
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2003

Vol. 2, No. 2, March-April 2003

Cite this column as follows: Francisca Losavio et al: “Quality Characteristics for Software
Architecture”, in Journal of Object Technology, vol. 2, no. 2, March-April 2003, pp. 133-150.
http://www.jot.fm/issues/issue_2003_03/article2

Quality Characteristics for Software
Architecture*

Francisca Losavio and Ledis Chirinos, Central University of Venezuela,
Caracas, Venezuela
Nicole Lévy and Amar Ramdane-Cherif, Université de Versailles St.-Quentin,
France

Abstract
It is of general agreement that quality issues should be considered very early in the
software development process, to mitigate risks and to facilitate the achievement of the
overall software system. Moreover, the architecture of the system drives the whole
development process. The fulfillment of nonfunctional quality requirements by a
candidate architecture is crucial to select the convenient architecture on which the
whole system will be articulated. This issue is very important in the construction of
reliable evolutionary applications. Software development methods do not give many
details on this important stage. This work deals with the specification of quality
requirements for software architecture, introducing a technique based on the ISO 9126-
1 standard. The quality characteristics of the ISO quality model are refined into
attributes, which can be measured to enrich the information about the architecture. Our
technique is used to help selecting a suitable architecture among a set of candidates, by
comparing the values of the respective quality attributes. A case study illustrates the
application of the technique on a monitoring system. Our approach facilitates the choice
of the right decisions during the architecture analysis process. It could be easily
integrated into a general software development process or into specific architectural
design methods.

1 INTRODUCTION

Quality requirements, captured as nonfunctional requirements in the early steps of
software development, influence greatly the software system’s architecture. However,
also the system’s core abstractions which are functional requirements, play an important
role in the definition of the initial architecture. On the other hand, the quality
requirements have to be “balanced” during the design process [Kazman et al. 2000]. Only

*This work has been developed as a result of the European Community INCO SQUAD Project EP 962019, the Consejo
de Desarrollo Científico y Humanístico (CDCH) of the Universidad Central de Venezuela, ARCAS project
03.13.4584.00 and the RNTL Lutin project

http://www.jot.fm
http://www.jot.fm/issues/issue_2003_03/article2

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

134 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

recently the importance of a precise design of software architecture, not limited to
graphical notations of boxes and lines, has grown up considerably for the construction of
reliable evolutionary systems [Bachmann et al. 1996], [Bosch 2000], [Krutchen 2000].
Modern applications involving distribution, adaptability, interoperability, component
reusability and real-time issues require an early definition of the system architecture in
order to fulfill quality requirements, such as maintainability and reliability. They are
crucial for the achievement of the overall functional purpose of the software system under
construction. In particular, new information systems using Internet services, like Web-
based e-commerce applications, are developed very rapidly for marketing needs, without
much care about software engineering practices. Moreover, the quality of such products
is not discussed. However, when an HTML page is displayed on a browser, we are
immediately aware if we are in presence of a “good” or “bad” Web application. Factors
such as usability, reliability (robustness) or efficiency (time or resource behavior) are
involved in this quick evaluation. In fact the problem is that software developers do not
have a clear description of the quality characteristics of a Web application, since in the
development of these systems, as we have already pointed out, software engineering
paradigms are often neglected. For example, even when the separation between
application data semantics and presentation is an accepted paradigm, HTML is normally
used regardless of this issue and only recently XML is being adopted. An interesting
problem is then the specification of quality requirements. They may appear implicitly
during functional requirements specification, as for example in a textual use-case
description or in a scenario, but in standard object-oriented methods there are no explicit
guidelines or explicit modeling elements on how to capture or specify them. Moreover,
we feel that the design of software architecture should not be considered as an
independent activity, but a step further in the development and evolutionary process of
software products. Architectures should be considered as a main concern (Krutchen,
2000) to establish more clearly reusable frameworks, for guaranteeing to a certain extent,
the overall quality of the resulting software products.

