ATM stores the
choice of withdrawal from a specific account made by the identified and
authenticated customer, then the ATM shall build a secure withdrawal
authorization transaction for the requested amount from the requested
account and send the transaction to the bank and the ATM shall record that
the withdrawal authorization transaction was sent to the bank.

Although the preceding textual requirements clearly will require more work to produce
than the simple “requirements” of stories, scenarios, and use case path specifications, the

GENERATING COMPLETE, UNAMBIGUOUS, AND VERIFIABLE REQUIREMENTS FROM

STORIES, SCENARIOS, AND USE CASES

38 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10

extra work should be quickly recovered based on the resulting time and effort saved
during downstream activities such as architecting, design, implementation, integration,
and test. Because the textual requirements are still in the natural language of the customer
and stakeholders, they will still be easy for them to read, understand, and review. Any
remaining difficulty in readability is due to the necessary increase in complexity required
to deal with the actual complexity of the application domain, and this problem of
readability can be mitigated by breaking the sentence into its for component parts. Also,
it is better to understand that unavoidable complexity of complete requirements during
requirements engineering rather than later in the project when the resulting errors are
much more difficult and expensive to correct. Finally, if it is necessary, traditional means
such as formal specification languages can be used to generate formally-specified
requirements once the preceding semiformal requirements have been produced.

5 CONCLUSION

Although very valuable as requirements elicitation, analysis, and initial validation tools,
stories, scenarios, and use case path specifications are typically inadequate for specifying
requirements because they are incomplete, ambiguous, and therefore unverifiable. For
example, they usually do not address preconditions and postconditions, which have a
huge influence on the meaning of the requirements. Similarly, they do not tend to state
the triggering events that cause them to be true. They also do not typically clarify the
distinctions between requirements (i.e., what the system must do and what postconditions
it must ensure) and ancillary information (e.g., triggering events produced by actors and
preconditions that may or may not be ensured). This column has provided examples and
guidance on how to transform stories, scenarios, and use case path specifications into
complete, unambiguous, and verifiable textual requirements.

ACKNOWLEDGEMENTS

Many thanks to Gurinder Dhingra and Peter Capell for reviewing this column and
providing helpful comments and suggestions. May their projects always be blessed with
complete, consistent, correct, feasible, and verifiable requirements.

CONCLUSION

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 39

REFERENCES

[Boehm and Papaccio 1988] Barry W. Boehm and Philip N. Papaccio. “Understanding
and Controlling Software Costs,” IEEE Transactions on Software
Engineering, vol. 14, no. 10, October 1988, pp. 1462-1477.

[Firesmith 2003] Donald Firesmith: “Specifying Good Requirements”, in Journal of
Object Technology, vol. 2, no. 4, July-August 2003, pp. 77-87.
http://www.jot.fm/issues/issue_2003_07/column7

[HSE 1995] Out of Control: Why Control Systems Go Wrong and How to Prevent
Failure (2nd Edition), Health and Safety Executive (HSE), 1995.

Disclaimers

The Software Engineering Institute is a federally funded research and development center
sponsored by the U.S. Department of Defense.

The views and conclusions contained in this column are solely those of the author and
should not be interpreted as representing official policies, either expressed or implied, of
the Software Engineering Institute, Carnegie Mellon University, the U.S. Air Force, the
U.S. Department of Defense, or the U.S. Government.

About the author
Donald Firesmith is a senior member of the technical staff at the
Software Engineering Institute (SEI), where he helps the US
Government acquire large, complex, software-intensive systems.
Working in industrial software development since 1979, he has worked
primarily with object technology since 1984 and has written 5 books on
the subject. During the last four years, he has developed the world’s

largest (1,100+ webpage), free, and open source informational website of reusable
process engineering components. Based on the OPEN Process Framework (OPF), it is
located at http://www.donald-firesmith.com. Currently writing a book on the engineering
of safety requirements, he can be reached at dgf@sei.cmu.edu.

http://www.donald-firesmith.com
mailto:dgf@sei.cmu.edu

