
JOURNAL OF OBJECT TECHNOLOGY 
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003 

 
Vol. 2, No. 4, July-August 2003 

 
 
 
 

Cite this article as follows: Toufik Taibi, David Check Ling Ngo: “Formal Specification of Design 
Patterns – A Balanced Approach”, in Journal of Object Technology, vol. 2, no. 4, July-August 
2003, pp. 127-140. http://www.jot.fm/issues/issue_2003_07/article4  

Formal Specification of Design Patterns 
- A Balanced Approach 

Toufik Taibi, Multimedia University, Cyberjaya, Malaysia 
David Chek Ling Ngo, Multimedia University, Melaka, Malaysia 

Abstract 
Pattern users are faced with difficulties in understanding when and how to use the 
increasing number of available design patterns. This is mainly due to the inherent 
ambiguity in the existing means (textual and graphical) of describing them. Hence, there 
is a need to introduce formalism in order to describe them accurately and allow rigorous 
reasoning about them. The main problem of existing formal specification languages for 
design patterns is their lack of completeness. This is mainly because they tend to focus 
on specifying either the structural or the behavioral aspect of design patterns but not 
both of them. We propose a simple yet Balanced Pattern Specification Language 
(BPSL) that is aimed to achieve equilibrium by specifying both aspects of design 
patterns. BPSL combines two subsets of logic, one from First Order Logic (FOL) and 
one from Temporal Logic of Actions (TLA). 

1 INTRODUCTION 

Design patterns are abstractions generated from the valuable experiences of developers in 
solving problems repeatedly encountered within certain contexts. Since design patterns 
have been extensively tested and used in many development efforts, reusing them yields 
better quality software within a reduced time frame. 

Pioneer pattern writers needed an urgent means to describe these cumulated 
experiences in order to allow developers to reuse them. At the early stage of pattern 
evolution, a combination of textual descriptions, OO graphical modeling languages and 
sample code fragments was sufficient for conveying the essence behind patterns. Initial 
efforts were focused on building a pattern vocabulary, a community of pattern writers and 
users, and a pattern literature. At a later stage, it has been found that patterns cannot be 
used in isolation from other patterns but as micro-architectures that when combined 
together can solve a component or even the whole system. 

However, as the number of patterns has grown, and problems requiring combining 
patterns surfaced, users started to realize that textual description can be ambiguous and 
sometimes misleading in understanding and applying patterns. Unsettled debates were 
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initiated among users and even pattern writers themselves on various aspects of patterns 
[Vliss97a][Vliss97b].  

Hence, there was a need for a formal means of accurately describing design patterns. 
Formal specification of design patterns is not meant to replace the existing 
textual/graphical descriptions but rather to complement them to achieve well-defined 
semantics, allow rigorous reasoning about them and facilitate tool support. 

Formal specification of design patterns can enhance the understanding of their 
semantics. It can be used to help pattern users decide which pattern(s) is (are) more 
appropriate to solve a given design problem within a context. It can help formalize the 
combination of design patterns. Finally it can facilitate the development of tools for 
finding instances of patterns in programs and fine-tuning them to meet pattern 
specification [Eden01]. 

As the pattern field has matured, a number of formal specification languages 
[Chinn99] have emerged to cope with the inherent shortcomings of textual and graphical 
descriptions. However, since these specification languages originated from different 
mathematical sources and incorporated different ingredients, they reflect the way their 
authors perceived "how should patterns be formalized?" Their main problem is lack of 
completeness. This is mainly because they were not originally meant to specify design 
patterns and have been adapted to do so, or because they focused on specifying either the 
structural or behavioral aspect of design patterns but not both of them.  

