
JOURNAL OF OBJECT TECHNOLOGY
Online at www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2002

Vol. 2, No. 1, January-February 2003

Cite this article as follows: Canals et al.: How You Could Use NEPTUNE in the Modelling
Process, in Journal of Object Technology, vol. 2, no. 1, January-February 2003, pages 69-83.
http://www.jot.fm/issues/issue_2003_01/article1

How You Could Use NEPTUNE in the
Modelling Process

Agusti Canals, Yannick Cassaing, Antoine Jammes, Laurent Pomiès,
Etienne Roblet, CS Communication & Systèmes, France

Abstract

The European Community plays an active role in giving concrete expression to the new
developments taking place in modelling languages and in UML (Unified Modelling
Language) [1] in particular. These developments often make use of norms and
specifications that are mainly carried out by the OMG (Object Management Group).
The main objective of the European NEPTUNE project led by CS (Nice Environment
with a Process and Tools Using Norms and Example) is to develop both a method and
tools (in addition to the existing software development tools) that support the use of the
UML notation. This method has emerged from considerable experience gained in the
industrial environment. It will apply to a variety of application fields, including software
engineering, business process, and knowledge management [4].
The newly developed tools will enable UML models to be statically checked for their
coherence and consistency. They will also enable professional documentation resulting
from the transformation of models [5].
The method and tools developed make the application of the UML standard easier, and
they promote its use in a large number of business fields so that the UML standard
might be further improved with the aim to participate effectively in the work of the OMG.
This paper will present the NEPTUNE method and tools. Then, lessons learned from
this project will be reported, outlining the benefits and drawbacks of this technology as
experienced by the development team. A conclusion will offer suggestions for future
improvements and provide an overview of the next actions related to NEPTUNE
deployment.

1 INTRODUCTION

NEPTUNE project (http://neptune.irit.fr) is part of the IST program. It is coached by CS,
in collaboration with the Universitat polytechnica de Catalunya (UPC, Barcelona, Spain),
the Institut de Recherche Informatique de Toulouse (IRIT, Toulouse, France), University
Babes-Bolyai (UBB, Cluj, Romania), GTD company (GTD, Barcelona, Spain) and
Novasys company (NOVASYS, Montréal , Canada).

http://www.jot.fm
http://neptune.irit.fr
http://www.jot.fm/issue_2003_01/article1

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

The whole NEPTUNE software is a java development. It aims to be Windows and
UNIX compatible.
Below is a synthetic view of NEPTUNE architecture and the different activities handled
by each of the consortium partners:

Fig. 1: Neptune architecture

In the next paragraphs, we will first give a synthesis of NEPTUNE method, already
detailed and presented in its first version called “Use of UML/CS-SI development
process" [2]. This method can be seen as an instance of the analysis and a design part of
the unified process [3].

Then, after a presentation of the technologies involved in NEPTUNE, we will give
the basics of the checker concepts and then focus on the document generator which will
be presented in detail.

2 NEPTUNE METHOD PRESENTATION

Within the modelling process, the use of NEPTUNE technology starts with a conception
based on the UML/NEPTUNE method. The guidelines provided by this method have to
be followed to guarantee an efficient use of the various NEPTUNE tools.

This process is divided into phases, each phase being composed of activities. Below
the various phases are presented in sequential order for easy understanding, although the
process is naturally iterative and incremental.

XMI Parser Parser

HTML,PDF,XML

Our NEPTUNE API conform
with the UML 1.4

UPC/LSI team

Checker
UBB

Doc. Generator
CS-SI&IRIT

GUI GTD

N
O
V
A
S
Y
S

U
P
C

M
E
T
H
O
DD

All
Development

Experimentation

Validation

UPC/LSI team

NEPTUNE METHOD PRESENTATION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 71

REQUIREMENTS
ANALYSIS

OBJECT
ANALYSIS

ARCHITECTURAL
DESIGN

OBJECT
DESIGN

Definition of actorsA

Software component
identification

 Physical architecture
description

Definition of contextB

System descriptionC

Object analysisD Identification of processes and
components

E Software component description
F

Identification of design packagesG

Design pattern applicationH

Class design
IMMI class designJ

DB class designK

Classes allocation

 PHYSICAL DESIGN

Fig. 2: Neptune method

Requirements Analysis

The aim of this phase is to turn the user needs into UML formalism.
It is composed of three steps or activities:

Activity A: Consists of defining the actors and external entities. Two use case
diagrams will come out of this step: One for the actors and one for the external entites.

