
JOURNAL OF OBJECT TECHNOLOGY
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 5, September-October 2003

Cite this column as follows: James Odell et al.: “Changing Roles: Dynamic Role Assignment”, in
Journal of Object Technology, vol. 2, no. 5, September-October 2003, pp. 77-86.
http://www.jot.fm/issues/issue_2003_09/column7

Changing Roles:
Dynamic Role Assignment

James Odell, James Odell Associates, Ann Arbor, U.S.A.
H. Van Dyke Parunak, Sven Brueckner, John Sauter, Altarum Institute, Ann
Arbor, U.S.A.

Abstract
Modeling roles as sets of normative behavior that agents can assume has been found
to be a useful development technique. An important characteristic of real-world agent
systems is that the roles played by an agent may change over time. These changes can
be of several different kinds. We describe an illustrative application where such role
changes are important, analyze and classify the various kinds of role changes over time
that may occur, and show how this analysis is useful in developing a more formal
description of the application.

1 INTRODUCTION

The notion of role is fundamentally a thespian concept. As humans, we find the
perspective and language of the theater a useful analogy for describing and understanding
many of the same complex aspects of individual behavior [Odell03]. Since we commonly
employ the notion of role in real life for conceptualizing human behavior, it may also
serve as a useful device for other kinds of individuals in a MAS—be they life forms,
active software constructs, or hardware devices.

In an agent-based system, we define role as a class that defines a normative
behavioral repertoire of an agent. Roles provide both the building blocks for agent social
systems and the requirements by which agents interact.1 Each agent is linked to other
agents by the roles it plays by virtue of the system’s functional requirements—which are
based on the expectations that the system has of the agent. The static semantics of roles,
role formation and configuration, and the dynamic interactions among roles has been
examined closely in recent years [Ferbe03] [Caste00] [Dasta03] [Odell01] [Parun01].

1 Several possible implementation techniques exist for implementing programs that support social entities
possessing multiple and changeable class-based roles, including class inheritance and aggregation. In this
paper, we will not discuss program-level implementation options for treating role as a class. Instead, our
emphasis will by at the analysis-level (i.e., a conceptual and implementation-independent approach).

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_09/column7

CHANGING ROLES: DYNAMIC ROLE ASSIGNMENT

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

However, little work has been done on formalizing the temporal aspects of dynamic role
assignment. As a result, role modelers refer only informally to actions such as “taking on
a role,” “playing a role,” “changing roles,” and “leaving roles.” However, such terms can
be interpreted ambiguously.

For example, consider the scenarios that follow. These six scenarios are considered
to be “changes,” yet semantically they all have a different meaning.

1. Classify – Add the role of manager to the role of Employee as the result of a
promotion.

2. Declassify - Remove the role of Manager as the result of a demotion.
3. *Reclassify - Change from the role of Employee to the role of Unemployed

Person.
4. Activate - Take up the behaviors of the Manager role as part of the day-to-day

business activity.
5. Suspend – Stop any Manager behavior and take on just those of the Employee role

as part of the day-to-day business activity.
6. *Shift - Change from an Employee role to a Pet Owner role, where neither is

played at the same time as the other. This is a combination of activating one role
while suspending another.
(*These are composite roles, not primitives.)

These scenarios will be discussed in more depth in the following sections. Prior to that
discussion, however, some fundamental notions need to be identified and defined.

Suspended

Occupied/Classified

Classify DeclassifyActivate

Suspend

Active

Figure 1 - Statechart depicting some of the permitted states and transitions of an agent in a role.

The statechart in Fig. 1 depicts four of the operations in the scenarios above. Here, an
agent comes to occupy a role when it is classified and ceases to occupy the role when it is
declassified. Furthermore, while an agent occupies a role, it can be either active or
suspended in playing that role. Transitioning between those two states can be achieved
via the suspend and activate operations. Definitions for these states and transition
operations are as follows:

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 79

States
Occupied – The state of an entity that is an instance of a particular role.
Suspended - The state of an entity occupying a particular role, when the role
has no processes executing.
Active - The state of an entity occupying a particular role that is executing some
of all of its processes.
Operations
Classify – An operation that results in an agent being an instance of, or
occupying, a particular role.
Declassify – An operation that results in an agent no longer being an instance
of, or occupying, a particular role.
Reclassify – An operation that results in an agent being both declassified as one
particular role and classified as another.
Activate – An operation that results in an agent entity that is active.
Suspend – An operation that results in an agent entity that is suspended.
Shift – An operation that results in an agent entity becoming both suspended
within one occupied role and active in a different occupied role.

