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Abstract 
In Timor multiple inheritance of methods from a common abstract ancestor (e.g. 
Collection) and of separate "parts" (possibly repeatedly) from distinct supertypes (e.g. a 
Radio, a Cassette Player) are handled in different ways. The paper shows that neither 
technique is suitable for cases where a common concrete ancestor (e.g. Person) is 
specialised in different subtypes (e.g. as a Student, an Employee) and then brought 
together in a new subtype, possibly with repeated inheritance (e.g. a Doubly Employed 
Student). For such cases a new kind of type ("attribute types") is proposed, which 
provides an alternative programming paradigm to inheritance, based on the idea of 
adjectives and their use in noun phrases in natural languages. 

1 INTRODUCTION 

Timor1 is a new OO language currently being developed at the University of Ulm with 
the primary aim of facilitating the development of programs and applications using 
components which have been separately designed and developed without knowledge of 
each other. In earlier papers two different ways of handling multiple inheritance in Timor 
have been presented. 

The first paper [5] describes how subtypes in the Timor Collection Library (TCL), 
such as Set, Bag and List, can be derived from a common abstract ancestor 
(Collection). Multiple inheritance arises when orthogonal properties (here the ordering 
and duplication of collection elements) are combined. In this case it is natural to merge 
methods (e.g. insert) when they are inherited in a subtype from multiple supertypes at 
intermediate levels in the hierarchy. 

The second paper [10] addresses a completely different kind of multiple inheritance, 
whereby a subtype (e.g. a type RadioCassettePlayer) can inherit "parts" from 
independent supertypes (e.g. a type Radio and a type CassettePlayer). Repeated 
inheritance can play a significant role (e.g. for a subtype RadioDouble-
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CassettePlayer), creating a naming problem which Timor handles by allowing the 
supertypes to have "part identifiers" in the subtype definition, thus giving them an 
appearance analogous to variables declared by aggregation. The paper also discusses in 
detail the differences between this kind of parts inheritance and aggregation. 

The present paper discusses the relationship between these two fundamentally 
different approaches to multiple inheritance, using examples which involve a common 
ancestor (e.g. Person) that can be specialised in orthogonal ways (e.g. as a Student and 
an Employee) and then brought together in a subtype involving diamond inheritance 
(e.g. EmployedStudent), and possibly also repeated inheritance (e.g. a 
DoublyEmployedStudent). It will be shown that neither of the approaches described 
in the earlier papers provides a satisfactory way of handling such examples. 

A new kind of type, called an attribute type, is then presented. Attribute types 
support a programming paradigm which is based on noun phrases in natural languages 
rather than on inheritance. This approach leads to more modular units than conventional 
subtypes, and is especially useful in cases which would otherwise result in diamond 
inheritance problems. It is shown how different attributes can be flexibly mixed and 
matched with a base object and can be composed in different combinations (including 
cases which would otherwise lead to repeated inheritance) into static type definitions. 

The paper assumes a knowledge of the papers mentioned above [5, 10] as well as an 
earlier paper which describes the fundamentals of the Timor approach to single 
inheritance [4]. The reader is advised that the code re-use technique as described in [4, 5] 
has been revised to take repeated inheritance into account. The new technique is 
described in [10], and knowledge of this technique is assumed here. 

Section 2 describes how types involving diamond inheritance can be defined in 
Timor using a conventional OO style, and shows that with the standard Timor re-use 
technique it is only possible to re-use an implementation of one of the supertypes (cf. 
Java). Section 3 illustrates that there is also a serious problem at the type level as soon as 
repeated inheritance is considered. Section 4 then presents an alternative approach, 
showing how attribute types (which can be compared with adjectives in natural 
languages) can be defined and implemented. Then section 5 shows how these can be 
combined, using the analogy of adjectives in noun phrases, to compose types involving 
diamond inheritance and repeated inheritance (e.g. DoublyEmployedStudent). Section 
6 shows that the implementation difficulties encountered in section 2 do not occur when 
attribute types are used, and section 7 shows that even diamond inheritance types defined 
in the conventional way can be implemented using implementations of attribute types, 
with full code re-use. Section 8 discusses the peculiarities of value and reference 
variables for attribute types and section 9 describes casting of types containing attributes. 
The paper then discusses related work in section 10 and provides some concluding 
remarks in section 11. 
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2 DIAMOND INHERITANCE 

We begin by considering a standard example of diamond inheritance, showing how a 
type Person might serve as a supertype from which types such as Student and 
Employee can be derived and then combined into an EmployedStudent. Type 
inheritance and code re-use are considered in turn. The approach adopted in this section is 
based on the Timor equivalent of the standard OO paradigm, as described in [5] (i.e. 
without using part identifiers, but merging methods from a common ancestor). 

