
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 4, July-August 2003

Cite this article as follows: Toufik Taibi, David Check Ling Ngo: “Formal Specification of Design
Patterns – A Balanced Approach”, in Journal of Object Technology, vol. 2, no. 4, July-August
2003, pp. 127-140. http://www.jot.fm/issues/issue_2003_07/article4

Formal Specification of Design Patterns
- A Balanced Approach

Toufik Taibi, Multimedia University, Cyberjaya, Malaysia
David Chek Ling Ngo, Multimedia University, Melaka, Malaysia

Abstract
Pattern users are faced with difficulties in understanding when and how to use the
increasing number of available design patterns. This is mainly due to the inherent
ambiguity in the existing means (textual and graphical) of describing them. Hence, there
is a need to introduce formalism in order to describe them accurately and allow rigorous
reasoning about them. The main problem of existing formal specification languages for
design patterns is their lack of completeness. This is mainly because they tend to focus
on specifying either the structural or the behavioral aspect of design patterns but not
both of them. We propose a simple yet Balanced Pattern Specification Language
(BPSL) that is aimed to achieve equilibrium by specifying both aspects of design
patterns. BPSL combines two subsets of logic, one from First Order Logic (FOL) and
one from Temporal Logic of Actions (TLA).

1 INTRODUCTION

Design patterns are abstractions generated from the valuable experiences of developers in
solving problems repeatedly encountered within certain contexts. Since design patterns
have been extensively tested and used in many development efforts, reusing them yields
better quality software within a reduced time frame.

Pioneer pattern writers needed an urgent means to describe these cumulated
experiences in order to allow developers to reuse them. At the early stage of pattern
evolution, a combination of textual descriptions, OO graphical modeling languages and
sample code fragments was sufficient for conveying the essence behind patterns. Initial
efforts were focused on building a pattern vocabulary, a community of pattern writers and
users, and a pattern literature. At a later stage, it has been found that patterns cannot be
used in isolation from other patterns but as micro-architectures that when combined
together can solve a component or even the whole system.

However, as the number of patterns has grown, and problems requiring combining
patterns surfaced, users started to realize that textual description can be ambiguous and
sometimes misleading in understanding and applying patterns. Unsettled debates were

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_07/article4

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

128 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

initiated among users and even pattern writers themselves on various aspects of patterns
[Vliss97a][Vliss97b].

Hence, there was a need for a formal means of accurately describing design patterns.
Formal specification of design patterns is not meant to replace the existing
textual/graphical descriptions but rather to complement them to achieve well-defined
semantics, allow rigorous reasoning about them and facilitate tool support.

Formal specification of design patterns can enhance the understanding of their
semantics. It can be used to help pattern users decide which pattern(s) is (are) more
appropriate to solve a given design problem within a context. It can help formalize the
combination of design patterns. Finally it can facilitate the development of tools for
finding instances of patterns in programs and fine-tuning them to meet pattern
specification [Eden01].

As the pattern field has matured, a number of formal specification languages
[Chinn99] have emerged to cope with the inherent shortcomings of textual and graphical
descriptions. However, since these specification languages originated from different
mathematical sources and incorporated different ingredients, they reflect the way their
authors perceived "how should patterns be formalized?" Their main problem is lack of
completeness. This is mainly because they were not originally meant to specify design
patterns and have been adapted to do so, or because they focused on specifying either the
structural or behavioral aspect of design patterns but not both of them.

In this paper, we propose a Balanced Pattern Specification Language (BPSL) that is
meant to accurately convey the essence of patterns in a balanced way. In [Taibi01], we
described why and how should patterns be formalized and concluded that combining the
formal specification of structural and behavioral aspects of design patterns in one
specification helps specify patterns in a balanced way. BPSL uses First Order Logic
(FOL) to specify the structural aspect and Temporal Logic of Actions (TLA) to specify
the behavioral aspect. Although we approach the formalization in terms of specific
examples, the underlying principles are applicable to any design pattern.