These “role-changing” operations can best be discussed by partitioning into categories of
dynamics: dynamic classification and dynamic activation. The sections that follow will
describe these notions in more detail. AUML notation will also be proposed.

2 DYNAMIC CLASSIFICATION

Dynamic classification refers to the ability to change the classification of an entity. While
dynamic classification applies to both object classes and agent classes [Odell98], in this
paper we will discuss it in terms of agent roles. For example in Fig. 2(a), the “Alice”
agent changes from being an instance of the roles Employee, Manager, and Salesperson to
being an instance of the role Unemployed Person. In other words, with dynamic
classification, an agent can be an instance of different roles from moment to moment.

Consistent with [Ferbe03], we insist that each agent have at least one role at all
times. Dynamic classification deals with adding additional roles or removing roles
beyond the minimum of one. This requirement is analogous with the notion that every
human must play the “person” role, whatever other roles they may have. In the case of
humans, this minimal role persists throughout the agent’s life. It is conceivable that an
artificial agent might begin with the minimal role A, add role B, then remove role A,
leaving it with the minimal role B. Whether such a fundamental redefinition of the agent

CHANGING ROLES: DYNAMIC ROLE ASSIGNMENT

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

is possible will depend on such features as physical equipment associated with the agent
and the nature of the platforms on which the agent can run.

Manager

Salesperson

Person

AliceEmployee Unemployed
Person

instances of
Employee

Alice

Ted

Carol
Bob

 (a) (b)

Figure 2 -(a) Dynamic classification refers to the ability to change the classification of an agent’s role.
(b) The agent “Alice” moving in and out of being classified as an Employee over time.

To become an instance of a given role, the agent is classified as an instance of, or
occupies, that role. Once classified, then, the agent occupies the new role and possesses
all of its features. In the opposite process, if an agent is declassified, it is removed as an
instance of a particular role—and no longer occupies the role nor possesses features
unique to that role. Figure 2(b) portrays the “Alice” agent being classified and
declassified in terms of the role Employee. At some point in her life, Alice is first
classified as an Employee. Later, through some process, Alice is declassified as an
Employee: she becomes unemployed. At another point, Alice may become reemployed,
followed again by a period of unemployment. This behavior may continue until
retirement is reached or the process of death takes place. And where both operations are
used at the same time, an agent is said to be reclassified when it is both declassified in
one role and classified as another.

Based on the descriptions above, we can now discuss “change” scenarios 1, 2, and 3
without ambiguity:

1. Classify - Add the role of manager to the role of Employee as the result of a
promotion. In this situation, the person still remains an instance of Employee
role. However, the person becomes a new instance of the Manager role. In other
words, the person remains classified as an Employee but is now—in addition—
classified as a Manager. This is called classification.

2. Declassify - Remove the role of Manager as the result of a demotion. Here, the
person still remains an instance of Employee role, but is no longer an instance of
the Manager role. Declassification has the opposite effect of classification in
scenario 1, above.

3. Reclassify - Change from the role of Employee to the role of Unemployed
Person. In this scenario, the person ceases to be an instance of the Employee role
and becomes an instance of the Unemployed Person role. In other words, the
person was declassified as an Employee, while simultaneously being classified as
an Unemployed Person. This is called reclassification.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 81

The table below summarizes the role assignments involving dynamic classification:
classification, declassification, and reclassification operations.2

Operation Pre-state Post-state
Classify A and not B A and B
Declassify A and B A and not B
Reclassify A B

Both UML and AUML notations would express these three operators as illustrated in Fig.
3. Figure 4(a) indicates agent-1’s classification as role-n; in Fig. 3(b), agent-1 is
declassified as role-m; in Fig. 3(c), agent-1 is being reclassified from role-m to role-n.

agent-1:role-m agent-1:role-n

agent-1:role-m

agent-1:role-n

(a) Classification (b) Declassification(c) Reclassification

Figure 3 –AUML notation for classification, declassification, and reclassification.