In this paper, we propose a Balanced Pattern Specification Language (BPSL) that is 
meant to accurately convey the essence of patterns in a balanced way. In [Taibi01], we 
described why and how should patterns be formalized and concluded that combining the 
formal specification of structural and behavioral aspects of design patterns in one 
specification helps specify patterns in a balanced way. BPSL uses First Order Logic 
(FOL) to specify the structural aspect and Temporal Logic of Actions (TLA) to specify 
the behavioral aspect. Although we approach the formalization in terms of specific 
examples, the underlying principles are applicable to any design pattern. 

The rest of the paper is organized as follows. In the next section we lay down the 
foundations on top of which BPSL is built. Section 3 gives a detailed description of 
BPSL, while in section 4 we apply BPSL to the Observer design pattern [Gamma95], 
which has a significant behavioral aspect. Finally, in section 5 we present work related to 
what is presented in this paper and conclude the paper in section 6. 

2 SETTING THE SCENE  

Most attempts of formalizing design patterns have focused on the solution part, which is 
primarily defined using the structure, participants and collaboration sections of the 
pattern description [Gamma95]. Focusing on the solution part does not mean ignoring the 
other aspects of a pattern such as the problem (defined by its forces) and the context.  The 
solution is the most tangible aspect of a pattern that can be easily translated to some sort 
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of formalism that would facilitate the understanding and usage of the design pattern as a 
whole.  

Moreover, at this stage of pattern evolution, formalizing the other aspects of a 
pattern will not add any thing to the existing textual descriptions. As such, in the 
remaining of this document when we refer to a design pattern we mean its solution part. 
Moreover, we will use design patterns and patterns interchangeably as BPSL is mainly 
meant to formally specify design patterns not other types of patterns such as analysis, 
architecture, organizational, etc. 

Design patterns differ in terms of their field of usage, the problems they solve and 
their context. However each pattern has a structural aspect and a behavioral aspect. 
Hence, any formal specification that is claimed to completely describe design patterns 
should incorporate the specification of both structural and behavioral aspects [Taibi01]. 
Each pattern can be seen from two complementary views: the structural view and the 
behavioral view. By balanced (in BPSL) we mean that the formal specification of both 
the structural and behavioral aspect of patterns should complement each other.  

As BPSL is aimed to describe patterns accurately and in a balanced manner through 
a simple and concise notation, its main target is pattern understandability, which can only 
be achieved by understanding a pattern's structural and behavioral aspects and how they 
complement each other. By doing so, users will be able to know when and how to use a 
given pattern, which is crucial to taking full advantage of the inherent benefits of 
patterns. 

The structural aspect of a design pattern can be formalized using a subset of First 
Order Logic (FOL), because relations between pattern participants can be easily 
expressed as predicates. For simplicity, the subset of FOL used focuses on variable 
symbols and predicate symbols. The behavioral aspect of a design pattern can be 
formalized using a subset of Temporal Logic of Actions (TLA) [Lamport94], which is 
best suited to describe collective behavior, i.e. how objects cooperate. The subset used 
focuses on actions that change state variables (class attributes) and/or associate or 
disassociate object through temporal relations. BPSL integrates two subsets of logic, one 
fraction of FOL and one from TLA in an attempt to describe patterns in an accurate and 
balanced way.  

Following are the building blocks of BPSL. They reflect entities (participants) and 
relations (collaborations) between them in a design pattern.  

1. Classes, attributes, methods, objects, and untyped values make the primary 
entities, which are considered irreducible units. Untyped values are values of 
variables of any type. They are used as a construct at a higher level of abstraction 
as opposed to low level programming language constructs. Untyped values and 
objects are used as parameters to actions (see section 3). 

2. Relations express the way entities collaborate. Relations can either be permanent 
or temporal. Permanent relations between entities once defined cannot be changed 
while temporal relations may change throughout the execution of actions. BPSL 
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defines a set of primary permanent relations based on which other permanent 
relations can be built (see Table 1).  

3. Actions are atomic units of execution, which can be understood as multi-object 
methods used to embody the behavioral aspect of design patterns. Actions 
associate and disassociate objects through temporal relations. 