The main goal of this work is to propose an ISO 9126-1 [ISO/IEC 1998] based
technique to specify the relevant quality characteristics, refined until the attribute level or
measurable items, involved in the architectural design process. The specification and
evaluation of these attributes, as steps of the architectural design, is the basis of the
architectural transformation process, allowing the incremental adaptation of the initial
architecture. This candidate, often selected on some key functional requirements of the
system, is adapted or transformed during the design process to accomplish the established
quality goals, which are the values that the system should attain in fulfilling a quality
requirement. In this process, quality requirements are often transformed into implicit
functional requirements for the final system [Bosch 2000], expressing them as the
introduction of additional mechanisms, for example. However, in commonly used
software analysis and design methods, the specification and evaluation of quality
attributes is only performed on the basis of the designer’s experience. The ATAM
(Attribute-based Tradeoff Analysis Method) [Kazman et al. 2000] has some common
points with our approach. It uses one level of quality characteristics (attributes)
refinement, called utility (system goodness) tree, for prioritizing scenarios based on a

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 135

particular quality characteristic. The information on the architecture and attribute is
captured into the ABAS (Attribute-Based Architectural Style) framework [Klein and
Kazman 1999]. However, how to arrive to the utility tree, which quality view is it
expressing and why only one level refinement, is not clear and the definitions of the
quality attributes are not standards. The utility tree is used to give priorities to scenarios
to identify sensitive points, from which a set of “test” cases for the architecture can be
derived. The measures for the attributes are given in terms of stimuli, parameters and
responses. Our approach considers the specification of the quality requirements using a
quality model according to the ISO 9126-1 standard. This hierarchical model, which is
structurally similar to the ATAM quality tree, is adapted to software architecture. The
ISO quality model is now a software industry standard and it is defined at a high
abstraction level, in terms of external/internal and quality in use views of quality
characteristics. The quality characteristics (attributes for ATAM) are defined precisely in
the standard, and the measures for the attributes are quite general and could be refined
further for a particular application. The quality of the environment, where the software is
running, is considered by the quality in use model, which is the user’s view of quality in a
specific context of use. In this work we are concerned only with the external/internal
quality model, representing the user and developer views respectively. In order to achieve
the quality in use, the system must have reached external and internal quality goals. The
quality characteristics are refined into sub-characteristics manifested externally when the
software is used as a part of a computer system and they are also a result of the evaluation
of internal software attributes or measurable properties of an entity, appearing during the
software development process. In our case, we have to “transfer” or “translate” these
properties to the software architecture, which is an intermediate software product. The
values obtained for the attributes during the development process can be used to verify
internal quality goals, contributing to the validation of the external quality goals, required
by the final software system [SO/IEC 1998]. The fact of having a precise specification of
the quality attributes adds more information to the architectural specification, facilitating
the analysis process for the selection of the architecture to solve a particular design
problem.

Besides the introduction and conclusion, the main sections of the paper are the
following: - The description of a general quality model, based on ISO 9126-1, for
specifying the quality characteristics of software architecture is given. - A case study,
where the general quality model obtained is used for selecting two different architectures
for a soft real-time monitoring system using Internet facilities.

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

136 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

2 ADAPTING ISO 9126-1 QUALITY MODEL TO SOFTWARE
ARCHITECTURE

ISO 9126-1 Quality Model

According to ISO 9126-1 [ISO/IEC, 1998], quality is defined as a set of features and
characteristics of a product or service that bear on its ability to satisfy stated or implied
needs. Different perspectives of quality can be considered: - user view, as the quality of
the final product; - developer view, as the quality of the intermediate products generated
by the different stakeholders during the development process; - end-user manager view,
as the marketing requirements. The overall quality of a product can be the expressed by a
combination of the different views. In our context, the user and developer (architect)
views will be used. The work of McCall [McCall et al. 1977] distinguishes between two
levels of quality features: factors and criteria. The former cannot be measured directly,
while the latter can be subjectively measured. It inspired the ISO 9126-1 model. On this
basis, ISO 9126-1 simplifies further the McCall’s model, into the ISO 9126-1 quality
model, now commonly accepted in the state-of-the-art of product quality specification. It
proposes a set of six independent high-level quality characteristics, which are defined as
a set of attributes of a software product by which its quality is described and evaluated. In
practice, some influence could appear among the characteristics, however, in this work
they will be considered independent to simplify our presentation. The quality
characteristics are used as the targets for validation (external quality) and verification
(internal quality) at the various stages of development. They are refined (see Figure 1)
into sub-characteristics, until the attributes or measurable properties are obtained. In this
context, metric or measure is a defined as a measurement method and measurement
means to use a metric or measure to assign a value. Figure 1 shows these relations:

 is refined into is refined into is measured by
characteristic sub-characteristic attribute metric