3 DYNAMIC ACTIVATION

In the previous section, we have seen how “Alice” may be classified and declassified as
Employee and Unemployed Person roles over time. Orthogonally, she may get
married and become an instance of the role Married Person and Wife. Additionally, she
may be confirmed as a Supreme Court Justice or buy a pet and become a Pet Owner. While
she may be a Supreme Court Justice for life, she may later give the pet away and be
removed from the Pet Owner set. Every agent, then, must always be classified in at least
one role — where Agent can be thought of as a role in its own right.3

In her lifetime, Alice may be an instance of many roles. This means, first, that the
roles that apply to an entity can change over time (dynamic classification). Second, it
means that an entity can have multiple roles that apply to it at any one moment. When an

2 For completeness, arguably two more operators could be added: create and terminate. The create operator
classifies entities that did not previously exist. Here, the prestate for an entity would be null, and the
poststate a particular role. Termination is the opposite, where the prestate would be for an entity in some
role and the poststate would be null.
3 Having Agent as a role is a controversial point. However, in [Odell, 2003] we defined role as a class that
defines a normative behavioral repertoire of an agent. The basic class called Agent defines the normative
behavioral repertoire for agenthood.

CHANGING ROLES: DYNAMIC ROLE ASSIGNMENT

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

entity is an instance of more than one role this is called multiple classification (not to be
confused with multiple inheritance).

Pet Owner

Person

Alice

Employee

(Unemployed
Pet Owner)

(Employed
Pet Owner)

(The Pet Owner portion outside
Person is the set of all pet owne
are not people, e.g., companies
own pets.)

Unemployed
Person

Figure 4 - “Alice” involved in both dynamic classification and multiple classification.

Multiple classification is a useful notion here, because in a society-based system an agent
is likely to be active (or quiescent) in multiples roles at the same time. However, what
does it mean for a role to be “active”? In some sense, a quiescent agent that is waiting for
a message or some signal to awaken could be considered active in its role, because
alertness can be thought of an activity. UML 2.0 [OMG, 2003] offers a useful refinement
by distinguishing between user-defined actions (which are represented explicitly in
sequence diagrams and activity diagrams) and fundamental system actions such as I/O,
invocation, and data flow (which are not represented as actions in these diagrams). In
UML, each activation, or execution occurrence, has some duration and is bounded by a
start and stop point. We propose to take advantage of this refinement in the following
unification:

• We adopt the UML 2.0 definition of action. Any unit of behavior that has started
and has not yet ended is considered “active”. Otherwise it is “inactive”.

• We use the basic role of AgentId to specify primitive behavior. (Id in AgentId is
meant to suggest the Freudian sense of primal basic urges, not the sense of
“Identity.”) Behavior such as controlling, handling data flows, and waiting for
messages and signals can be thought of as “primitive” actions that all entities must
possess to be agents. Therefore, any entity playing the role of AgentId can exhibit
this basic behavior, deferring “higher-level” behavior to user-specified actions in
more specialized roles. Furthermore, these basic behaviors are themselves actions.
For example, actions that support listening for messages and signals, by definition,
begin the moment an entity is classified an AgentId and cease when the entity is no
longer an AgentId. This default role satisfies the criterion by Ferber and Gutknecht
[Ferbe03] stating that “every agent plays at least one role,” in this case the AgentId
role.

• We consider roles other than AgentId to be active only when their user-defined
actions are active. Activity of primitive actions is attributed to the concurrently
executing AgentId role, not to the user-specified role.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 83

Dynamic activation involves the following operations: activate, suspend, and shift. These
operations are discussed in “change” scenarios 4 through 6, as follows:

4. Activate - Assume the behaviors of the Manager role as part of the day-to-day
business activity. Here, the person still remains an instance of both Employee
and Manager roles. However, when dealing with the employee’s boss, the person
is active in playing Employee role. Yet, when the employee starts addressing her
subordinates, she also becomes active in the Manager role. In other words, the
person begins the scenario as active only in the Employee role, and ends being
active in both the Employee and Manager roles.