4. Any newly defined entity or permanent relation must derive from the primary 
entities and primary permanent relations respectively. 

3 BALANCED PATTERN SPECIFICATION LANGUAGE (BPSL) 

In this section we will take a deep and closer look at the BPSL building blocks (entities, 
relations and actions) that have been defined in the previous section. This section is 
divided into three subsections. The first describes how the structural aspect of design 
patterns is formalized using BPSL. The second section focuses on the specification of the 
behavioral aspect of design patterns. Finally, the last section shows how these two aspects 
when combined complement each other. 

Structural Aspect  

The subset of FOL used to describe the structural aspect of design patterns consists of 
variable symbols, connectives (mainly ∧), quantifiers (mainly ∃) and predicate symbols 
acting upon variable symbols. Variable symbols represent classes, attributes, methods, 
objects and untyped values while the predicate symbols represent permanent relations. 
The domain (set) of primary entities that are classes, attributes, methods, objects, and 
untyped values is designated receptively C, A, M, O, and V.  

Table 1 depicts the primary permanent relations, their domain and their intent. These 
relations straightforwardly derive from object-oriented technology concepts. It is the 
smallest set (in terms of number of elements) on top of which any other permanent 
relation can be built.  

For example the permanent relation Forwarding is a special case of Invocation, 
where the actual arguments in the invocation are the formal arguments defined for the 
first method. This can be formally specified as follows: Forwarding (m1,m2) 
⇔Invocation(m1,m2) ∧Argument(a1, m1) ∧…∧Argument(an,m1) ∧ Argument(a1, m2) ∧…∧ 
Argument(an,m2), where m1, m2 ∈ M and a1,…, an ∈ V ∪ C which means they can either 
be untyped values or references to classes.  Primary permanent relations are general in 
the sense that they can be used to specify all design patterns.  Primary permanent 
relations can be easily extracted from the structure of the design patterns represented 
usually by a Unified Modeling Language (UML) [Rambaugh98] class diagram and the 
collaboration of the pattern participants represented by UML sequence diagrams. 
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Table 1: Primary Permanent Relations and their Intent 

 
Name Domain Intent 

MxC Indicates that a method is defined in a certain class. Defined-in 
AxC Indicates that an attribute is defined in a certain class. 

Reference-to-one 
(-many) 

CxC Indicates that one class defines a member whose type is a 
reference to one (many) instance(s) of the second class. 

Inheritance CxC Indicates that the first class inherits from the second. 
MxC Indicates that a method contains an instruction that creates a 

new instance of a class. 
Creation  

CxC Indicates that one of the methods of a class contains an 
instruction that creates a new instance of another class. 

Invocation MxM Indicates that the first method invokes the second method.  
CxM Indicates that a reference to a class is an argument of a 

method. 
Argument 

VxM Indicates that an untyped value is an argument of a method 
Instance OxC Indicates that an object is an instance of a certain class. 
 

Behavioral Aspect 

For patterns that have a significant behavioral aspect, it is necessary to understand how 
objects collaborate to achieve the expected behavior. The subset of TLA used by BPSL to 
formally specify the behavioral aspect of pattern deals with behaviors (S0,S1,…) defined 
as infinite sequences of states. Each state Si is a collection of values of state variables 
(class attributes) and the temporal relations that exist between objects. A pair of 
consecutive states (Si,Si+1) in a behavior is called a transition. The system starts in some 
initial state. As time passes, actions are executed, changing the system's state accordingly. 
Actions are selected for execution non-deterministically, the only restriction being that 
the precondition of an action must be true in order for the action to be executed. The 
execution of an action is atomic, meaning that once the execution of an action has been 
started, it cannot be interrupted or interfered with by other actions. The computational 
model is interleaving, that is, only one action at a time is being executed. BPSL has 
extended the subset of TLA used by extending the semantics of actions. In TLA actions 
only change state variables (class attributes in pattern terminology). In addition to the 
above feature, actions in BPSL may also associate and disassociate objects through 
temporal relations (defined below). 