Diamond Inheritance at the Type Level 

A type Person might be defined as follows: 
type Person { 
instance: 
 String name, address; 
 Date dob;    // the date of birth 
 enq int currentAge(); 
 enq String toString(); 
maker: 
 init(String name); 
}  

This might have subtypes Student and Employee: 
type Student { 
extends: 
 Person; 
redefines: 
 enq String toString(); 
instance: 
 String uni; 
 Date matriculationDate; 
 enq int ageAtMatriculation(); 
maker: 
 init(String name, uni; Date matriculationDate); 
} 
type Employee { 
extends: 
 Person; 
redefines: 
  enq String toString(); 
instance: 
  String employer, employeeNumber; 
  Date startingDate; 
maker: 
 init(String name, employer; Date startingDate); 
} 

As would be expected, Student and Employee inherit all the public methods and 
abstract variables [6, 10] of Person, and redefine the method toString. 
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A new type can be derived from the above types, using diamond inheritance, to 
model an EmployedStudent, as follows: 

type EmployedStudent { 
extends: 
 Student; 
 Employee; 
redefines: 
 enq String toString(); 
maker: 
 init(String name, uni, employer; 
      Date matriculationDate, startingDate); 
} 

Because the type Person is inherited as a common ancestor via multiple derived types 
(cf. Collection in [5, 6]) its inherited instance methods and abstract variables are 
merged in EmployedStudent. The method toString is redefined, again as expected. 
If other Person methods were inherited in different forms (as a result of method 
redefinitions in Student and/or Employee) a further redefinition of the affected 
methods would also be necessary in EmployedStudent. 

At this point it appears that an adequate mechanism for handling diamond 
inheritance from a common concrete ancestor exists at the type level. 

Diamond Inheritance at the Implementation Level 

Given an implementation of Person, the types Student and Employee might be 
implemented along the following lines: 

impl StudentImpl of Student { 
state: 
 ^Person p;           // reuses any implementation of Person 
 // the Person methods (except toString) are matched from p. 
 String uni;            // set and get methods are  
 Date matriculationDate;// automatically implemented, cf [6]  
instance: 
 enq String toString() { 
  return (p.toString() //equivalent to super in OO languages 
          + ... /* code to print Student details */ ); 
 } 
maker: 
 init(String name, uni; Date matriculationDate) { 
  p.name = name; 
  this.uni = uni; 
  this.matriculationDate = matriculationDate; 
 } 
} 
impl EmployeeImpl of Employee { 
state: 
 ^Person p; 
 String employeeNumber; // set and get methods are  
 Date startingDate;     // automatically implemented, cf [6] 
instance: 
 enq String toString() { 
  return (p.toString()  
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          + ... /* code to print Employee details */ );      
 } 
maker: 
 init(String name, employer; Date startingDate) { 
  p.name = name; 
  this.employer = employer; 
  this.startingDate = startingDate; 
 } 
} 

It might be thought that the combined type EmployedStudent can then be implemented 
as follows: 

impl EmployedStudentImpl of EmployedStudent { 
state: 
 ^Student s; 
 ^Employee e; 
instance: 
 enq String toString() { 
  /* code to combine the toString methods */ 
 } 
maker: 
 init(String name, uni, employer; 
     Date matriculationDate, startingDate) { 
  s.name = name; 
  s.uni = uni; 
  s.matriculationDate = matriculationDate; 
  e.employer = employer; 
  e.startingDate = startingDate; 
 } 
} 

This would provide an implementation which syntactically matches the type definition: 
the methods of Person (except toString, which is implemented explicitly in the 
instance section) and of Student are all matched from Student s, and the 
remaining Employee methods are matched from Employee e. 

But semantically the implementation would not achieve the intended result, because 
it contains two separate Person implementations, associated respectively with s and e, 
because each of these is a separate variable with its own complete implementation (which 
by definition includes an implementation of Person). In cases where subtype methods 
access the supertype implementation (e.g. where Employee accesses Person), the 
"wrong" Person state would be accessed. 

We might attempt to solve this problem by including an explicit variable for the 
"top" of the diamond, e.g. 

state: 
 ^Person p; 

Even then an efficient implementation is not easy with the means described in earlier 
papers, because any attempt to re-use Student and Employee implementations 
encounters the problem that these each still include a separate state for its Person 
supertype. 
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A semantically correct implementation of EmployedStudent is always possible in 
Timor, because each implementation can be a fresh implementation: there is no 
requirement that re-use variables must be used. But to recode each such case from 
scratch, or to base a new implementation on the re-use of the code of only one supertype 
(cf. the Java approach) is hardly satisfactory. Before we present a solution for this 
(implementation level) problem we consider repeated type inheritance involving a 
common ancestor. 

3 REPEATED INHERITANCE WITH A COMMON ANCESTOR 

Suppose the above example is changed so that it involves repeated inheritance from a 
common ancestor, e.g. a DoubleStudent (i.e. a Person enrolled at two universities) or 
a DoubleEmployee (i.e. a Person with two jobs). This might be approached by using 
part names (the Timor technique for achieving repeated inheritance [6]). Here is a 
possible definition: 

type DoubleStudent { 
extends: 
 Student s1, s2; 
redefines: 
 [s1, s2] enq String toString(); 
} 

For this definition to be semantically appropriate (i.e. such that it defines a single person 
with repeated Student - but not Person - attributes) there would have to be a rule 
requiring that a common ancestor inherited in multiple parts leads to the merging of 
methods. 

However, such a rule would be undesirable in other cases. For example, suppose we 
extend the type CassettePlayer (defined in [6]) to become a CassetteRecorder, as 
follows: 

type CassetteRecorder { 
extends: 
 CassettePlayer; 
instance: 
 op void startRecording(); 
 op void stopRecording(); 
} 

It would seem appropriate to define a DoubleCassetteRecorder (by analogy with the 
DoubleCassettePlayer) as follows: 

type DoubleCassetteRecorder { 
extends: 
 CassetteRecorder cr1, cr2; 
} 

But the intended interpretation, that there are two separate parts - each including its own 
supertype CassettePlayer - conflicts with the interpretation appropriate for 
DoubleStudent where the supertype Person should only be present once. 
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It would no doubt be possible to devise mechanisms which could distinguish 
between such cases, but these would all have at least one disadvantage. Either the definer 
of the repeated type would have to be aware of the way the individual supertype(s) are 
defined, or (as with C++ virtual inheritance) a decision would have to be made by the 
designers of all the second level types, perhaps even before the diamond inheritance case 
is considered. The deeper the hierarchy involved, the more evident it is that such 
approaches are unsatisfactory. 