5. Suspend - Change from the role of Manager to the role of Employee as part
of the day-to-day business activity. As with the previous example, the person
still remains an instance of both Employee and Manager roles. In this scenario,
the person might start the day as a Manager role by approving an expense report
for a subordinate. However, if the person then reports to her boss, she suspends
her role as Manager. In other words, the person begins the scenario as classified
and active in both Employee and Manager roles, and ends with the Manager role
suspended while the Employee role remains active. (This is the opposite effect of
the scenario 3, above.)

6. Shift - Change from an Employee role to a Pet Owner role, where neither is
played at the same time as the other. Here, the person still remains an instance
of both Employee and Pet Owner roles. However, this differs from scenarios 4
and 5, because the person is not active in both roles at the same time. Here, the
person suspends his Employee role and becomes active in the Pet Owner role—
yet consistently remains classified in both Employee and Pet Owner roles.

The table below summarizes the role assignments involving activation-related
classification: activate, suspend, and shift.4

Prestate Poststate
Operation Active Suspended Active Suspended

Activate A B A and B
Suspend A and B A B
Shift A B B A

Both UML and AUML notations would express these three operators are illustrated in
Fig. 5. Figure 5(a) indicates agent-1 is activated as role-m; in Fig. 5(b), agent-1 is
suspended as role-m. In Figs. 5(c) and 5(d), the role of agent-1 shifts from role-n to role-
m. Asynchronous messages (indicated by the open arrowhead) do not require a response.
Therefore, the shift would proceed from the end of an execution occurrence bar (the thin

4 Four combinations were omitted from this table. The situations where the pre- and poststates have only
suspended roles and where the pre- and poststates have only active roles is not interesting here because
there are no state changes. The prestate, where only active role(s) exist and become only suspended ones, is
just two concurrent cases of suspension. The prestate, where only suspended role(s) exist and become only
active ones, is just two concurrent cases of activation.

CHANGING ROLES: DYNAMIC ROLE ASSIGNMENT

84 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

triangle over the lifeline) for one role to the beginning of the execution occurrence bar for
another (Fig. 5(c). In contrast, synchronous messages (indicated by the solid arrowhead)
require a response before proceeding. Figure 5(d) depicts an agent in role-n sending a
message that activates role-m. Since the message is synchronous, all role-n processing is
suspended until control is returned from role-m (the dashed arrow).

agent-1:role-n agent-1:role-m agent-1:role-n agent-1:role-m

 (a) Activate (b) Suspend

agent-1:role-n agent-1:role-m agent-1:role-n agent-1:role-m

 (c) Shift (asynchronous) (d) Shift (synchronous)

Figure 5 – UML and AUML notation for expressing activate, suspend, and shift.
For graphical clarity, message lines can be supplemented with stereotypes. For the activate, suspend,

and shift operations, the stereotypes would be «activates», «suspends», and «shifts».

4 CONCLUSION

Roles are increasingly recognized as a valuable abstraction for modeling groups of
agents. In dynamic environments, an agent may change the roles it plays over time.
Analysis of these changes show that they fall into two general categories.

1. The more conventional concept is Dynamic Activation. An agent may incorporate
multiple roles but not be active in all of them at the same time. Varieties of
Dynamic Activation describe the different patterns in how an agent activates or
suspends the various roles that it possesses.

2. Dynamic Classification deals with the more fundamental binding between an
agent and a role. Straightforward mechanisms for role assignment in
contemporary programming languages (e.g., inheritance from a class defining the
role’s behaviors) are static and persist for the agent’s lifetime. However, the
concept of Dynamic Classification encourages us to conceive of roles being
bound to an agent after the agent is instantiated, and unbound without terminating
the agent.