The rest of the paper is organized as follows. In the next section we lay down the
foundations on top of which BPSL is built. Section 3 gives a detailed description of
BPSL, while in section 4 we apply BPSL to the Observer design pattern [Gamma95],
which has a significant behavioral aspect. Finally, in section 5 we present work related to
what is presented in this paper and conclude the paper in section 6.

2 SETTING THE SCENE

Most attempts of formalizing design patterns have focused on the solution part, which is
primarily defined using the structure, participants and collaboration sections of the
pattern description [Gamma95]. Focusing on the solution part does not mean ignoring the
other aspects of a pattern such as the problem (defined by its forces) and the context. The
solution is the most tangible aspect of a pattern that can be easily translated to some sort

SETTING THE SCENE

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 129

of formalism that would facilitate the understanding and usage of the design pattern as a
whole.

Moreover, at this stage of pattern evolution, formalizing the other aspects of a
pattern will not add any thing to the existing textual descriptions. As such, in the
remaining of this document when we refer to a design pattern we mean its solution part.
Moreover, we will use design patterns and patterns interchangeably as BPSL is mainly
meant to formally specify design patterns not other types of patterns such as analysis,
architecture, organizational, etc.

Design patterns differ in terms of their field of usage, the problems they solve and
their context. However each pattern has a structural aspect and a behavioral aspect.
Hence, any formal specification that is claimed to completely describe design patterns
should incorporate the specification of both structural and behavioral aspects [Taibi01].
Each pattern can be seen from two complementary views: the structural view and the
behavioral view. By balanced (in BPSL) we mean that the formal specification of both
the structural and behavioral aspect of patterns should complement each other.

As BPSL is aimed to describe patterns accurately and in a balanced manner through
a simple and concise notation, its main target is pattern understandability, which can only
be achieved by understanding a pattern's structural and behavioral aspects and how they
complement each other. By doing so, users will be able to know when and how to use a
given pattern, which is crucial to taking full advantage of the inherent benefits of
patterns.

The structural aspect of a design pattern can be formalized using a subset of First
Order Logic (FOL), because relations between pattern participants can be easily
expressed as predicates. For simplicity, the subset of FOL used focuses on variable
symbols and predicate symbols. The behavioral aspect of a design pattern can be
formalized using a subset of Temporal Logic of Actions (TLA) [Lamport94], which is
best suited to describe collective behavior, i.e. how objects cooperate. The subset used
focuses on actions that change state variables (class attributes) and/or associate or
disassociate object through temporal relations. BPSL integrates two subsets of logic, one
fraction of FOL and one from TLA in an attempt to describe patterns in an accurate and
balanced way.

Following are the building blocks of BPSL. They reflect entities (participants) and
relations (collaborations) between them in a design pattern.

1. Classes, attributes, methods, objects, and untyped values make the primary
entities, which are considered irreducible units. Untyped values are values of
variables of any type. They are used as a construct at a higher level of abstraction
as opposed to low level programming language constructs. Untyped values and
objects are used as parameters to actions (see section 3).

2. Relations express the way entities collaborate. Relations can either be permanent
or temporal. Permanent relations between entities once defined cannot be changed
while temporal relations may change throughout the execution of actions. BPSL

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

130 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

defines a set of primary permanent relations based on which other permanent
relations can be built (see Table 1).

3. Actions are atomic units of execution, which can be understood as multi-object
methods used to embody the behavioral aspect of design patterns. Actions
associate and disassociate objects through temporal relations.

4. Any newly defined entity or permanent relation must derive from the primary
entities and primary permanent relations respectively.

3 BALANCED PATTERN SPECIFICATION LANGUAGE (BPSL)

In this section we will take a deep and closer look at the BPSL building blocks (entities,
relations and actions) that have been defined in the previous section. This section is
divided into three subsections. The first describes how the structural aspect of design
patterns is formalized using BPSL. The second section focuses on the specification of the
behavioral aspect of design patterns. Finally, the last section shows how these two aspects
when combined complement each other.

Structural Aspect

The subset of FOL used to describe the structural aspect of design patterns consists of
variable symbols, connectives (mainly ∧), quantifiers (mainly ∃) and predicate symbols
acting upon variable symbols. Variable symbols represent classes, attributes, methods,
objects and untyped values while the predicate symbols represent permanent relations.
The domain (set) of primary entities that are classes, attributes, methods, objects, and
untyped values is designated receptively C, A, M, O, and V.