The Timor aims of supporting the information hiding principle and of being able to 
use components without a knowledge of their inner composition led to the decision to 
adopt the interpretation of the above examples which replicates an entire part without 
consideration of its inner structure or common ancestor(s) (the interpretation relevant for 
DoubleCassetteRecorder), i.e. when multiple subtypes are inherited as parts, 
methods of a common ancestor are not implicitly merged. According to this rule the type 
DoubleStudent defines a "schizophrenic", with two Person elements. 

An important additional advantage of this decision is that it creates no 
implementation difficulties, as the following implementation shows: 

impl DoubleCassetteRecorderImpl of DoubleCassetteRecorder { 
state:  
 ^CassetteRecorder cr1; 
 ^CassetteRecorder cr2; 
} 

On the other hand all the difficulties associated with implementing EmployedStudent 
would still arise for a rule which favours merging a common ancestor in types such as 
this.

4 INHERITING ORTHOGONAL ATTRIBUTES 

The above discussion leaves at least two questions unanswered: 
a) How can repeated inheritance from a common (shared) ancestor (such as a Double-

Student) be appropriately defined at the type level? 
b) How can diamond inheritance and repeated inheritance involving a common (shared) 

ancestor be conveniently implemented (even where it can be appropriately specified, 
as in EmployedStudent)? 

At the heart of these issues is the fact that a (usually concrete) base type serves as a 
common (shared) ancestor which can be orthogonally extended in a potentially infinite 
number of ways to specialise objects of the base type. Such orthogonal attributes can then 
be combined (and might occur repeatedly) in particular objects. Person is not an 
exception in this respect. The same principle would apply to a hierarchy defining ships or 
vehicles, and many other cases. 

Such specialisations are usually incremental extensions which are behaviourally 
conform with the base type (cf. [11]), i.e. they typically add new state and new methods, 
without changing the definition of existing methods or state. In fact they are normally not 
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only behaviourally conform with their supertype but, for a given supertype, they are 
usually compatible with each other. (In the above example the method toString 
appears to be an exception, but this will be taken into account in the following 
discussion.) 

To handle such extensions Timor breaks with the standard OO paradigm, by 
providing a mechanism for defining behaviourally compatible type units as add-on 
attributes, which can be orthogonally combined with each other in association with a base 
type. This alternative paradigm is inspired by the use of adjectives in natural language 
rather than by inheritance concepts. Adjectives (cf. attributes) can be added to nouns (cf. 
objects) to augment their meaning (e.g. a student is a studying person, an employee is an 
employed person, an employed student is a studying, employed person). In contrast 
inheritance simply works in terms of nouns (i.e. objects, e.g. a student is a person), with 
the consequence that in the object oriented paradigm the attributes represented by 
adjectives simply disappear as separate units. This is unfortunate, since adjectives are 
especially flexible: the same adjective can often qualify many different nouns, and many 
different adjectives can (where appropriate concurrently) qualify the same noun. The 
basic idea behind attribute types in Timor is to introduce a similar level of flexibility into 
programming. This involves constructs for defining and implementing attribute types (i.e. 
the adjectives) and further constructs allowing them to be composed into more complex 
types (i.e. the noun phrases). 

In this section it is shown how such attribute types can be defined and implemented 
in Timor, and in section 5 how they can then be composed into new types. 

Attribute Type Definitions 

An attribute type definition is characterised by the keyword for. The for clause 
nominates a base for the attribute type (known as an attribute base2). This can be defined 
in terms of a type, or a view, or the special keyword any, and indicates the type(s) of 
object which can be qualified adjectivally. In the following examples a specific type is 
nominated as the attribute base. 

type Studying for Person { 
instance: 
 String uni; 
 Date matriculationDate; 
 enq int ageAtMatriculation(); 
 enq String toString();  // returns a string describing 
                         // only the student details 
maker: 
 init(String uni, Date matriculationDate); 
} 
type Employed for Person { 
instance: 
 String employer, employeeNumber; 
 Date startingDate; 
 enq String toString();  // returns a string describing 
                         // only the employee details 
maker: 



 
INHERITING ORTHOGONAL ATTRIBUTES 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 129 

 init(String employer; Date startingDate); 
} 

Although attribute types have a similar appearance and serve a similar purpose to 
subtypes, they are by no means the same. Here are some key differences from the 
viewpoint of type definition and implementation:  
a) An attribute type can have only one attribute base3. 
b) The methods of the attribute base cannot be redefined in a redefines clause of an 

attribute type4. 
c) The attribute type's makers, if any, are responsible only for initialising their own state. 

They cannot invoke the makers of the attribute base. 
d) The instance methods of an attribute type can access the public methods of the 

associated base object via a pseudo variable base. This promotes both behavioural 
conformity with its attribute base and independence of the latter's implementation. 

e) The instance methods of an attribute type should confine their activities to the 
attribute's own state. Thus methods such as toString should produce results which 
can be used to add to (rather than already include) those of the attribute base in a 
modular way. 

In accordance with the philosophy behind attribute types we typically use adjectival 
names in examples. 