A temporal relation can be defined as follows: TR(C1[cardinality],C2[cardinality]), 
where TR is the name of the temporal relation, C1 and C2 are classes, and cardinality 
represents the number of instances of each class that participate in the relation. 
Cardinality can be represented as either a closed interval [n..m], where n and m represent 
any two positive integers or [*] to depict any possible number of instances. 

When used in actions, TR(o1,o2) depicts that an object o1 of a class C1 is currently 
associated through TR with an object o2 of a class C2, while ¬TR(o1,o2) depicts that 
objects o1 and o2 are no longer associated through TR. TR(o1,C2) depicts that object o1 
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is associated with all instances (objects) of the class C2. ¬TR(o1,C2) depicts that object 
o1 is not associated through TR with any object of class C2. ¬TR(C1,C2) depicts that 
none of the objects of class C1 is associated through TR with any object of  class C2. 

An action consists of a list of parameters (object and untyped values), a precondition 
and a body. The body is a definition of a state change caused by an execution of the 
action. For example, if TR is a temporal relation between two classes C1 and C2, an 
action A may be defined as follows: A(o1,o2,p) : TR(o1,o2) ∧ o1.x ≠ p → ¬TR'(o1,o2) ∧ 
o1.x'=p, where x is an attribute of the class C1, o1 is an object of the class C1, o2 is an 
object of the class C2 and p denotes an untyped value.  The symbol ":" means "by 
definition". Expression TR(o1,o2) ∧ o1.x≠ p is the precondition under which the action 
can be executed and ¬TR'(o1,o2) ∧ o1.x'=p  is the body of the action. The precondition 
may contain a set of conjunctions and/or disjunctions while the action body may contain 
a set of conjunctions. Unprimed and primed attributes refer to the values of attributes 
before and after the execution of the action, respectively. Unprimed and primed temporal 
relations refer to temporal relations before and after the execution of the action, 
respectively.  

Objects and untyped values that participate in an action are non-deterministically 
selected from those that are suitable. For example, the above action is enabled for all 
objects having TR(o1,o2) ∧ o1.x ≠ p. Semantically, an action is a Boolean expression that 
is true or false with regard to a pair of states. For example the action A defined earlier is 
true for a pair of states (S,T) if and only if the value that state S  assigns to x is different 
from p and o1 is associated with o2 through TR and the value that state T assigns to x is 
equal to p and o1 is not longer associated with o2 through TR. Unlike permanent relations 
which can be used for many patterns, temporal relations and actions are specific to each 
pattern. 

The sequence of states describing the execution of actions is potentially infinite. 
Properties of a given system (a set of behaviors) can be divided into safety and liveliness. 
Informally safety means that nothing will go wrong with the system while liveliness 
means that some actions will be executed infinitely. Safety can be guaranteed by ensuring 
that invariants are true at all states of the system while liveliness is obtained by giving an 
explicit fairness requirement. Marking an action with asterisk (*) denotes a fairness 
requirement, stating that if its precondition is true, the action will be executed infinitely 
often. In BPSL, invariants are defined by the keyword "Invariants:", followed by a set of 
conditions on temporal relations and/or on attribute values. Likewise, initial state is given 
by the keyword "Initially:", followed by a condition based on temporal relations and/or 
on attribute values.  