Fig. 1: Relations among the quality model elements

In order to monitor and control software quality during the development process, the
external quality requirements are translated or transferred into the requirements of
intermediate products, obtained from development activities. The translation and
selection of the attributes is a non-trivial activity, depending on the stakeholder personal
experience, unless the organization provides an infrastructure to collect and to analyze
previous experience on completed projects. The definition of the main quality
characteristics of the ISO 9126-1 standard for software quality measurement is shown in
Table 1. The model should be adapted or customized to the specific application or
product domain. In this sense, for a particular software product we could have a subset of

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 137

the six characteristics. In the ISO 9126-1 standard, no guidelines are given on how to
customize the quality model.

Characteristics Description
Functionality The capability of the software product to provide functions which

meet stated and implied needs when the software is used under
specified conditions (what the software does to fulfil needs)

Reliability The capability of the software product to maintain its level of
performance under stated conditions for a stated period of time

Usability The capability of the software product to be understood, learned, used
and attractive to the user, when used under specified conditions (the
effort needed for use)

Efficiency The capability of the software product to provide appropriate
performance, relative to the amount of resources used, under stated
conditions

Maintainability The capability of the software product to be modified. Modifications
may include corrections, improvements or adaptations of the software
to changes in the environment and in the requirements and functional
specifications (the effort needed to be modified)

Portability The capability of the software product to be transferred from one
environment to another. The environment may include organizational,
hardware or software environment

Table 1. Characteristics of ISO 9126-1 Quality Model

The sub-characteristics are shown in Figure 2.

Notice that compliance means to adhere to standards, conventions or regulations and it is
presented in [ISO/IEC 1998] as sub-characteristic of all the characteristics. We will
consider it here only for functionality in order to abridge this presentation. Notice that the
presence of the compliance sub-characteristic means that the remaining properties within
the characteristic are assumed to be fulfilled by the particular standard chosen.

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

138 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

Quality Characteristic Sub-characteristics

• Functionality

 Suitability Accuracy Interoperability Security Compliance

• Reliability

 Maturity Fault tolerance Recoverability Compliance

• Usability

 Understandability Learnability Operability Compliance

• Efficiency

 Time behavior Resource behavior Compliance

• Maintainability

 Analysability Changeability Stability Testability Compliance

• Portability

 Adaptability Installability Co-existence Replaceability Compliance

Fig. 2: Sub-characteristics of ISO 9126-1 Quality Model

Customization of the standard quality model for software architecture

In order to customize the ISO quality model, we should be aware of the properties that
are expected from the architecture or generic framework (baseline) on which the software
system must be built, considering it an intermediate product of the software development
process. Hence a particular architecture, expressed at a high-level by the components, the
connectors connecting them and a configuration or topology, must “satisfy” the six ISO
9126 characteristics or a subset of them. Each characteristic will be associated to
attributes to be valued. These attributes will be associated globally to the architecture
and/or to each component and connector. Measures will be used to quantify the quality
attributes. These are defined as symbolic expressions at first and then could be defined
more precisely using a formal language [Marcano et al. 2000]. During the architecture
stepwise definition, it is possible to evaluate if the refinement of the architecture enhance
the quality attributes. However this issue will not be discussed in this work.

For the final product there are quality goal values that must be reached or surpassed
for each attribute. When the values are reached or surpassed then the architecture is said

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 139

to satisfy the quality characteristics required. The goal values are established in the
requirements definition. In what follows we will explain how the quality requirements are
refined into the corresponding sub-characteristics and attributes and how they are adapted
to software architectures, giving the corresponding metrics for each attribute. Notice that
characteristics and sub-characteristics are considered independent.