Implementing Attribute Types 

Like other Timor types, attribute types can have multiple implementations. Their 
implementations differ from implementations of other types only in that the code of their 
methods can use the pseudo variable base, which provides access to the public methods 
of the attribute base object. Here is an implementation of Studying: 

impl StudyingImpl of Studying { 
state: 
 String uni; 
 Date matriculationDate; 
maker: 
 init(String uni; Date matriculationDate) { 
  this.uni = uni; this.matriculationDate= matriculationDate; 
 } 
instance: 
 enq int ageAtMatriculation() { 
  return (Date.yearDifference(matriculationDate, base.dob)); 
 } 
 enq String toString() { // confined only to own state 
  return ("Commenced at " + uni 
          + " on " + matriculationDate.toString()); 
 } 
} 

The code of the method ageAtMatriculation illustrates how the pseudo variable 
base can be used to gain access to the public methods of the base object (here the get 
method of dob from Person, using the abstract variable notation, cf. [6, 10]). 
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Because of its add-on nature, an implementation of an attribute type does not include 
state variables describing its attribute base. 

Inheriting from Attribute Types 

Like other Timor types, attribute types can inherit (in the conventional sense) from other 
types. Inherited bases may (but need not) be attribute types. If one or more of the 
inherited bases is an attribute type, then the subtype must have an attribute base which is 
either the same type as, or is a common subtype of, all the attribute bases of the inherited 
types.

5 USING ATTRIBUTES IN TYPE DEFINITIONS  

In concrete situations adjectives are used to qualify nouns, typically in noun phrases. 
Similarly, instances of attribute types ("attributes") can be used in association with their 
base objects to compose new types. In this section we consider how such types are 
composed. 

Composing Types from Attributes 

The following is an alternative definition of EmployedStudent which uses attribute 
types. 

type AttributedEmployedStudent { 
extends:    // or includes where polymorphism is unwanted 
 {Studying; Employed;} Person; 
redefines: 
 enq String toString();//returns all EmployedStudent details 
maker: 
 init(String name; String uni; Date matriculationDate; 
                        String employer; Date startingDate); 
} 

The extends clause defines one or more inherited bases, as usual. Those bases which 
serve as attribute bases are preceded by a bracketed list of dependent attributes. The 
methods of the attribute base (here Person) and of the individual attributes (here 
Studying and Employed) are all "inherited" as separate methods of the new type. 

The syntax can be understood in terms of the following EBNF fragment: 
derivationClause = "extends:" qualifiedList | 
                   "includes:" qualifiedList. 
qualifiedList = {[qualifyingList]  qualifiedItem ";"}. 
qualifyingList = "{"  {qualifiedList}  "}". 

This syntax is more fully explained in [9], which also describes how it can be used in 
static definitions that include qualifying types with bracket methods [7, 8]. The basic idea 
is that a qualified item can be qualified by a qualifying list (here of attributes). Because 
the qualifying list is recursively defined in terms of a qualified list, qualifying items (here 
attributes) can themselves be qualified. 
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Because each of the attributes and the attribute base in this example all have a 
method toString, a name collision occurs, which, if unresolved, would lead to a 
compile time error. Hence this appears in a redefines clause to indicate that it is a 
common method (with an informal specification indicating what it does)5. 

The instance methods and abstract variables of AttributedEmployedStudent 
are identical to those of the conventional EmployedStudent, as follows: 

instance: 
 String name, address;  // from Person 
 Date dob; 
 enq int currentAge(); 
 String uni;            // from Studying 
 Date matriculationDate; 
 enq int ageAtMatriculation(); 
 String employer, employeeNumber; // from Employed 
 Date startingDate; 
 enq String toString(); // redefined in the redefines clause 

Should the designer of the type wish to make the individual toString methods of the 
various parts publicly available as separate methods, this can be achieved by adding part 
names (which may be defined as optional, cf. [10]), e.g. 

type EmployedStudentByParts { 
extends: 
 {Studying [s]; Employed [e];} Person [p]; 
instance: 
 enq String toString();//returns all EmployedStudent details 
} 

In this case there are separate public methods s.toString, e.toString, p.toString 
and toString. Because the part names have been provided in the optional form, non-
colliding methods can be invoked by the client either with or without the part name (cf. 
[6]). This type is not equivalent to EmployedStudent. 

Repeated Attributes 

The modular structure of attribute types allows diamond and repeated inheritance to be 
simulated in a straightforward manner, e.g. 

type DoublyEmployedStudent { 
extends: 
 {Studying; Employed e1, e2;} Person; 
redefines: 
 [e1, e2] enq String toString(); 
 //combines all the toString methods into a single method 
maker: 
 init(String name, uni, e1.employer, e2.employer; 
      Date matriculationDate, e1.startingDate, e2.startingDate); 
} 

This is defined by analogy with repeated inheritance of parts. Repeated attributes must 
have a part name; others (including the attribute base) may, but need not be explicitly 
named. Part names must be provided whenever a type occurs more than once in the 
derivation clauses of a type definition. These must be unique within all the derivation 
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clauses of a type definition and cannot be hierarchical (i.e. their uniqueness must be 
independent of the dot notation). 

Part names are used by clients to invoke methods, as in simple repeated inheritance 
(except in cases where they are optionally defined using square brackets [10]). Where a 
part name is used, the names of the object's members are compounded from the part name 
and the normal method name, using the dot notation, e.g. 