VOL. 2, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 85

The notion of roles invites a new approach to agent programming, in which the unit of
agent invocation is the role rather than the individual behavior. In such a role-oriented
programming environment (ROPE), invocation consists of passing an agent a role and an
execution environment (compare the notion of Agent Coordination Context in
[Omici02]), and it is up to the agent to carry out the role in that context. Development of
ROPE is a future opportunity for this line of research.

5 ACKNOWLEDGEMENTS

This work is supported in part by DARPA, contract F30602-02-C-0196 to Altarum, under
DARPA PM Vijay Raghavan. The views and conclusions in this document are those of
the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.

The authors are grateful to their colleagues Paul Chiusano, Bob Matthews, Mike
Samples, and Peter Weinstein for insightful review and comments on earlier drafts of this
paper.

REFERENCES

[Caste00] Castelfranchi, Cristiano. “Engineering Social Order”, Engineering Societies
in the Agent World, Springer, Berlin, pp. 1-18.

[Dasta03] Dastani, M., V. Dignum, and F. Dignum. “Role Assignment in Open Agent
Societies” in Proceedings of AAMAS’03, Second International Joint
Conference on Autonomous Agents and Multi-agent Systems. 2003.
Melbourne, Australia.

[Ferbe03] Ferber, J., O. Gutknecht, et al. (2003). “Agent/Group/Roles: Simulating with
Organizations.” Fourth International Workshop on Agent-Based Simulation
(ABS03), Montpellier, France.

[Marti98] Martin, J. and J.J. Odell, Object-Oriented Methods: A Foundation. UML ed.
1998, Englewood Cliffs, NJ: Prentice Hall.

[Odell98] Odell, J.J., Advanced Object-Oriented Analysis & Design using UML. 1998,
Cambridge, UK: Cambridge University Press.

[Odell01] Odell, J., H.V.D. Parunak, and B. Bauer. “Representing Agent Interaction
Protocols in UML,” in Agent-Oriented Software Engineering, P. Ciancarini
and M. Wooldridge, eds. 2001, Springer: Berlin. p. 121-140.

[Odell03] Odell, J., H.V.D. Parunak, and M. Fleischer. “The Role of Roles in Designing
Effective Agent Organizations,” in Software Engineering for Large-Scale
Multi-Agent Systems, A.F. Garcia, et al., eds. 2003, Springer-Verlag: Berlin.

CHANGING ROLES: DYNAMIC ROLE ASSIGNMENT

86 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 5

[Omici02] Omicini, A. “Towards a notion of agent coordination context”. In D.
Marinescu and C. Lee, Editors, Process Coordination and Ubiquitous
Computing, 187–200. CRC Press, 2002.

[Parun01] Parunak, H. Van Dyke and James Odell (2001) “Representing Social
Structure using UML”, Proc. of the Agent-Oriented Software Engineering
Workshop, Agents 2001 Conference, Paolo Ciancarini, Michael Wooldridge,
and Gerhard Weiss eds., Agents 2001 conference, Montreal, Canada,
Springer.

About the authors

James J. Odell is a consultant, writer, and educator in the areas of
object-oriented and agent-based systems, business reengineering, and
complex adaptive systems. He has written four books on object
orientation and has two books in progress on agent-based system design.
His website is http://www.jamesodell.com.

Dr. Van Parunak is Altarum's Chief Scientist. He is currently working
on the applications of complex adaptive systems, with special emphasis
on fine-grained agent software architectures for modeling, control, and
collaboration. He has written numerous seminal papers in this area,
which are available at http://www.erim.org/~vparunak.

Dr. Sven A. Brueckner is a member of the Technical Staff at Altarum.
His website is http://www.erim.org/~sbrueckner.

John A. Sauter is the Group Leader for Emerging Markets in the
Enterprise Solutions Division of Altarum. John has over 20 years¹
experience in systems design using agent-based methods for simulation,
modeling, autonomous vehicle control, automotive logistics, plant floor
scheduling and control, flexible manufacturing, communications
systems, embedded systems, material transport systems, and automotive

test equipment. He holds a BS in Chemistry and Cellular Biology from the University of
Michigan (1976).

http://www.jamesodell.com
http://www.erim.org/~vparunak
http://www.erim.org/~sbrueckner