• Characteristic Functionality

• Sub-characteristic Suitability: to have the adequate functions for the
required tasks.
It involves two aspects:
- Presence: the tasks are specified, for example by means of use cases. For

each task there must exist a functionality to accomplish it.
- Appropriateness: the specification of the task is correctly refined, for

example the sequence diagrams (see Figure 3) must be satisfied.
At architectural level:
1. The system’s functionalities are identified. In this case, the sub-

characteristic is refined into an attribute whose value is yes (1) or not (0).
Notice that there are attributes whose values belong to the interval of
integers [n..m], for example [0..1], meaning absence or presence. The
metric is a scale to obtain rating levels.

2. The sequence diagrams obtained from the functional requirements are
refined. In case of having an architecture specification, the specified
functionality is decomposed into functions associated to components and
whose composition will meet the functional requirements of the system.

 Use case Sequence diagram

 System requirements Interaction definition Architecture definition

Fig. 3: Translation of system requirements to software architecture

• Sub-characteristic Accuracy: to provide the right or agreed results or effects
with the needed degree of precision. It can be measured by an attribute on the
source code. Hence it is delegated to the components in which will be defined
the functions that will compute the values.
At architectural level:

User

refinement

System Comp1 Comp2

refinement

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

140 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

1. Identification of the components with the functions responsible of the
computations (functional components).

2. The attribute is computed by the following metric:
Πi (Accuracy (functional componentsi)).

• Sub-characteristic Interoperability: the ability to interact with on or more
specified systems. Notice that it is used in place of compatibility to avoid
ambiguity with replaceability.
At architectural level:
1. Identification of the connectors communicating with external specified

systems. For example, to require CORBA compatibility implies the
existence of CORBA components.

2. It is refined into an attribute whose value is yes or not, depending on the
presence or not of corresponding middleware components.

• Sub-characteristic Security: the ability to prevent unauthorized access to
programs or data.
At architectural level:
1. It means to have a mechanism or device (software or hardware) to perform

explicitly this task. It may be a component (for example, a service
provided by the middleware) or a functionality integrated into a
component

2. It is refined into an attribute whose value is yes or not, depending on the
presence or not of the mechanism or device

• Sub-characteristic Compliance: to adhere to standards, conventions or
regulations. It is related to the development process.
At architectural level:
1. It is a very general property that cannot be directly applied to architectural

design
2. It is refined into an attribute whose value is yes or not, depending on the

application of the required standard.
3. The compliance to an architectural style can be defined as the satisfaction

to the architectural constraints associated to it.

• Characteristic Reliability

• Sub-characteristic Maturity: the capability of the software product to avoid
failures, as a result of faults in the software. It is refined into an attribute Mean
Time To Failure (MTTF) measured on the source code.
At the architectural level:
1. The attribute is computed by the following metric:

Σi Maturity (Component i) + Σj Maturity (Connector j).
Notice that the Maturity attribute of the COTS components is known or
should be.

• Sub-characteristic Fault tolerance: the ability to maintain a specified level
of performance in case of software fault or of infringement of its specified
interface.

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 141

At architectural level:
1. It means to have a mechanism or software device. It may be a component

or integrated into a component, for example exception handling or
redundancy.

2. It is refined into an attribute whose value is yes or not, depending on the
presence or not of the mechanism or device.

3. It can be refined into an attribute whose value is associated to the
mechanism or device.

• Sub-characteristic Recoverability: It is expressed by: 1. Capability to re-
establish the level of performance. 2. Capability to recover the data. 3. Time
and effort needed for it.
At architectural level:
1. It means the existence of a mechanism or software device, which may be a

component or integrated into a component, to re-establish the level of
performance or to recover the data, for example redundancy.

2. If the mechanism exists, recoverability is refined into the attribute
performance computed by metrics involving time and effort. It must be
computed for each component holding the mechanism.

Remark: availability depends on the above three sub-characteristics of
reliability and it is used in [Marcano et al. 2000]. Even if this property is not
directly specified in ISO 9126-1, it is defined as the capability of the software
product to be in a state to perform a required function in a given period of
time. It must be considered for its importance in commonly used distributed
and real-time application. It is like a fault tolerance attribute, measuring
switching time.

• Characteristic Usability
• Sub-characteristic Understandability: the capability of the software product

to enable the user to understand whether the software is suitable, and how it
can be used for particular tasks and conditions of use.