Table 1 depicts the primary permanent relations, their domain and their intent. These
relations straightforwardly derive from object-oriented technology concepts. It is the
smallest set (in terms of number of elements) on top of which any other permanent
relation can be built.

For example the permanent relation Forwarding is a special case of Invocation,
where the actual arguments in the invocation are the formal arguments defined for the
first method. This can be formally specified as follows: Forwarding (m1,m2)
⇔Invocation(m1,m2) ∧Argument(a1, m1) ∧…∧Argument(an,m1) ∧ Argument(a1, m2) ∧…∧
Argument(an,m2), where m1, m2 ∈ M and a1,…, an ∈ V ∪ C which means they can either
be untyped values or references to classes. Primary permanent relations are general in
the sense that they can be used to specify all design patterns. Primary permanent
relations can be easily extracted from the structure of the design patterns represented
usually by a Unified Modeling Language (UML) [Rambaugh98] class diagram and the
collaboration of the pattern participants represented by UML sequence diagrams.

BALANCED PATTERN SPECIFICATION LANGUAGE (BPSL)

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

Table 1: Primary Permanent Relations and their Intent

Name Domain Intent

MxC Indicates that a method is defined in a certain class. Defined-in
AxC Indicates that an attribute is defined in a certain class.

Reference-to-one
(-many)

CxC Indicates that one class defines a member whose type is a
reference to one (many) instance(s) of the second class.

Inheritance CxC Indicates that the first class inherits from the second.
MxC Indicates that a method contains an instruction that creates a

new instance of a class.
Creation

CxC Indicates that one of the methods of a class contains an
instruction that creates a new instance of another class.

Invocation MxM Indicates that the first method invokes the second method.
CxM Indicates that a reference to a class is an argument of a

method.
Argument

VxM Indicates that an untyped value is an argument of a method
Instance OxC Indicates that an object is an instance of a certain class.

Behavioral Aspect

For patterns that have a significant behavioral aspect, it is necessary to understand how
objects collaborate to achieve the expected behavior. The subset of TLA used by BPSL to
formally specify the behavioral aspect of pattern deals with behaviors (S0,S1,…) defined
as infinite sequences of states. Each state Si is a collection of values of state variables
(class attributes) and the temporal relations that exist between objects. A pair of
consecutive states (Si,Si+1) in a behavior is called a transition. The system starts in some
initial state. As time passes, actions are executed, changing the system's state accordingly.
Actions are selected for execution non-deterministically, the only restriction being that
the precondition of an action must be true in order for the action to be executed. The
execution of an action is atomic, meaning that once the execution of an action has been
started, it cannot be interrupted or interfered with by other actions. The computational
model is interleaving, that is, only one action at a time is being executed. BPSL has
extended the subset of TLA used by extending the semantics of actions. In TLA actions
only change state variables (class attributes in pattern terminology). In addition to the
above feature, actions in BPSL may also associate and disassociate objects through
temporal relations (defined below).

A temporal relation can be defined as follows: TR(C1[cardinality],C2[cardinality]),
where TR is the name of the temporal relation, C1 and C2 are classes, and cardinality
represents the number of instances of each class that participate in the relation.
Cardinality can be represented as either a closed interval [n..m], where n and m represent
any two positive integers or [*] to depict any possible number of instances.

When used in actions, TR(o1,o2) depicts that an object o1 of a class C1 is currently
associated through TR with an object o2 of a class C2, while ¬TR(o1,o2) depicts that
objects o1 and o2 are no longer associated through TR. TR(o1,C2) depicts that object o1

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

132 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

is associated with all instances (objects) of the class C2. ¬TR(o1,C2) depicts that object
o1 is not associated through TR with any object of class C2. ¬TR(C1,C2) depicts that
none of the objects of class C1 is associated through TR with any object of class C2.