DoublyEmployedStudent* des = 
                      new DoublyEmployedStudent.init(...); 
des.e2.matriculationDate = Date.init(1,10,2000); 

In DoublyEmployedStudent the toString methods of all the constituent types are 
merged into a single method. As in the case of repeated parts inheritance, any named 
parts must be explicitly named in the redefines clause if their methods are to be 
merged. The effect of omitting the part names from the redefines clause would be that 
the methods toString from Studying and Person would be merged, but the methods 
e1.toString and e2.toString would remain separate methods for objects of type 
DoublyEmployedStudent. 

The parameters of makers may (but need not) use the dot notation to name 
parameters, where this corresponds to a name as seen by the client. This facility allows 
simple makers with parameters to be implemented automatically. 

Multiple Attribute Bases 

The extends clause is a normal extends clause. Consequently an attribute base is simply 
an inherited type (or part), and types can be defined to extend or include multiple 
attribute bases. Here is an example defining a "schizophrenic", whose first personality 
thinks he is a student while the second thinks he is doubly employed: 

type SchizoDoublyEmployedStudent { 
extends: 
 {Studying s;} Person p1; 
 {Employed e1, e2;} Person p2; 
redefines: 
 [s] enq String p1.toString(); 
            // returns all details of the first personality 
 [e1, e2] enq String p2.toString(); 
            // returns all details of the second personality 
maker: 
 init(String p1.name, s.uni, p2.name, 
             e1.employer, e2.employer; 
      Date s.matriculationDate, 
           e1.startingDate, e2.startingDate); 
} 

In this example there is no method toString, but there are methods known to the client 
as p1.toString and p2.toString. 
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Bases for Attribute Types 

A for clause can nominate a type as its attribute base, as in the above examples, or it can 
nominate a view (cf. [6]), in which case an instance of any type which implicitly or 
explicitly contains this view can serve as a base type. In both cases the compiler checks 
that instances of the attribute type are only used in conjunction with bases which contain 
the view or type named in the for clause. 

Alternatively an attribute type can be defined to have the special base any, which 
indicates that it can have any type as an attribute base. In this case its implementations 
may not use the pseudo variable base. Here is an example: 

type Loanable for any { 
instance: 
 op void putOnLoan (Person* toWhom, Date loanDate); 
 op void returnFromLoan(Date returnDate); 
 boolean currentlyLoaned;  // an abstract variable 
 Date dueDate;             // an abstract variable 
 enq int daysOverdue(); 
 enq Person* borrower(); 
 enq Person* previousBorrower(); 
 enq Date dateLastReturned(); 
 ... 
} 

The for any clause indicates that instances of this type should only be used in 
conjunction with an attribute base, even though implementations may not use the pseudo 
variable base. 

Attribute Types as Attribute Bases 

An attribute type can qualify another attribute type. This is equivalent to qualifying an 
adjective with an adverb. Thus an attribute PartTime might be defined as follows: 

type PartTime for any { // for Studying would also be OK 
                        // and base could then be used 
 int fullTimeHours; 
 float fractionPartTime; 
} 

This could be used in a type: 
type SchizoPartTimeDoublyEmployedStudent { 
extends: 
 {{PartTime pt1;} Studying;} Person p1; 
 {{PartTime pt2;} Employed e1; Employed e2;} Person p2;  
maker: 
 init(String p1.name, p1.uni,  
             p2.name, e1.employer, e2.employer; 
      Date p1.matriculationDate, 
           e1.startingDate, e2.startingDate); 
} 

Here the first personality is a part-time student, while the second has a part-time 
employment e1 and an employment e2 not defined as part-time. The items PartTime, 
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Employed and Person must have part names, because of the type repetition, but 
Studying need not. In the latter case the member names "belong to" the next named 
higher part in the hierarchy. In this example there is, for instance, an abstract variable in 
Studying named p1.uni. The client refers to the methods in the PartTime items as 
pt1.fractionPartTime and pt2.fractionPartTime, e.g. 

SchizoPartTimeDoublyEmployedStudent* schizo = 
         new SchizoPartTimeDoublyEmployedStudent.init(...); 
float hoursWorked = schizo.pt2.fractionPartTime;

6 IMPLEMENTATIONS USING ATTRIBUTE TYPES 

Automatic Implementations 

Assuming that implementations for all the types used in derivation clauses (see section 5) 
already exist, it would be tedious to require the programmer to provide explicit 
implementations of types into which they are composed, especially if no methods are 
being overridden and no new methods are being added. For such cases, if there are no 
explicit makers (or if the makers conform to certain requirements), the compiler can 
provide an automatic implementation of the type in question. It transforms the type 
definition using the following basic rules: 

a) Change each extends or includes clause into a state clause. 
b) For each type which does not already have a part name in the type definition, add 

a part name (the same as the type name, but beginning with a small letter) to form 
a variable declaration. 

c) For each type which already has a part name in the type definition, use that part 
name to form a variable declaration. 

d) Prefix the hat symbol to each type name of a variable declaration which provides 
public methods. 

e) Add a parameterless maker or makers which conform to the requirements for 
producing automatic makers. 