Activity B: Aims at defining the passive context or, in other words, the collaboration
between the external entities and the modelled system. This step is based upon the
production of two interaction diagrams representing both dynamic and static data flows.

Activity C: Consists of defining the use cases, which means:
• Build a use case general view
• Describe the use cases (collaboration between the actors and the modelled system)

using interaction, activities, and class diagrams.
Finally, it is recommended to create a data flow general view diagram that shows all the
interactions between the system and all the actors and external entities.

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

Object Analysis

The object analysis aims at producing a first logical organisation (packages) of the classes
found during the requirements analysis.
The object analysis can be seen as one main activity:

Activity D:
• For each Use Case, produce a class diagram in which all classes involved in the

Use Case appear.
• Organise the classes identified during the requirements analysis into a set of

packages. For each package, create a class diagram.

Architectural Design

The main objective of this phase is to produce a first architectural view of the modelled
system. In this phase, the analysis packages are turned into logical components.

Note: The first logical organisation could be modified here if the logical
organisation does not respect the design constraints.

Four activities are identified:

Activity E: A package diagram is first defined in order to show all dependencies
between all atomic packages. Then the packages’ interface classes can be identified and
presented in a package collaboration diagram.

Activity F: For each package, the classes can be completed by adding methods and/or
attributes. At this point it can be useful to add activity or state diagrams describing any
collaboration between the classes.

Activities G and H: If needed, modification of the package diagrams by adding
design components or applying design patterns.

Object Design

In this phase, the objective is to produce the detailed architectural organisation (complete
classes, attributes, methods, diagrams etc; find new classes, new packages, etc.) which
will finalise the package description started in activity F.

This phase is composed of the following activities:

Activity I: Upgrade the contents of each existing diagram.

Activity J: Create the man-machine interface packages and description diagrams.

Activity K: Create the database interface packages and description diagrams.

NEPTUNE METHOD PRESENTATION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 73

Physical Design

The main goal of this phase is to produce the physical architecture and to identify the
logical associations between the hardware and the software components. The steps are
sequential:

• Creation of the hardware components in a deployment diagram.
• Processes identification and attachment to the nodes of the deployment diagram.

Identification of the collaboration between the processes.
• Components identification (from our design or from existing frame works) and

attachment to the processes previously defined . Allocation of the classes to the
components (one or more classes by component).

Links between the method and NEPTUNE tools usage

To support the approach described above, the method is completed with a specific
instrumentation for Rational Rose software. This instrumentation allows the user to create
a first browser architecture and to complete it during the next steps of the modelling
process.

The method also embeds a set of methodological rules described all along the
process. These methodological rules will later be checked by the checker. Moreover,
NEPTUNE users can also define their own methodological rules and design them with
the rule designer feature of NEPTUNE. If they do so, these personal rules will be taken
into account by the checker.

The recommendations given in the process regarding the use of specific UML
diagrams and the use of XML format for the associated documentation have been chosen
so that they can be of great help in standard documentation generation. For example, in
software engineering, the document generator makes the generation of a validation plan
easy if the guidelines have been followed during the modelling process.

To summarise: Following the modelling approach, with the methodological rules and
the recommendations aforementioned, will make the use of both checker and
documentation generator very efficient.

3 NEPTUNE TOOLS PRESENTATION

Technologies involved

The different technologies on which the NEPTUNE tools rely:

OCL (Object Constraint Language) is a part of the UML specification whose purpose is
to express properties over a model that cannot be specified graphically. The language is

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

mainly based on first order logic and model navigation expressions. OCL can be used in
several contexts [7], for example within a class to express class invariants or within an
operation to express pre and post conditions. For the NEPTUNE checker rules design, we
have enriched the standard OCL with several features like the capability to compute
transitive closures of navigation expressions or to specify temporal properties of dynamic
diagrams.

XML (eXtensible Markup Language) is a standard, simple, self-describing way of
encoding both text and data, designed for easy exchange between various hardwares and
exploitation systems. XML documents describe the information they contain. XML is a
markup language, using tags, and it is extensible. This means that the actual tagsets are
not pre-defined, but that they are generally defined for a specific application or by an
associated stylesheet called DTD (Document Type Definition). This format of
documentation is recommended for documenting the UML model elements. It is also
used during the documentation generation process.