An action consists of a list of parameters (object and untyped values), a precondition
and a body. The body is a definition of a state change caused by an execution of the
action. For example, if TR is a temporal relation between two classes C1 and C2, an
action A may be defined as follows: A(o1,o2,p) : TR(o1,o2) ∧ o1.x ≠ p → ¬TR'(o1,o2) ∧
o1.x'=p, where x is an attribute of the class C1, o1 is an object of the class C1, o2 is an
object of the class C2 and p denotes an untyped value. The symbol ":" means "by
definition". Expression TR(o1,o2) ∧ o1.x≠ p is the precondition under which the action
can be executed and ¬TR'(o1,o2) ∧ o1.x'=p is the body of the action. The precondition
may contain a set of conjunctions and/or disjunctions while the action body may contain
a set of conjunctions. Unprimed and primed attributes refer to the values of attributes
before and after the execution of the action, respectively. Unprimed and primed temporal
relations refer to temporal relations before and after the execution of the action,
respectively.

Objects and untyped values that participate in an action are non-deterministically
selected from those that are suitable. For example, the above action is enabled for all
objects having TR(o1,o2) ∧ o1.x ≠ p. Semantically, an action is a Boolean expression that
is true or false with regard to a pair of states. For example the action A defined earlier is
true for a pair of states (S,T) if and only if the value that state S assigns to x is different
from p and o1 is associated with o2 through TR and the value that state T assigns to x is
equal to p and o1 is not longer associated with o2 through TR. Unlike permanent relations
which can be used for many patterns, temporal relations and actions are specific to each
pattern.

The sequence of states describing the execution of actions is potentially infinite.
Properties of a given system (a set of behaviors) can be divided into safety and liveliness.
Informally safety means that nothing will go wrong with the system while liveliness
means that some actions will be executed infinitely. Safety can be guaranteed by ensuring
that invariants are true at all states of the system while liveliness is obtained by giving an
explicit fairness requirement. Marking an action with asterisk (*) denotes a fairness
requirement, stating that if its precondition is true, the action will be executed infinitely
often. In BPSL, invariants are defined by the keyword "Invariants:", followed by a set of
conditions on temporal relations and/or on attribute values. Likewise, initial state is given
by the keyword "Initially:", followed by a condition based on temporal relations and/or
on attribute values.

Integrating the Structural and Behavioral Aspect Specifications

A formula in BPSL has the following form:

BALANCED PATTERN SPECIFICATION LANGUAGE (BPSL)

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

 ∧i PRi (ai,bi) (Permanent relations)
∃ (x1, ..., xn): [∧j TRj (cj,dj) (Temporal relations)
 [Invariants: invariant conditions]
 Initially: initial conditions
 ∨k Ak (…) (Actions)]

In the above formula, PRi are permanent relation symbols, TRj are temporal relation
symbols and Ak are action symbols, while x1,..,xn are variable symbols representing the
pattern primary entities (classes, attributes, methods, objects and untyped values). In the
notation PRi (ai,bi), ai and bi could represent classes, attributes, methods, objects or
untyped values as per Table 1, while in the notation TRj (cj,dj) cj and dj represent classes.
The notation Ak (…) means that actions can have any number of arguments, which should
be either objects or untyped values. Any argument of PRi, TRj and Ak must be subset of
{x1,..,xn}. Variables x1,..,xn are typed, each represents an entity as expected. In all
specifications, we follow a convention in which only relations and actions start with a
capital letter. Temporal relations, initial conditions, invariants and actions are put
between square brackets because they are optional. Patterns that have no significant
behavioral aspect are only specified using permanent relations. When patterns have a
significant behavioral aspect, initial conditions are compulsory but invariants are
optional.

From the parts of a BPSL formula, it can be seen that permanent relations, temporal
relations and actions are treated as predicates, i.e., relations whose range is the set of truth
values {true, false}. This is straightforward for permanent relations. Temporal relations
are first defined between classes to indicate that these relations will associate and
disassociate objects of these classes when actions execute. As for actions, we have seen
previously that they are Boolean expressions (true or false) with regard to a pair of states.
This indeed shows that actions are also predicates (with regard to a pair of states).
However in addition to their truth or falsity they have additional semantics that derives
from TLA. All above explanations justify the usage of the connectives (∧ and ∨) between
permanent relations, temporal relations and actions.