The following is an automatic implementation of the type SchizoPartTimeDoubly-
EmployedStudent (cf. the last subsection of section 5): 

impl SchizoPartTimeDoublyEmployedStudentImpl of 
                      SchizoPartTimeDoublyEmployedStudent { 
state: 
 {{^PartTime pt1;} ^Studying studying;} ^Person p1; 
 {{^PartTime pt2;} ^Employed e1; ^Employed e2;} ^Person p2;  
maker: 
 init(String p1.name, p1.uni,  
             p2.name, e1.employer, e2.employer; 
      Date p1.matriculationDate, 
           e1.startingDate, e2.startingDate) { 
 p1.init(p1.name); 
  studying.init(p1.uni, p1.matriculationDate); 
   pt1.init(); 
 p2.init(p2.name); 
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  e1.init(e1.employer, e1.startingDate); 
   pt2.init(); 
  e2.init(e2.employer, e2.startingDate); 
 } 
} 

This automatic implementation sets out a pattern which can be used in explicit 
implementations. The key points which it illustrates are as follows: 

a) Qualified lists can be used in the state section of an implementation to express the 
relationships between attributes and their attribute bases. 

b) Each variable has a unique name. 
c) Makers of attributes are invoked from within the maker for the composed type to 

instantiate the necessary attributes. 
d) Makers conforming to simple rules with respect to their formal parameter names 

can be implemented automatically. 

Explicit Implementations 

We now show how an explicit implementation might handle a redefined method. To 
illustrate this we implement the type DoublyEmployedStudent (defined in section 5 
using attribute types): 

impl DoublyEmployedStudentImpl of DoublyEmployedStudent { 
state: 
 {^Studying s;       //re-use any Studying implementation 
  ^Employed e1, e2;} //re-use any Employed implementation(s) 
 ^Person p;          //re-use of any Person implementation 
/* maker: 
 init(String name, uni, e1.employer, e2.employer; 
  Date matriculationDate, e1.startingDate, e2.startingDate); 
 This maker is automatically implemented. It does not need 
 to be explicitly coded in the implementation. 
*/ 
instance: 
 enq String toString() { 
  return (p.toString() + s.toString() 
          + e1.toString() + e2.toString()); 
 } 
} 

In accordance with the Timor strategy that any type can be implemented from scratch, 
there is no necessity that a type defined in terms of attributes must be implemented using 
attribute types. However, if implementations of attribute types are used in an 
implementation of some other type the programmer must define these using qualified 
lists, in order to clarify the relationships between attribute implementations and their 
attribute bases. 
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7 IMPLEMENTING CONVENTIONAL DIAMOND INHERITANCE 
VIA ATTRIBUTES 

In the implementation discussion in section 2, which was based on a conventional 
approach to inheritance, we did not find a straightforward solution for implementing 
diamond inheritance with more than one re-use variable. However, the previous sections 
have illustrated that no substantial problems arise when attributes are used to achieve the 
equivalent of diamond inheritance. 

Because of the relative independence of type definitions and implementations, 
attribute implementations can be used not only to implement types defined using 
attributes but also to implement types defined in the conventional diamond inheritance 
style, such as EmployedStudent. The following type definition remains unchanged 
from section 2. It does not include attribute types. 

type EmployedStudent { 
extends: 
 Student; 
 Employee; 
redefines: 
 enq String toString(); 
init(String name, uni, employer; 
     Date matriculationDate, startingDate); 
} 

Here is an implementation, using attribute implementations defined previously: 
impl EmployedStudentImpl of EmployedStudent { 
state: 
 {^Studying s;  // any implementation of the attribute types 
  ^Employed e;}  // Studying and Employed can be used 
 ^Person p; 
maker: 
 init(String name, uni, employer; 
      Date matriculationDate, startingDate) { 
  p.init(name); 
   s.init(uni, matriculationDate); 
   e.init(employer, startingDate); 
 } 
instance: 
 enq String toString() { 
  return (p.toString() + s.toString() + e.toString(); 
 } 
} 

The Person methods are matched from the re-use variable ^Person p, while the 
additional Student and Employee methods are matched from (any implementation of) 
the re-use variables ^Studying s and ^Employed e. Although these are different 
types from those used in the type definition (i.e. Student and Employee) the instance 
methods match and so are selected. 
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The fundamental difference from the attempted diamond inheritance implementation 
in section 2 is that in contrast with implementations of Student and Employee 
implementations of Studying and Employed do not include state for Person. 
Consequently the problems encountered earlier do not arise. 

Although the individual toString methods have been merged into a single 
redefined method, they still exist in the re-use variables representing the attributes and 
their base, and can still be invoked in implementations which re-use them, as is illustrated 
in the implementation of the redefined toString. 

8 ATTRIBUTE VALUES AND REFERENCES 

The peculiarities of attribute types lead to some special rules with regard to attribute 
values and attribute references. 

Attribute Values 

An attribute (instance) relies logically - and if it uses the pseudo variable base also 
physically - on the existence of its attribute base, which implies that an attribute cannot 
simply be instantiated as a free-standing object or value. Consequently it is inappropriate 
to allow attributes to be declared as free-standing value variables in implementations (or 
as abstract values in type definitions). Hence value declarations of attribute types are 
permitted only as items in qualifying lists. A simple declaration such as 

Employed e;   

is treated as a compile time error. 

Attribute References 

Like a view, an attribute type provides instance methods which are a subset of the 
instance methods of objects in which it is embedded. Consequently it can be useful to 
allow reference variables to refer to an existing attribute. Hence it is permitted to declare 
an attribute reference, e.g. 

Employed* emp; 

Such reference variables, like reference variables for supertypes and views, refer to the 
entire object in which the particular attribute is embedded, and can therefore be the 
subject of cast statements (see section 9). 