XMI (XML Meta Interchange) specifies an information interchange format that is
intended to give developers working with UML the ability to exchange any model in a
standardized way, thus bringing consistency and compatibility to applications created in
collaborative environments. XMI definition includes a specific XML-DTD. The choice of
XMI as the input format of NEPTUNE (either Checker or document generator) makes the
tool set compatible with any UML IDE featuring XMI export.

XSL (eXstensible Stylesheet Language) is a general-purpose language to define the
presentation and formatting of XML data. The need for XSL arises on account of the fact
that XML merely describes data; it includes no formatting instructions or display
specifications. One ore more stylesheets (transformations) can be written using XSL in
order to make practical use of the information encoded within an XML document. By
separating presentation semantics from data, it becomes possible to display multiple
views of the same data and to export the same information to a variety of different
formats. NEPTUNE document generator implements this technology.

Checker

In this chapter we present a quick overview of the NEPTUNE checker so that the reader
has a general idea of the NEPTUNE package from every angle.

The main objective of this tool is to CHECK the UML models [6] to improve the
quality of the software, and find some problems, errors, etc. before coding. These checks
are static (e.g. each package in the logical view of the design must have an interface
class). The language used for writing the rules is OCL.

The Checker inputs are: The UML model (to be checked) in XMI format, the current
UML META model (at present 1.4) and a set of OCL rules. These inputs are loaded
through the NEPTUNE MMI before checking.

NEPTUNE TOOLS PRESENTATION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 75

The Checker output is a formal report with warnings and errors.
There are three kinds of rules, the WFR (Wellformedness rules), the NEPTUNE

methodological rules (described by the process) and other standard or methodological
rules. With this tool the users can use a set of pre-defined rules provided with the
NEPTUNE package and they can also create their own rules to check their specific
process.

Note: it is possible to create specific rules in OCL language through the NEPTUNE
MMI.

Fig. 3: OCL rule creation MMI

To get more information on the checker, please read the chapter "The NEPTUNE
Technology to Verify and to Document Software Components" that will be published
before the end of this year in the book “Business Component-Based Software
Engineering” (Kluwer International Series in Engineering and Computer Science, 705).

Document generator

The main purpose of the document generator is to produce some professional
documentation that results from the exploitation of UML model sub parts. This
documentation is an end-user-oriented documentation, which takes into account the
professional expertise of the reader. It is the result of transformations applied on UML
elements available in the actual model. The transformations turn the information
expressed with the UML formalism into textual easy-to-read information. It is important
to say that there is no need to be UML skilled to understand the produced documentation.
That makes the tool not specifically dedicated to software engineering, but also to other
business fields like knowledge management or business process.

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

1. Inputs

XMI UML model: The XMI format is the mandatory format of the UML model to be
documented. Once the model is loaded, its content is displayed in the model browser,
making it available for the documentation designer.

UML metamodel: The UML metamodel is systematically loaded during the NEPTUNE
sessions and displayed in the metamodel browser. Thus, for systematic treatments (over
all actors for example), the documentation designer will not have to select all actors one
by one in the model, but only the actor concept in the metamodel browser.

XML External documentation: The NEPTUNE document generator gives the
opportunity to make use of external documentation. While designing the final
documentation, the user can make references to this external documentation, whose
contents will then appear inside the produced documentation, bringing in additional
information.

2. Key words

XSL elementary transformation: These transformations, written in XSL, are able to
perform the extraction of information from the model and to define its presentation. They
can be seen as a way to generate different views of information. The documentation
designers will pick some of the available transformations while designing the targeted
documentation.

Documentary element: A documentary element can be defined at the metamodel level
(meta documentary element) or at the model level (documentary element). At the
metamodel level it is composed of an UML metamodel element (mandatory), an XSL
elementary transformation to apply on this element (mandatory). It can also embed an
icon to represent the UML elements involved, and links to external documentation or to
other metamodel elements. At the model level each transformation is defined for one or
more specific elements of the model, where each information will be considered as local.
Each documentary element will constitute a raw brick of a higher level concept in
NEPTUNE, namely the shape.