BPSL does not use two disjoint subsets of variables, whereby the variables of the
first subset participate in permanent relations and the second participate in temporal
relations and actions. Indeed, variables x1,…,xn participate in permanent and temporal
relations as well as actions. This proves that a seamless integration of the two aspects
(structural and behavioral) was achieved in BPSL. For example, object variables
participate in Instance permanent relations while temporal relations, which are heavily
used in actions, are defined using class variables. Moreover, in some cases, permanent
relations Reference-to-one(-many), Creation and Invocation can be straightforwardly
mapped to temporal relations between objects.

BPSL uses four compartments to specify a pattern. The first declares the variables
and their type, the second defines permanent relations, the third defines temporal
relations and the fourth defines actions. The ∨ connective is used to connect actions

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

because the action to be executed is non-deterministically chosen from those enabled
(their precondition is evaluated to true). This leads to many possible behaviors (infinite
sequence of states) as seen previously.

BPSL models a pattern as a collection of entities (classes, attributes, methods,
objects, and untyped values) and relations (permanent and/or temporal) and/or actions
among them. A structure that arises from an instance p of a given pattern shall contain
entities that are defined in p and relations (permanent and/or temporal) and/or actions
among them. This leads to a five-sorted universe of discourse, which is designated by E.
The sorts C, A, M, O, V are referred to as types or domains with respect to variables,
relations (permanent and temporal) and actions in BPSL. Therefore, BPSL models
patterns using a model M, which is a pair <E, R> where E is a universe of entities, and R
= R1,…Rn is the set of relations (permanent and/or temporal relations and/or actions)
amongst. BPSL formulas describe patterns in the form of logic statements. More
specifically, every design/program is represented as a model. If a BPSL formula ϕ is the
formal specification of a pattern π, a design/program p conforms to π if and only if the
model of p satisfies ϕ.

4 CASE STUDY: THE OBSERVER PATTERN

In this section we use BPSL to specify the Observer pattern which is classified in
[Gamma95] as a "behavioral" pattern. Figure 1 and Figure 2 depict the UML
[Rambaugh98] class diagram and the sequence diagram of the Observer pattern
[Gamma95]. Table 2 depicts the BPSL specification of the Observer pattern. It first starts
by defining the entities in the system such as classes, attributes, methods, objects and
untyped values. This is followed by defining permanent relations between the defined
entities. Permanent relations specify the structural aspect of the pattern. All permanent
relations defined in this specification are primary as shown in Table 1.

The permanent relation Defined-In depicts which attribute or method belongs to
which class.The permanent relations Reference-to-one and Reference-to-many depict, in
this case, that a concrete-observer has only one reference to a concrete-subject while a
subject has many references to an observer. Inheritance depicts the classical relationship
between a base and a derived class. All the above relations are straightforwardly derived
from the class diagram of Figure 1. The Invocation relations Invocation(set-state, notify),
Invocation(notify, update) and Invocation(update, get-state) are straightforwardly derived
from the sequence diagram of Figure 2. The relation Argument depicts that a reference to
a class is a parameter of a given method. In the case of our specification we have:
Argument(observer, attach), Argument(observer, detach) and Argument(subject, update).
The permanent relations Instance(s, concrete-subject) and Instance(o, concrete-observer)
depict that s is an object of the class concrete-subject while o is an object of the class
concrete-observer. These objects will be later used in the specification of actions.

CASE STUDY: THE OBSERVER PATTERN

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 135

Fig.1: UML class diagram of the observer pattern

Fig.2: UML sequence diagram of the observer pattern

attach (Observer)
detach (Observer)
notify ()

Subject

notify(){
for all o in observers
{ o->update(); }

getstate ()
setstate()

ConcreteSubject

getstate(){
return subjectstate;}

subjectstate

update(Subject)

Observer

update (Subject)

ConcreteObserver

update (){
observersstate=
subject->getstate();}

observerstate

observers

subject

:ConcreteSubject :ConcreteObserver :ConcreteObserver

setstate()

notify()
update()

getstate()

update()

getstate()