Integrating the Structural and Behavioral Aspect Specifications 

A formula in BPSL has the following form:  
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                         ∧i  PRi  (ai,bi)  (Permanent  relations) 
∃ (x1, ..., xn):     [∧j TRj (cj,dj)  (Temporal relations) 
                        [Invariants: invariant conditions] 
                          Initially: initial conditions                      
                        ∨k  Ak  (…)  (Actions)]   
 
In the above formula, PRi are permanent relation symbols, TRj are temporal relation 
symbols and Ak are action symbols, while x1,..,xn are variable symbols representing the 
pattern primary entities (classes, attributes, methods, objects and untyped values). In the 
notation PRi  (ai,bi),  ai and bi could represent classes, attributes, methods, objects or 
untyped values as per Table 1, while in the notation TRj (cj,dj) cj and dj represent classes. 
The notation Ak (…) means that actions can have any number of arguments, which should 
be either objects or untyped values. Any argument of PRi, TRj and Ak must be subset of 
{x1,..,xn}. Variables x1,..,xn are typed, each represents an entity as expected. In all 
specifications, we follow a convention in which only relations and actions start with a 
capital letter. Temporal relations, initial conditions, invariants and actions are put 
between square brackets because they are optional. Patterns that have no significant 
behavioral aspect are only specified using permanent relations. When patterns have a 
significant behavioral aspect, initial conditions are compulsory but invariants are 
optional. 

From the parts of a BPSL formula, it can be seen that permanent relations, temporal 
relations and actions are treated as predicates, i.e., relations whose range is the set of truth 
values {true, false}. This is straightforward for permanent relations. Temporal relations 
are first defined between classes to indicate that these relations will associate and 
disassociate objects of these classes when actions execute. As for actions, we have seen 
previously that they are Boolean expressions (true or false) with regard to a pair of states. 
This indeed shows that actions are also predicates (with regard to a pair of states). 
However in addition to their truth or falsity they have additional semantics that derives 
from TLA. All above explanations justify the usage of the connectives (∧ and ∨) between 
permanent relations, temporal relations and actions. 

BPSL does not use two disjoint subsets of variables, whereby the variables of the 
first subset participate in permanent relations and the second participate in temporal 
relations and actions. Indeed, variables x1,…,xn participate in permanent and temporal 
relations as well as actions. This proves that a seamless integration of the two aspects 
(structural and behavioral) was achieved in BPSL. For example, object variables 
participate in Instance permanent relations while temporal relations, which are heavily 
used in actions, are defined using class variables. Moreover, in some cases, permanent 
relations Reference-to-one(-many), Creation and Invocation  can be straightforwardly 
mapped to temporal relations between objects. 

BPSL uses four compartments to specify a pattern. The first declares the variables 
and their type, the second defines permanent relations, the third defines temporal 
relations and the fourth defines actions. The ∨ connective is used to connect actions 
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because the action to be executed is non-deterministically chosen from those enabled 
(their precondition is evaluated to true). This leads to many possible behaviors (infinite 
sequence of states) as seen previously. 

BPSL models a pattern as a collection of entities (classes, attributes, methods, 
objects, and untyped values) and relations (permanent and/or temporal) and/or actions 
among them. A structure that arises from an instance p of a given pattern shall contain 
entities that are defined in p and relations (permanent and/or temporal) and/or actions 
among them.  This leads to a five-sorted universe of discourse, which is designated by E. 
The sorts C, A, M, O, V are referred to as types or domains with respect to variables, 
relations (permanent and temporal) and actions in BPSL. Therefore, BPSL models 
patterns using a model M, which is a pair <E, R> where E is a universe of entities, and R 
= R1,…Rn is the set of relations (permanent and/or temporal relations and/or actions) 
amongst. BPSL formulas describe patterns in the form of logic statements. More 
specifically, every design/program is represented as a model. If a BPSL formula ϕ is the 
formal specification of a pattern π, a design/program p conforms to π if and only if the 
model of p satisfies ϕ. 

4 CASE STUDY: THE OBSERVER PATTERN 

In this section we use BPSL to specify the Observer pattern which is classified in 
[Gamma95] as a "behavioral" pattern. Figure 1 and Figure 2 depict the UML 
[Rambaugh98] class diagram and the sequence diagram of the Observer pattern 
[Gamma95]. Table 2 depicts the BPSL specification of the Observer pattern. It first starts 
by defining the entities in the system such as classes, attributes, methods, objects and 
untyped values. This is followed by defining permanent relations between the defined 
entities. Permanent relations specify the structural aspect of the pattern. All permanent 
relations defined in this specification are primary as shown in Table 1. 