• Sub-characteristic Learnability: the capability of the software product to
enable the user to learn its application

• Sub-characteristic Operability: the capability of the software product to
enable the user to operate and control it.

These sub-characteristics can be refined into attributes translated to the GUI
components .
At the architectural level, they are independent from the architecture, which is
transparent to the users, so they will not be considered here.

• Characteristic Efficiency
• Sub-characteristic Time behavior (performance): the capability of the

software product to provide appropriate response time, processing time and

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

142 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

throughput rates when performing its function under stated conditions. It is an
attribute that can be measured for each functionality of the system.
At architectural level:
It is measured for each functionality and each user of the functionality by
means of attributes computed by the following metric:
Σ i Performance (Component Functionality i) + Σ j Performance (Connector j)
Affected by the data flow to a functionality. The performance depends on:
- the stimulus/event/functionality;
- the path taken in the architecture in order to answer to a stimulus for a given
functionality ;
- each component traversed, containing the executed functionality.

• Sub-characteristic Resource utilization: amount and type of resources used
and the duration of such use in performing its function. It involves the
attribute complexity that is computed by a metric involving size (space for the
resources used and time spent using the resources).
At the architectural level:
The attributes can be defined and measured for each functionality and they are
a characteristic of the style. Space and time are associated to the components.
The values are associated to each component and/or connector for each
functionality.

• Characteristic Maintainability
• Sub-characteristic Analyzability: the capability of the software product to be

diagnosed for deficiencies or causes of failures in the software, or for the parts
to be modified, to be identified.

• Sub-characteristic Changeability: the capability of the software product to
enable a specified modification to be implemented.

• Sub-characteristic Stability: the capability of the software product to avoid
unexpected effects from modifications of the software (the risk of unexpected
effect of modifications)

• Sub-characteristic Testability: the capability of the software product to be
validated.
They are refined into the attribute complexity of the source code, computed by
metrics involving, in particular, size.
At the architectural level:

• Sub-characteristic Coupling is a global property of the architecture relative to
the exchanges between components; the attributes can be measured for each
component using fan-in, fan-out metrics. It is a system attribute.

• Sub-characteristic Modularity expresses the topology of the architecture, as
the number of components depending on one component. It is an attribute
computed for each component by metrics involving size.

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 143

• Characteristic Portability

• Sub-characteristic Adaptability: the capability of the software product to be
adapted to different specified environments using only its own functionality.

At architectural level:
1. The presence of mechanisms for adaptation, for example genericity or

parameterization
2. This sub-characteristic is refined into an attribute whose value is yes or not,

depending on the presence or not of the mechanism
• Sub-characteristic Installability: the capability of the software product to be

installed in a specified environment.
At architectural level:
1. The presence of an install mechanism
2. This sub-characteristic is refined into an attribute whose value is yes or not,

depending on the presence or not of the mechanism
• Sub-characteristic Co-existence: the capability of the software product to

co-exist with other independent software in a common environment, sharing
common resources
At architectural level:
1. The presence of a mechanism facilitating the co-existence
2. This sub-characteristic is refined into an attribute whose value is yes or
not, depending on the presence or not of the mechanism

• Sub-characteristic Replaceability: the capability of the software product to
be used in place of another specified software product for the same purpose in
the same environment.
It involves adaptability and installability.
At architectural level:
The attribute is expressed by a list (name) of replaceable components, for each
component

3 APPLICATION OF THE CUSTOMIZED QUALITY MODEL TO A
CASE STUDY

The quality model defined in the previous section will be used to compare two
architectures based on two different architectural patterns: publisher/subscriber with push
model [Buschman 1996] and repository [Shaw and Garlan 1996]. Notice that
publisher/subscriber is also known as subject/observer [Gamma et al. 1995]. The
architectures are used to implement a market stock exchange monitoring system. In what
follows, the system requirements are briefly presented. More details on this application
are given in [Ordaz Jr. 2000].