*

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

Table 2: BPSL specification of the observer pattern

∃ subject, concrete-subject, observer, concrete-observer ∈ C;
 subject-state, observer-state ∈ A;
 attach, detach, notify, get-state, set-state, update ∈ M;
 o, s ∈ O;
 d∈ V;
 Defined-in(subject-state, concrete-subject) ∧
 Defined-in (observer-state, concrete-observer) ∧
 Defined-in(attach, subject) ∧
 Defined-in (detach ,subject) ∧
 Defined-in (notify, subject) ∧
 Defined-in(set-state, concrete-subject) ∧
 Defined-in (get-state, concrete-subject) ∧
 Defined-in (update, observer) ∧
 Reference-to-one(concrete-observer, concrete-subject) ∧
 Reference-to-many(subject, observer) ∧
 Inheritance(concrete-subject, subject) ∧
 Inheritance(concrete-observer, observer) ∧
 Invocation(set-state, notify) ∧
 Invocation(notify, update) ∧
 Invocation(update, get-state) ∧
 Argument(observer, attach) ∧
 Argument(observer, detach) ∧
 Argument(subject, update) ∧
 Instance(s, concrete-subject) ∧
 Instance(o, concrete-observer).
 Attached(concrete-subject[0..1],concrete-observer[*])∧
 Updated(concrete-subject[0..1],concrete-observer[*]).
 Initially:¬Attached(s, concrete-observer).
 Attach(s,o) :¬Attached(s,o) → Attached'(s,o) ∨
 Detach(s,o): Attached(s,o) ∨ Updated(s,o) → ¬Attached'(s,o) ∨
 Notify(s,o,d) : Attached(s,o) ∨ Updated(s,o) → ¬Updated'(s,concrete-observer) ∧
 s.subject-state' =d ∨
 Update*(s,o): ¬Updated(s,o) → Updated'(s,o) ∧ o.observer-state' = s.subject-state.

In the third and fourth part of the pattern specification, temporal relations and actions are
defined. These specify the behavioral aspect of the pattern. In the Observer pattern, an
instance of a concrete-observer is associated with an instance of a concrete-subject
whenever it is interested in its content. This is shown by the following temporal relation:
Attached(concrete-subject[0..1],concrete-observer[*]). The cardinality shows that many
concrete-observers might be attached to zero or one concrete-subject. Moreover, each
concrete-subject needs to know to which concrete-observers its contents have been
delivered since the last modification. Thus concrete-subjects are associated with

CASE STUDY: THE OBSERVER PATTERN

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 137

concrete-observers that have already been updated. This yields the following temporal
relation: Updated (concrete-subject[0..1], concrete-observer[*]).

The initial condition "¬Attached(s, concrete-observer)" reflects that initially all
concrete-observers are not attached to the concrete-subject (s).In this pattern a concrete-
observer can become interested in the contents of a concrete-subject, and may also cancel
this interest. In the specification actions Attach and Detach are used for modeling these
cases respectively. Action Attach sets Attached relation between the concrete-subject and
the concrete-observer objects that are involved. Action Detach clears this relation. These
actions are formalized as follows: Attach(s,o) :¬Attached(s,o) → Attached'(s,o) and
Detach(s,o): Attached(s,o) ∨ Updated(s,o) → ¬Attached'(s,o). The precondition of the
action Detach contains a disjunction because s and o could either be linked by the
temporal relation Attached or Updated when the action Detach takes place. Action Notify
denotes that the contents of a concrete-subject have been modified. This requires
updating all concrete-observers that are attached to this concrete-subject. The
precondition of Notify is the same as Attach, object s and o should either be linked by
Attached or Updated. Thus, upon executing Notify, the concrete-subject must no longer
be associated with any concrete-observer by Updated relation. This yields the following
action: Notify(s,o,d) : Attached(s,o) ∨ Updated(s,o) → ¬Updated'(s,concrete-observer) ∧
s.subject-state' =d where d denotes the new value, set upon notification. The usage of
concrete-observer in the temporal relation ¬Updated'(s,concrete-observer) denotes that
all instances of the class concrete-observer will become not updated. As no restrictions
are imposed on the value of parameter d, its value is non-deterministically selected.
Action Update represents a transmission of modified data from a concrete-subject to a
concrete-observer. Thus, it sets Updated relation for the concrete-subject and the
concrete-observer that participate in the action, yielding: Update*(s,o): ¬Updated(s,o) →
Uptated'(s,o) ∧ o.observer-state' = s.subject-state. Marking the action with an asterisk (*)
denotes a fairness requirement, stating that if its precondition is true, the action will be
executed infinitely often.