Shape: The shape is a frame containing the structure of the documentation the user will
produce, together with some documentary elements. The shape can be defined at
metamodel level – the generic shape – in order to provide generic models of documents,
and at model level – the user shape – in order to be fully adapted for the user’s needs. A
user shape may be defined from a generic shape and extended by the user. The generic
shapes will lead to the generation of standard documents, often dedicated to a particular
business.

NEPTUNE TOOLS PRESENTATION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 77

UDD: The User Document Definition (UDD) is an XML-format file, generated by the
NEPTUNE Document Generator core according to the documentation needs specified in
the shape. It will then be processed though XSL transformation (part of the software) in
order to produce an XSL stylesheet, called XMI Processing Stylesheet.

XMI Processing Stylesheet: As mentionned above, this XSL stylesheet is the result of
UDD processing. It will be applied to the XMI file to generate the final XML
documentation.

Final document: Ultimately, the aforementioned XML documentation can be processed
to generate a file in a particular format (pdf, html,etc.) called final document.

3. Documenting an application

Let’s suppose that the documentation designer has already loaded its model that is now
displayed in the model browser.

The first thing to do is to define the aspect of the documentation expected as output
of the generator. This can be done through the selection of a standard shape, or through
the creation of a new one called user shape. The shape is built up in the design zone and
can be stored at any time. A shape is composed of both structure and content information.
Regarding the rendering of the structure (titles, sub-titles), a style zone offers a selection
of fonts, polices, and sizes, etc.

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

78 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

Fig4 : standard MMI view 1

Concerning the content, each paragraph of the final document is represented in the shape
by a leaf, or documentary element. The design of each documentary element starts with
the selection in the model browser of one or more model elements. For systematic
treatment (over all actors for example), the documentation designer will use the UML
browser in which all UML notions appear.
These elements have now to be associated to an XSL elementary transformation. A set of
transformations is available in the tool. As it is not easy to imagine what the rendering of
a transformation can be, we have also added an example view of the output produced for
each of the standard transformations.
Fig. 5: standard MMI view 2

Fig. 4: standard MMI view 1

Concerning the content, each paragraph of the final document is represented in the shape
by a leaf, or documentary element. The design of each documentary element starts with
the selection of one or more model elements in the model browser. For systematic
treatment (over all actors for example), the documentation designer will use the UML
browser in which all UML notions appear.

These elements have now to be associated to an XSL elementary transformation. A
set of transformations is available in the tool. As it is not easy to imagine what the
rendering of a transformation can be, we have also added an example view of the output
produced for each of the standard transformations.

MMI-Design zone
SHAPE

Standard/user

MMI-Model browser
XMI model

MMI-Metamodel browser MMI-style zone

NEPTUNE TOOLS PRESENTATION

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 79

Fig. 5: standard MMI view 2

Moreover, if this set of transformations does not exactly fit the users’ needs, it is also
possible to write their own transformations.

Fig. 6: XSL transformation creation MMI

An additional feature available while designing the shape is the ability to deal with
external documentation. In other words, the NEPTUNE users can add several references
to external documentation to a shape, thus enriching the information extracted from the

TRANSFO
Standard/user

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

80 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

model. Of course, the only transformations handling these external pieces of
documentation are the ones that have been designed to do so.

Once the shape is selected or customised, the next step consists of feeding the
generator with both the shape and the UML model to be documented. The first output of
the generator is an XML file in which all information specified in the shape has been
interpreted and organised.

The NEPTUNE document generator has a last feature: it is the format transformer.
Depending on the choice of the documentation designer, this feature is able to turn the
XML document previously produced into another format. It can be either RTF, PDF, or
HTML.

Fig. 7: standard MMI view 3

XML Ext
doc

GENERATOR
CORE

UDD

XMI processing
stylesheet

XML
Final document

PDF, HTML
Format

transformer

LESSONS AND BENEFITS

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 81

4 LESSONS AND BENEFITS

Lessons

Today, even if NEPTUNE tools are still in a validation phase, we can already say that the
technologies involved in the development seem to be pretty well adapted to the expected
objectives.

On the other hand, in spite of the design tools provided by NEPTUNE for OCL rules
and XSL transformations creation, the efficient manipulation of the two languages takes a
while, and is thus not easy for beginners.

Benefits

The most striking benefits of the NEPTUNE tools are their ability to save time:
• During the integration, the validation and the maintenance phases, most of the

errors that might appear in these final development steps have already been
identified earlier in the modelling process thanks to the checker.