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

144 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

Requirements for a Stock Exchange Monitoring System

The primary goal of a real-time monitoring system is to capture, to analyze and to
broadcast events (data) in real-time. It is a soft real-time system, where some of the
events may miss their deadline, without affecting the whole system’s behavior. The
system is a real-time data provider, for monitoring in real-time small and medium size
stock exchanges for brokers and independent investors. An antenna (feed server), external
to the system, provides the data (feed) to the data server. A feed contains the relevant
information of a stock exchange transaction. Feeds are supposed to be reliable and
available. The clients (brokers), distributed in different geographical locations, subscribe
with the data server. When a change on the feed to which a client has subscribed occurs,
the feed is broadcasted to him by the data server, according to a strict time delay. The
time delay will depend on the network structure used to send the information to the
clients. The type of service offered depends on this delay. Requirements for the system
are high security, availability, platforms heterogeneity, distribution of clients, reliable
information with strict deadlines. It is known that these characteristics are not
independent, and there must be a tradeoff to determine priorities. Internet facilities
through commercial browsers are required for the system.

Architectures proposed for the monitoring system

The proposed architectures based on two different architectural patterns,
publisher/subscriber (push model) and repository are shown in Figures 4 and 5
respectively.

Fig. 4: Architecture based on the publisher/subscriber pattern

The publisher/subscriber memorizes the client subscriptions and the actual values in the
Client Subscription DB and the DB respectively.

 Browsers Clients

Client subscriptions DB

Subscriber

Publisher Feed
Receiver

 DB

Store
Send Changed
values

Subscription

Send changed values Antenna

Send
Feeds

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 145

Fig. 5: Architecture based on the repository pattern

The repository memorizes the actual values in the DB and the client requests in the Client
invoices DB, for invoicing purposes.

Comparison of the architectures

The results presented in Table 2 show that publisher/subscriber is better than repository
with respect to security and efficiency in time behavior. However, repository is winner
for maturity (there are fewer components in the architecture) and for efficiency in time
(the Browser displays only on request). Hence only the resource utilization in time would
favor repository. The analysis now consists in prioritizing the characteristics, i.e. decide
which are the most important for the software system. This step corresponds to customize
the ISO 9126-1 quality model to the problem domain [Losavio et al. 2002]. According to
the requirements for the stock exchanges monitoring system, security and efficiency in
time behavior are more important than reliability (maturity) and efficiency in resource
utilization (space and time), according to the initial nonfunctional requirements on the
problem domain. Hence the architecture based on the publisher/subscriber architectural
pattern is selected as the initial candidate architecture. Notice that external characteristics,
such as the volume of client requests, mostly related with the user’s behavior affecting
components and/or connectors, cannot be considered in our evaluation and taken into
account for comparison. Once this broad and quick selection has been performed on the
basis of the analysis of the table, the final decision could be further corroborated
executing and evaluating scenarios related only with the quality characteristics relevant to
the application. In this case, the profile approach suggested by [Bosch 2000] or the
scenarios approach proposed by [Kazman et al. 2000] could be applied.

 Browsers Clients

Client invoices DB

Data Server Feed
Receiver

 DB

Store

Response to client

Request from client/acknowledgment

Request

Response

Send
feeds

Antenna

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

146 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

Characteristics Sub-

characteristics
Publisher/Subscriber Repository Comments and

results
Suitability yes yes
Accuracy = = No special

computation
required

Interoperability yes yes Communication
through browsers

Functionality

Security Mechanism for a
subscription

Mechanism for each
client request

Publisher/sub
scriber is better

Maturity Maturity (Reception) +
Maturity (DB) +
Maturity (Publisher) +
Maturity (Subscriber) +
Maturity (subscriptionDB)

Maturity (Reception) +
Maturity (DB) +
Maturity (Data Server)
+
Maturity (Client
invoices DB)

Repository is
better

Fault Tolerance
(availability)

= = Depends on
additional
mechanisms

Reliability

Recoverability = = Depends on
additional
mechanisms

Usability = = Depends on the
browser’s GUI

Time behavior
(time spent from the
data reception to the
data delivery)

time (Reception)+
time (store in DB)+
time (send changes)+
time (Publisher)+
time (send changed
values)

time (Client Request)+
time (Client invoices
DB)+ time (Data
Server)+ time
(request)+time(DB)+
time (reponse Data
Server)+time (Response
to Client)

Publisher/sub
scriber is better

Resource utilization
(time)