5 RELATED WORK

Object Constraint Language (OCL) [Warmer98] was developed by IBM to accurately
specify constraints that cannot be unambiguously described by UML graphical models. It
is a formal language that is intended to be easy to read and write. OCL is a pure
expression language. All values for all objects, including all links, will not change.
Whenever an OCL expression is evaluated, it simply delivers a value. OCL can be used
for a number of different purposes:

• To specify invariants on classes and types in the class model.
• To specify type invariant for Stereotypes.
• To describe pre- and post conditions on Operations and Methods.
• To describe Guards.

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

• As a navigation language.
• To specify constraints on operations.

OCL is used in the UML Semantics document to specify the well-formedness rules of the
UML meta-model. Each well-formedness rule in the static semantics sections in the UML
Semantics document contains an OCL expression, which is an invariant for the involved
class. BPSL and OCL have very little in common. OCL is an add-on to better understand
UML graphical models while BPSL is a language that is meant to accurately describe
design patterns. Since design patterns are described using textual descriptions, UML
graphical models and sample code fragments, someone could think of using OCL to
specify constraints of the UML graphical models of the design pattern. However, this will
only help better understand those graphical models rather than better understanding the
essence of the design pattern.

Contracts are descriptions of obligations among clients who utilize the services
provided by suppliers. Design by Contract is a technique where pre-conditions, post-
conditions, and invariants are used to define contracts [Helm90]. Pre-conditions are
Boolean assertions that a client must satisfy before requesting a service. Post-conditions
are Boolean assertions that a supplier must satisfy after providing a service. Invariants are
Boolean assertions that must be satisfied over time. Actions in BPSL are quite similar to
contracts in the sense that they define precondition as well as show the state change.
However in BPSL state change is not only reflected by change in attribute values but also
by associating and disassociating objects through temporal relations.

The Abstract Data View (ADV) approach [Cowan95], uses a formal model to
achieve separation by dividing designs into two types of components: objects and object
views and by strictly following a set of design rules. Specific instantiations of views as
represented by Abstract Data Views (ADVs) and objects called Abstract Data Objects are
substituted into the design pattern realization while maintaining a clear separation
between view and object. ADV and ADO components are specified using temporal logic
and the interconnection between components is described in terms of category theory.
Clearly, ADV/ADO concentrate on formalizing the process of instantiating a solution in
given programming language from a design pattern while BPSL seeks a multi-purpose
formal specification language as highlighted in the introduction.

Our work is mostly inspired by LanguagE for Patterns' Uniform Specification
(LePUS) [Eden99] and Distributed Co-operation (DisCo) [Mikkonen98]. LePUS derives
from Higher-Order logic and focuses only on specifying the structural aspects of design
patterns. We preferred to use a small fraction of FOL because simplicity was paramount
in the design of BPSL. If the users of a formal specification language for design patterns
cannot easily understand it, how are they supposed to understand design patterns formally
specified by this language? DisCo derived from TLA and was designed to specify
reactive systems, which are in constant interaction with their environment and therefore
have a predominantly behavioral aspect. DisCo has little (almost no) support for
specifying the structural aspect. The subset of TLA used in BPSL is different from the
one used in DisCo, the syntax is completely different while they share most of the

RELATED WORK

VOL. 2, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 139

semantics derived from TLA concepts. DisCo and in fact TLA itself does not support the
concept of temporal relations and its semantics as defined in section 3. In DisCo actions
change only state variables while in BPSL they change state variables (class attributes) as
well as associate and disassociate objects through temporal relations.