The permanent relation Defined-In depicts which attribute or method belongs to 
which class.The permanent relations Reference-to-one and Reference-to-many depict, in 
this case, that a concrete-observer has only one reference to a concrete-subject while a 
subject has many references to an observer. Inheritance depicts the classical relationship 
between a base and a derived class. All the above relations are straightforwardly derived 
from the class diagram of Figure 1. The Invocation relations Invocation(set-state, notify), 
Invocation(notify, update) and Invocation(update, get-state) are straightforwardly derived 
from the sequence diagram of Figure 2. The relation Argument depicts that a reference to 
a class is a parameter of a given method. In the case of our specification we have: 
Argument(observer, attach), Argument(observer, detach) and Argument(subject, update). 
The permanent relations Instance(s, concrete-subject) and Instance(o, concrete-observer) 
depict that s is an object of the class concrete-subject while o is an object of the class 
concrete-observer. These objects will be later used in the specification of actions. 
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Fig.1: UML class diagram of the observer pattern 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2: UML sequence diagram of the observer pattern 
 

 

 
 
attach (Observer) 
detach (Observer) 
notify ()  

Subject 

notify(){ 
for all o in observers 
{ o->update(); } 

getstate () 
setstate() 

ConcreteSubject 

getstate(){ 
return subjectstate;} 

subjectstate 

 
 
update(Subject) 

Observer 

update (Subject) 

ConcreteObserver 

update (){ 
observersstate= 
subject->getstate();} 

observerstate 

observers 

subject 

:ConcreteSubject :ConcreteObserver :ConcreteObserver 

setstate() 

notify() 
update() 

getstate() 

update() 

getstate() 

*
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Table 2:  BPSL specification of the observer pattern 
 

∃ subject, concrete-subject, observer, concrete-observer  ∈ C;  
  subject-state, observer-state ∈ A; 
  attach, detach, notify, get-state, set-state, update ∈ M;  
  o, s ∈ O; 
  d∈ V; 
  Defined-in(subject-state, concrete-subject) ∧ 
  Defined-in (observer-state, concrete-observer) ∧ 
  Defined-in(attach, subject) ∧ 
  Defined-in (detach ,subject) ∧ 
  Defined-in (notify, subject) ∧ 
  Defined-in(set-state, concrete-subject) ∧ 
  Defined-in (get-state, concrete-subject) ∧ 
  Defined-in (update, observer) ∧ 
  Reference-to-one(concrete-observer, concrete-subject) ∧ 
  Reference-to-many(subject, observer) ∧ 
  Inheritance(concrete-subject, subject) ∧ 
  Inheritance(concrete-observer, observer) ∧ 
  Invocation(set-state, notify) ∧ 
  Invocation(notify, update) ∧ 
  Invocation(update, get-state) ∧ 
  Argument(observer, attach) ∧ 
  Argument(observer, detach) ∧ 
  Argument(subject, update) ∧ 
  Instance(s, concrete-subject) ∧ 
  Instance(o, concrete-observer).  
  Attached(concrete-subject[0..1],concrete-observer[*])∧ 
 Updated(concrete-subject[0..1],concrete-observer[*]). 
  Initially:¬Attached(s, concrete-observer). 
  Attach(s,o) :¬Attached(s,o) → Attached'(s,o) ∨ 
  Detach(s,o): Attached(s,o) ∨ Updated(s,o) → ¬Attached'(s,o) ∨ 
  Notify(s,o,d) : Attached(s,o) ∨ Updated(s,o) → ¬Updated'(s,concrete-observer) ∧      
  s.subject-state' =d ∨ 
  Update*(s,o):  ¬Updated(s,o) → Updated'(s,o) ∧   o.observer-state' = s.subject-state. 