Because of the need to guarantee the existence of a base, such a reference cannot be 
used to instantiate an actual attribute as such, i.e. the compiler would treat a statement 
such as: 

Employed* emp = new Employed.init(); 

as an error, but it would allow statements such as 
Employed* emp1 = schizo.e1; // for schizo cf. Section 5 end 
Employed* emp2 = new 
        (SchizoPartTimeDoublyEmployedStudent.init()).e2; 
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Unlike a view, an attribute type cannot be defined retrospectively, so that a statement 
such as the latter would not be valid merely on the basis of matching methods. Thus an 
assignment statement 

Employed* emp3 = new EmployedStudent.init(); 

is erroneous, because the type EmployedStudent is defined in terms of Employee, not 
Employed, whereas 

Employed* emp4 = new AttributedEmployedStudent.init(); 

is valid. 

9 THE CAST STATEMENT 

An object is considered to be behaviourally conform with any attribute bases which it 
extends (but not includes) and it can therefore be used polymorphically, where 
appropriate using part names to identify which attribute base is intended, e.g. 

Person* p = schizo.p2; // for schizo cf. section 5 (end) 
p.name = "Joe Confused"; 

As in the cases of normal inheritance and parts inheritance, such an assignment logically 
assigns the entire object (not merely the part) to the reference. The Timor conditional 
downcast statement can then be used in the usual way to gain access to the entire subtype, 
e.g. 

cast (p) as { 
 (EmployedStudent es) {/* statements using es */} 
 (SchizoPartTimeDoublyEmployedStudent sptdes) 
                     {/* statements using sptdes */} 
  ... 
 else {/* optional statements if there is no match */} 
} 
 

The cast statement can also be used to access attributes contained in an object, and where 
appropriate the square bracket notation can be used to gain access to multiple attributes of 
the same type (cf. repeated parts [10]), e.g. 

cast (p) as allof { // allof indicates that all matching 
                    // individual clauses are selected 
 [Employed e] // square brackets indicate repetition 
              // for each matching attribute 
   {if (e.employer = "University of Ulm") ...; 
    cast e as allof { 
     [PartTime pt] {...} 
     [FullTime ft] {...} 
   } 
 [Studying s] {...} 
 ... 
} 

As this example illustrates, nested cast statements can be used to access (depth first) all 
the attributes in an object in succession. Where cast statements are nested in this way all 
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references in the current hierarchy are accessible. Thus the statements associated with 
PartTime pt can use the current values of pt, e and p as references (unless they have 
been hidden by other in scope references which use the same identifiers). 

Finally a conditional cast can be applied to an attribute reference in order to gain 
access to an underlying object or, as in this example, other attributes in the object:  

cast (emp) as { // is this employed person also studying? 
 [Studying s] {...} 
}

10 RELATED WORK 

In 1997 members of our group published a paper entitled "Attribute Types and Bracket 
Implementations" [3] which presented in outline ideas developed for the experimental 
language L1. The paper outlined in nascent form the basic concepts both of Timor 
attribute types, presented in the present paper, and of Timor qualifying types (cf. [7, 8]). 
Although the ideas for both have since been considerably refined and improved for 
Timor, the idea that a programming language should support not only types based on 
nouns but also further types based on adjectives, together with a technique allowing new 
types (corresponding to noun phrases) to be composed from these, was already 
emphasized in that paper. 

Others have also pointed out that the object oriented paradigm could be enriched by 
taking adjectives more seriously (e.g. [1, 2]) but have not described a technique for doing 
this corresponding to attribute types. 

The need for adjectival types in the object oriented paradigm has become visible 
partly through Java interfaces and the tendency to name some of these adjectivally, e.g. 
Runnable, Serializable. However, in contrast with Timor's attribute types, Java interfaces 
do not provide a solution with full code re-use for diamond inheritance from a common 
concrete ancestor nor a solution to repeated inheritance involving a common concrete 
ancestor.

11 CONCLUSION 

The paper has presented some aspects of an alternative programming paradigm to 
inheritance, based on the idea of adjectives in natural language. In doing so we have 
shown that the technique can easily master issues such as diamond inheritance and 
repeated inheritance from a common concrete ancestor. This technique can be used in 
Timor to complement both the conventional object oriented programming paradigm 
(which can be effectively used for subtyping involving single inheritance and cases of 
multiple inheritance from a common abstract ancestor) and the parts inheritance 
technique (which is especially suitable for repeated inheritance and for multiple 
inheritance from distinct concrete types). 
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Attribute types have two significant characteristics: they are very modular units and 
they cannot redefine the methods of their attribute base type. It is these features which 
allow them to be easily mixed and matched to compose new types, as we have described 
in the paper. But these characteristics endow them with a further advantage: such mixing 
and matching need not be limited to static type definitions. In a future paper we will show 
how individual attributes can be dynamically added at run-time to appropriate attribute 
base objects, thus allowing, for example, a Person object to change its specialisations 
dynamically over time. In this sense attribute types should make Timor especially 
attractive for data base applications in which objects need to change over time to reflect 
changes in the world which is being modelled. 

Finally we point out that the other "adjectival" form of type in Timor, qualifying 
types, can also be statically defined, and in fact the same rules as we saw in section 5 for 
composing attribute types into new types are used for qualifying types. Because the rules 
required for qualifying types are somewhat more complex (in view of the existence of 
bracket methods) we have deferred a full discussion of that syntax until a later paper in 
which statically defined qualifying types are presented. 