6 CONCLUSION

Formal specification of design patterns is intended to complement existing textual and
graphical descriptions in order to eliminate ambiguity, allow rigorous reasoning about
patterns and facilitate automation of the activities related to them. As patterns represent
abstractions, any formal language meant to specify them should strive to achieve
simplicity for a better understandability, accuracy for a precise semantics and
completeness to avoid loss of semantics.

Since patterns have two complementary aspects (structural and behavioral), BPSL
was devised to combine the specification of the two aspects in order to achieve
completeness. BPSL has carefully chosen the subsets of FOL and TLA to be used in
order for it to be simple for users and yet describe design patterns accurately. The
ultimate purpose of BPLS is to help users understand patterns to know exactly when and
how to use them.

The two classical schools of thought (structural vs. behavioral) that originated from
modeling OO systems have unfortunately been inherited by the pattern specification
community. The structural school of thought claims that the structural aspect of design
patterns is predominant in all systems and even that the behavioral aspect can be derived
from it [Eden01]. The behavioral school of thought concentrated on specifying patterns
for reactive systems, which have a predominantly behavioral aspect. In BPSL a design
pattern encompasses both views (structural and behavioral) in a complementary manner.

RFERENCES

[Chinn99] Chinnasamy, S., Raje, R.R., and Liu, Z., "Specification of design patterns:
An analysis", Proceedings of the 7th International Conference on Advanced
Computing and Communications (ADCOM'99), pp. 300-304, 1999.

[Cowan95] Cowan, D.D., and Lucena, C.J. P. "Abstract data views: An interface
specification concept to enhance design for reuse", IEEE Transactions on
Software Engineering, vol. 21, no. 3, pp. 229-243, 1995.

[Eden99] Eden , A. H., Hirshfeld, Y., and Lundqvist, K., "LePUS–Symbolic logic
modeling of object oriented architectures: A case study", Second Nordic
Workshop on Software Architecture (NOSA'99), 1999.

[Eden01] Eden, A.H., and Hirshfeld, Y., "Principles in formal specification of object-
oriented architectures", CASCON'01, 2001.

FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4

[Gamma95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design patterns:
Elements of reusable object-oriented systems, Addison-Wesley, 1995.

[Helm90] Helm, R., Holland, I.M., and Gangopadhyay, D., "Contracts: Specifying
behavioral compositions in object-oriented systems", Proceedings of
ECOOP/OOPSLA'90, pp. 169-180, 1990.

[Lampo94] Lamport, L., "The temporal logic of actions", ACM Transactions on
Programming Languages and Systems, vol.16, no. 3, pp. 872-923, 1994.

[Mikko98] Mikkonen, T., "Formalizing design patterns", Proceedings of ICSE'98, pp.
115-124, 1998.

[Ramba98] Rambaugh, J., Jacobson, I., and Booch, G., The unified modeling language
reference manual, Addison-Wesley, 1998.

[Taibi01] Taibi, T., and Ngo, D.C.L, "Why and how should patterns be formalized",
Journal of Object-Oriented Programming (JOOP), vol. 14, no. 4, pp. 8-9,
2001.

[Vliss97a] Vlissides , J. M., "Multicast", C++ Report, Sep. 1997.

[Vliss97b] Vlissides, J. M., "Multicast - Observer = Typed Message", C++ Report,
Nov.-Dec. 1997.

[Warme98] Warmer J., and Kleppe, A. G., The object constraint language precise
modeling with UML, Addison-Wesley, 1998.

About the authors

Toufik Taibi is a lecturer at the Faculty of Information Technology, Multimedia
University, Cyberjaya, Malaysia. His research interests include formal specification of
design patterns, distributed object computing, object-oriented methods and software
engineering. He can be reached at toufik.taibi@mmu.edu.my.

Dr. David Chek Ling Ngo is associate professor and Dean of the Faculty of Information
Science and Technology at Multimedia University, Melaka, Malaysia. His current
research interests center on arithmetic aesthetics, proportional and design systems, and
screen design. He can be reached at david.ngo@mmu.edu.my.

toufik.taibi@mmu.edu.my
mailto:david.ngo@mmu.edu.my