Browser displays always Browser displays on
request

Repository is
better

Efficiency

Resource utilization
(space)

Size (subscription DB)

Size (invoices DB) Depends on
external issues,
such as the volume
of client requests

Maintainability = = Depends on the
code in modules

Portability = = Depends on
additional
mechanisms

Table 2. Comparison of publisher/subscriber and repository with respect to quality attributes

Summary of the technique

Summarizing our approach, the activities performed to accomplish the process for
evaluating and comparing architectures, on the basis of the quality characteristics
specification, are listed in Table 3, as follows:

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 147

Activities:
1. Analyze the main functional requirements and nonfunctional requirements for the system, to establish

the quality requirements and quality goals
2. Use the customized ISO 9126-1 quality model defined in Section 2.2 for the architecture as a

framework. Some of the metrics could be further specified, according to specific components and/or
connectors

3. Present the initial candidate architectures
4. Construct the comparison table for the candidate architectures
5. Prioritize the quality characteristics taking into account the system’s quality requirements and quality

goals. The customization of ISO 9126-1 to the problem domain can be used to organize hierarchically
the characteristics.

6. Analyze the results summarized in the table, according to the given priorities obtained in step 5
7. Select the initial architecture, among the evaluated candidates, on the basis of the previous analysis
8. If a finer analysis is required, scenarios or profile-based approaches could be used, considering only

the quality characteristics relevant to the problem domain, obtained in step 5.

Table 3. Method for comparing architectures, based on the ISO-9126-1 quality attributes specification

4 CONCLUSION

An approach for specifying the quality requirements of a software system has been
presented as a repeatable technique. The ISO/IEC 9126-1 standard has been used to
define a quality model for software architecture. This framework has been applied to a
simple case study for comparing two architectures and selecting the best suited to the
problem, on the basis of the initial nonfunctional requirements. Finally, the activities
involved in the application of the technique have been summarized. The specification of
the quality attributes using a quality model based on international standards offers a
global and broad view of the quality characteristics and attributes for software
architecture, form the user and architect points of view. We consider that our approach is
similar to the ATAM analysis technique, differing, however from this in several
important aspects: the definition of the quality characteristics conforming to an industrial
standard and a more general definition of the measures for the attributes that could be
further refined, according to the particular application. Moreover, the comparison table
produced can be used to derive the scenarios, in the sense of ATAM. However, both
approaches could be easily integrated, with multiple benefits. Our technique can be easily
integrated in generic development process frameworks, such as the Rational Unified
Process [Krutchen 2000] or in specific architectural design methods, such as the J. Bosch
method [Bosch 2000], or the Architecture Based Design (ABD) Method [Bachmann et al.
1996].

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

148 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

We feel that this work is a step forward towards quality requirements specification,
systematization and improvement of the architectural design process, with built-in quality
issues. Other undergoing research issues are the integration of this technique to the
Unified Process and the formal specification of architectural styles and patterns [Marcano
et al. 2000], [Meyer and Souquières 2000], taking account of quality attributes [Losavio
and Levy 2001].

REFERENCES

[Bachm00] Bachmann F., Bass L., Chastek G., Donohoe P., Peruzzi F.: The
Architectural Based Design Method. CMU/SEI-2000-TR-001, ESC-TR-
2000-001, 2000

[Bosch00] Bosch J.: “Design and Use of Software Architecture”, ACM Press,
Harlow, England, 2000.

[Busch96] Buschman F., Meunier R., Rohnert H., Sommerlad P., Stal, M.: Pattern-
Oriented Software Architecture. A System of Patterns, John Wiley & Sons
Inc., New York, 1996

[Gamma95] Gamma E., Helm R., Johnson R., Vlissides J. Design Patterns – Element
of Reusable Object-Oriented Software. Addison Wesley, New York, 1995.

[ISO/IEC98] ISO/IEC: FCD 9126-1.2: Information Technology - Software Product
Quality. Part 1: Quality Model, 1998.

[Klein99] Klein M., Kazman R.: Attribute-Based Architectural Styles, CMU/SEI-99-
TR-022, ESC-TR-99-022, 1999.

[Krutch00] Krutchen P.: The Rational Unified Process. An Introduction, 2nd. Edition,
Addison Wesley, Reading, Massachussets, 2000.