ACKNOWLEDGEMENTS 

Special thanks are due to Dr. Axel Schmolitzky for his invaluable contributions to 
discussions of Timor and to the ideas which have been taken over from earlier projects. 
Without his ideas and comments Timor would not have been possible. 

REFERENCES 

[1] M. C. Feathers, "Factoring Class Capabilities with Adjectives," Journal of Object 
Oriented Programming, vol. 12, no. 1, pp. 28-34, 1999. 

[2] I. Forman and S. Danforth, Putting Metaclasses to Work. Reading, MA. Addison-
Wesley, 1998. 

[3] J. L. Keedy, M. Evered, A. Schmolitzky, and G. Menger, "Attribute Types and 
Bracket Implementations," 25th International Conference on Technology of Object-
Oriented Languages and Systems, Melbourne, 1997, pp. 325-338. 

[4] J. L. Keedy, G. Menger, and C. Heinlein, "Support for Subtyping and Code Re-use 
in Timor," 40th International Conference on Technology of Object-Oriented 
Languages and Systems (TOOLS Pacific 2002), Sydney, Australia, 2002, 
Conferences in Research and Practice in Information Technology, vol. 10, pp. 35-
43. 



 
CONCLUSION 
 
 
 
 

VOL. 3, NO. 10 JOURNAL OF OBJECT TECHNOLOGY 141 

[5] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting from a Common Abstract 
Ancestor in Timor," Journal of Object Technology, vol. 1, no. 1, May 2002, pp. 81-
106. http://www.jot.fm/issues/issue_2002_05/article2.  

[6] J. L. Keedy, G. Menger, and C. Heinlein, "Taking Information Hiding Seriously in 
an Object Oriented Context," Net.ObjectDays, Erfurt, Germany, 2003, pp. 51-65. 

[7] J. L. Keedy, G. Menger, C. Heinlein, and F. Henskens, "Qualifying Types 
Illustrated by Synchronisation Examples," in Objects, Components, Architectures, 
Services and Applications for a Networked World, International Conference 
NetObjectDays, NODe 2002, Erfurt, Germany, vol. LNCS 2591, M. Aksit, M. 
Mezini, and R. Unland, Eds.: Springer, 2003, pp. 330-344. 

[8] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Qualifying Types with 
Bracket Methods in Timor," in Journal of Object Technology, vol. 3, no. 1, 
January-February 2004, pp. 101-121, http://www.jot.fm/issues/issue_2004_01/ 
article1 

[9] J. L. Keedy, K. Espenlaub, G. Menger, and C. Heinlein, "Statically Qualified Types 
in Timor," (accepted for publication in JOT, September-October 2005) 

[10] J. L. Keedy, G. Menger, and C. Heinlein, "Inheriting Multiple and Repeated Parts 
in Timor," Journal of Object Technology, vol. 3, no. 10, November-December 
2004, pp. 99-120. http://www.jot.fm/issues/issue_2004_11/article1  

[11] B. Liskov and J. M. Wing, "A Behavioral Notion of Subtyping," ACM Transactions 
on Programming Languages and Systems, vol. 16, no. 6, pp. 1811-1841, 1994. 

 

 

About the authors 

 J. Leslie Keedy is Professor and Head, Department of Computer 
Structures, University of Ulm, Germany, where he leads the Timor 
language design and the Speedos operating system design groups. His 
email address is keedy@informatik.uni-ulm.de. His biography can be 
visited at http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/ 
 
Mark Evered is a Senior Lecturer in the School of Mathematics, 
Statistics and Computer Science at the University of New England in 
Armidale, Australia. He completed his PhD at the Technical University 
of Darmstadt in Germany. His research interests include Object-based 
Systems, Security, Persistence and Programming Language Design and 
Implementation. His email address is: markev@mcs.une.edu.au. 

 

http://www.jot.fm/issues/issue_2002_05/article2
http://www.jot.fm/issues/issue_2004_01/article1
http://www.jot.fm/issues/issue_2004_01/article1
http://www.jot.fm/issues/issue_2004_11/article1
http://www.informatik.uni-ulm.de/rs/mitarbeiter/jlk/
mailto:keedy@informatik.uni-ulm.de
mailto:markev@mcs.une.edu.au


 
DIAMOND INHERITANCE AND ATTRIBUTE TYPES IN TIMOR 

 
 
 
 

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 10 

Christian Heinlein received a Ph.D. in Computer Science from the 
University of Ulm in 2000. Currently, he works as a scientific assistant 
in the Department of Computer Structures at the University of Ulm. His 
research interests include programming language design in general, 
especially genericity, extensibility and non-standard type systems. His 
email address is heinlein@informatik.uni-ulm.de. 

 
Gisela Menger received a Ph.D. in Computer Science from the 
University of Ulm in 2000. Currently she works as a scientific assistant 
in the Department of Computer Structures at the University of Ulm. Her 
research interests include programming language design and software 
engineering. Her email address is menger@informatik.uni-ulm.de. 
 

 
 
 
 
 
 
                                                           
1  see http://www.timor-programming.org 
2  As will become clear, this differs from the bases from which a type can inherit (in Timor using the 

keywords extends and/or includes) in the conventional OO sense. We refer to such bases as 
inherited bases. 

3  It can however be defined to extend and/or include other types in the usual way. 
4  It can however have a redefines section in which methods of its inherited bases can be 

redefined. 
5  Although an attribute type may not redefine the methods of its base type, the designer of a type 

which composes an attribute type with its attribute base can make such redefinitions. 
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