• The document generator is obviously efficient and saves time during the
documentation phase of a project.

Another benefit of the document generator is its ability to make the communication easier
between customers and providers: even during the modelling process, it is always
possible to generate end-user documentation, providing an easy way to review the work
in progress.

5 CONCLUSION

Today, a trial version of the software is available for download on the web site.
Among the activities with whom the team is now busy, there is the writing of a book

in which all the NEPTUNE concepts will be developped. The book is scheduled to be
published by mid 2003. We also organise a workshop called “UML: model checking”
(see http://neptune.irit.fr for details). We plan this workshop to be the first occurrence of
a classic UML year event.

The NEPTUNE project will end on the 31st of January 2003 and has already
produced significant results (mature method and operational tools). We strongly believe
that it is important to keep on working on the same path and hope to be one of the key
players of the sixth european Frame Programme for Research and Development (sixth
PCRD).

http://neptune.irit.fr

HOW YOU COULD USE NEPTUNE IN THE MODELLING PROCESS

82 JOURNAL OF OBJECT TECHNOLOGY VOL. 2, NO. 1

REFERENCES

[1] Grady Booch, James Rumbaugh and Ivar Jacobson: The Unified Modelling
Language User Guide; edited by Addison-Wesley, 1998.

[2] Agusti Canals: Use of "UML/CS-SI" development process"; ICSSEA'99; Journal
of Object Oriented Programming, May 2001.

[3] Grady Booch, James Rumbaugh and Ivar Jacobson: The Unified Software
Development Process; edited by Addison-Wesley, 1998.

[4] Agusti Canals, Séverine Carles and Thierry Lacomme: Full ADA software projects
integrating UML and HOOD; DASIA’2000.

[5] Pierre Bazex, Jean-Paul Bodeveix, Louis Feraud, Thierry Millan, Christian
Percebois, (IRIT): Data Design and Transformation; SCI 2000.

[6] Christophe Lecamus: Vérification de la coherence de modelisations UML; CNAM –
mémoire de diplôme d’ingénieur 2001.

[7] Dan Chiorean: Using OCL Beyond Specification; Fourth International Conference
on the UML "Modeling Languages, Concepts and Tools", Toronto, Canada,
October 2001.

About the authors
Agusti Canals (agusti.canals@c-s.fr) is a software engineer (Université Paul
SABATIER, Toulouse) and has been working at CS since 1981. Now project manager
and senior software engineering consultant, he has already presented papers on HOOD,
Ada, UML and object business patterns. He also currently teaches software engineering
in different training structures, like Ecole Centrale Paris or Université Paul Sabatier
(Toulouse).

Yannick Cassaing (yannick.cassaing@c-s.fr) is a software engineer (DEA in Object
Oriented Databases). He graduated from the Université Paul SABATIER, Toulouse in
1990. He has now 12 years of experience in software development of projects using
various Object Oriented techniques. He has been working at CS since 1997.

Antoine Jammes (antoine.jammes@c-s.fr) is a software engineer (Master). He graduated
from the Université de Valenciennes in 1999 (UVHC). He also studied ecosystems and

mailto:agusti.canals@c-s.fr
mailto:yannick.cassaing@c-s.fr
mailto:antoine.jammes@c-s.fr

ABOUT THE AUTHORS

VOL. 2, NO. 1 JOURNAL OF OBJECT TECHNOLOGY 83

population biology (maitrise) at Universite Paul Sabatier (UPS). He joined CS in March
2001.

Laurent Pomies (laurent.pomies@c-s.fr) is a software engineer. He graduated from the
Ecole Nationale Supérieure de Physique de Marseille (1997). He spent three years in
automotive industry (VDO CC, Siemens automotive), as an embedded software
developer and architect before joining CS in august 2001.

Etienne Roblet (etienne.roblet@c-s.fr) is a software engineer graduated from the
"Institut d'Informatique d'Entreprise" (Evry) in 1999. He also obtained a DEA (Diplôme
d'études approfondies) at the Paul Sabatier University, Toulouse, in 2000. His skills
include several programming languages (Java, C, Delphi), distributed objects techniques
(CORBA) and object modelling languages (UML). He joined CS in August 2000.

mailto:laurent.pomies@c-s.fr
mailto:etienne.roblet@c-s.fr