[Kazm00] Kazman R., Klein M., Clements P.: ATAM: Method for Architecture
Evaluation. CMU/SEI-2000-TR-004, ESC-TR-2000-004, 2000.

[McCall77] McCall J.A., Richards P.K., Walters G.F.: Factors in Software Quality.
Vol. 1, 2, 3, AD/A-049-015/055. Springfield, 1977.

[Losav01] Losavio F., Lévy N. : “Specification of Attribute-based Architectural
Styles”. Proceedings CD-Rom, http://www.umag.cl/ec of XI Encuentro
Chileno de Computación, Jornadas Chilenas de Computación 2001, Punta
Arenas, Chile, 2001

http://www.umag.cl/ec

VOL. 1, NO. 2 JOURNAL OF OBJECT TECHNOLOGY 149

[Losavi02] Losavio F., Chirinos L., Pérez M.: Attribute-based techniques to evaluate
architectural styles. Case Study for interactive systems. Acta Cientísica
Venezolana, Vol. 53, 2, 2002.

[Marca00] Marcano R., Levy N., Losavio F. : Spécification et Spécialisation de
Patterns en UML et B. Proceedings of LMO’2000 – Langages et Modèles
à Objets, Ed. Hermès, Montréal (Ca), 245-260, 2000.

[Meyer99] Meyer E. and Souquières J.: A systematic approach to transform OMT
diagrams to a B specification. Proceedings of FM’99 : World Congress on
Formal Methods in the Development of Computing Systems. Toulouse
(F), September 1999.

[Ordaz00] Ordaz Jr. O. : Aplicaciones Tempo Real en Internet: Arquitecturas,
Lenguajes y un Caso de Estudio, License Thesis, Universidad Central de
Venezuela, Caracas, 2000.

[Shaw96] Shaw M., Garlan D.: Software Architecture – Perspective of an Emerging
Discipline, Prentice Hall, Upper Saddle River, New Jersey, 1996.

About the authors

Francisca Losavio received doctoral degrees in France, University of
Paris-Sud, Orsay. She is head of the research Laboratory of Software
Technology (LaTecS) of the Software Engineering and Systems (ISYS)
research center, Faculty of Science, Central University of Venezuela,
Caracas, where she works for the Software Engineering post graduated
studies. Her main research topics are software architecture and software

quality. E-mail: flosav@cantv.net

Ledis Chirinos obtained her MSc. degree in Computer Science from
the Central University of Venezuela in 1999, where she continued with
a PhD program. She works at the LaTecS laboratory, of the ISYS
research center, Faculty of Scence, Central University of Venezuela.
Her main interests are software quality, software measurement and
software architecture. E-mail: lchirinos@cantv.net

mailto:flosav@cantv.net
mailto:lchirinos@cantv.net

QUALITY CHARACTERISTICS FOR SOFTWARE ARCHITECTURE

150 JOURNAL OF OBJECT TECHNOLOGY VOL. 1, NO. 2

Nicole Lévy is a professor at the University of Versailles, Saint-
Quentin en Yvelines, France. She holds a doctoral degree from the
Nancy University. She is Director of the ISTY and a research staff of
the PRISM Laboratory, Versailles, where she coordinates the SFAL
(Spécification Formelle et Architecture Logicielle) research group. Her
main research interests are formal and semiformal development

methods, formalization of styles and architectural patterns. E-mail:
Nicole.Levy@prism.uvsq.fr

Amar Ramdane-Cherif received his Ph.D. degree from Pierre and Marie
university of Paris in 1998 in neural networks and IA optimization for
robotic applications. Since 2000, he has been associate Professor in the
laboratory PRISM, University of Versailles, Saint-Quentin en Yvelines,
France. His main current research interests include: Software architecture
and formal specification, dynamic architecture, architectural quality

attributes, architectural styles and design patterns, pervasive computing and
communications, dependable systems architecture, E-mail: amar.ramdane-
cherif@prism.uvsq.fr

Nicole.Levy@prism.uvsq.fr
mailto:amar.ramdane-cherif@prism.uvsq.fr
mailto:amar.ramdane-cherif@prism.uvsq.fr