 
 
In the third and fourth part of the pattern specification, temporal relations and actions are 
defined. These specify the behavioral aspect of the pattern. In the Observer pattern, an 
instance of a concrete-observer is associated with an instance of a concrete-subject 
whenever it is interested in its content. This is shown by the following temporal relation: 
Attached(concrete-subject[0..1],concrete-observer[*]). The cardinality shows that many 
concrete-observers might be attached to zero or one concrete-subject. Moreover, each 
concrete-subject needs to know to which concrete-observers its contents have been 
delivered since the last modification. Thus concrete-subjects are associated with 
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concrete-observers that have already been updated. This yields the following temporal 
relation: Updated (concrete-subject[0..1], concrete-observer[*]). 

The initial condition "¬Attached(s, concrete-observer)" reflects that initially all 
concrete-observers are not attached to the concrete-subject (s).In this pattern a concrete-
observer can become interested in the contents of a concrete-subject, and may also cancel 
this interest. In the specification actions Attach and Detach are used for modeling these 
cases respectively. Action Attach sets Attached relation between the concrete-subject and 
the concrete-observer objects that are involved. Action Detach clears this relation. These 
actions are formalized as follows: Attach(s,o) :¬Attached(s,o) → Attached'(s,o) and 
Detach(s,o): Attached(s,o) ∨ Updated(s,o) → ¬Attached'(s,o). The precondition of the 
action Detach contains a disjunction because s and o could either be linked by the 
temporal relation Attached or Updated when the action Detach takes place. Action Notify 
denotes that the contents of a concrete-subject have been modified. This requires 
updating all concrete-observers that are attached to this concrete-subject. The 
precondition of Notify is the same as Attach, object s and o should either be linked by 
Attached or Updated. Thus, upon executing Notify, the concrete-subject must no longer 
be associated with any concrete-observer by Updated relation. This yields the following 
action: Notify(s,o,d) : Attached(s,o) ∨ Updated(s,o) → ¬Updated'(s,concrete-observer) ∧ 
s.subject-state' =d where d denotes the new value, set upon notification. The usage of 
concrete-observer in the temporal relation  ¬Updated'(s,concrete-observer) denotes that 
all instances of the class concrete-observer will become not updated. As no restrictions 
are imposed on the value of parameter d, its value is non-deterministically selected. 
Action Update represents a transmission of modified data from a concrete-subject to a 
concrete-observer. Thus, it sets Updated relation for the concrete-subject and the 
concrete-observer that participate in the action, yielding: Update*(s,o): ¬Updated(s,o) → 
Uptated'(s,o) ∧ o.observer-state' = s.subject-state. Marking the action with an asterisk (*) 
denotes a fairness requirement, stating that if its precondition is true, the action will be 
executed infinitely often. 

5 RELATED WORK 

Object Constraint Language (OCL) [Warmer98] was developed by IBM to accurately 
specify constraints that cannot be unambiguously described by UML graphical models. It 
is a formal language that is intended to be easy to read and write. OCL is a pure 
expression language. All values for all objects, including all links, will not change. 
Whenever an OCL expression is evaluated, it simply delivers a value. OCL can be used 
for a number of different purposes: 

• To specify invariants on classes and types in the class model. 
• To specify type invariant for Stereotypes. 
• To describe pre- and post conditions on Operations and Methods. 
• To describe Guards. 



 
FORMAL SPECIFICATION OF DESIGN PATTERNS – A BALANCED APPROACH 

 
 
 
 

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 4 

• As a navigation language. 
• To specify constraints on operations. 

 
OCL is used in the UML Semantics document to specify the well-formedness rules of the 
UML meta-model. Each well-formedness rule in the static semantics sections in the UML 
Semantics document contains an OCL expression, which is an invariant for the involved 
class. BPSL and OCL have very little in common. OCL is an add-on to better understand 
UML graphical models while BPSL is a language that is meant to accurately describe 
design patterns. Since design patterns are described using textual descriptions, UML 
graphical models and sample code fragments, someone could think of using OCL to 
specify constraints of the UML graphical models of the design pattern. However, this will 
only help better understand those graphical models rather than better understanding the 
essence of the design pattern. 

Contracts are descriptions of obligations among clients who utilize the services 
provided by suppliers. Design by Contract is a technique where pre-conditions, post-
conditions, and invariants are used to define contracts [Helm90]. Pre-conditions are 
Boolean assertions that a client must satisfy before requesting a service. Post-conditions 
are Boolean assertions that a supplier must satisfy after providing a service. Invariants are 
Boolean assertions that must be satisfied over time. Actions in BPSL are quite similar to 
contracts in the sense that they define precondition as well as show the state change. 
However in BPSL state change is not only reflected by change in attribute values but also 
by associating and disassociating objects through temporal relations. 

The Abstract Data View (ADV) approach  [Cowan95], uses a formal model to 
achieve separation by dividing designs into two types of components: objects and object 
views and by strictly following a set of design rules. Specific instantiations of views as 
represented by Abstract Data Views (ADVs) and objects called Abstract Data Objects are 
substituted into the design pattern realization while maintaining a clear separation 
between view and object. ADV and ADO components are specified using temporal logic 
and the interconnection between components is described in terms of category theory. 
Clearly, ADV/ADO concentrate on formalizing the process of instantiating a solution in 
given programming language from a design pattern while BPSL seeks a multi-purpose 
formal specification language as highlighted in the introduction. 

Our work is mostly inspired by LanguagE for Patterns' Uniform Specification 
(LePUS) [Eden99] and Distributed Co-operation (DisCo) [Mikkonen98]. LePUS derives 
from Higher-Order logic and focuses only on specifying the structural aspects of design 
patterns. We preferred to use a small fraction of FOL because simplicity was paramount 
in the design of BPSL. If the users of a formal specification language for design patterns 
cannot easily understand it, how are they supposed to understand design patterns formally 
specified by this language? DisCo derived from TLA and was designed to specify 
reactive systems, which are in constant interaction with their environment and therefore 
have a predominantly behavioral aspect. DisCo has little (almost no) support for 
specifying the structural aspect. The subset of TLA used in BPSL is different from the 
one used in DisCo, the syntax is completely different while they share most of the 
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semantics derived from TLA concepts. DisCo and in fact TLA itself does not support the 
concept of temporal relations and its semantics as defined in section 3. In DisCo actions 
change only state variables while in BPSL they change state variables (class attributes) as 
well as associate and disassociate objects through temporal relations. 

6 CONCLUSION 

Formal specification of design patterns is intended to complement existing textual and 
graphical descriptions in order to eliminate ambiguity, allow rigorous reasoning about 
patterns and facilitate automation of the activities related to them. As patterns represent 
abstractions, any formal language meant to specify them should strive to achieve 
simplicity for a better understandability, accuracy for a precise semantics and 
completeness to avoid loss of semantics. 

Since patterns have two complementary aspects (structural and behavioral), BPSL 
was devised to combine the specification of the two aspects in order to achieve 
completeness.  BPSL has carefully chosen the subsets of FOL and TLA to be used in 
order for it to be simple for users and yet describe design patterns accurately. The 
ultimate purpose of BPLS is to help users understand patterns to know exactly when and 
how to use them. 

The two classical schools of thought (structural vs. behavioral) that originated from 
modeling OO systems have unfortunately been inherited by the pattern specification 
community. The structural school of thought claims that the structural aspect of design 
patterns is predominant in all systems and even that the behavioral aspect can be derived 
from it [Eden01]. The behavioral school of thought concentrated on specifying patterns 
for reactive systems, which have a predominantly behavioral aspect. In BPSL a design 
pattern encompasses both views (structural and behavioral) in a complementary manner. 
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