
Journal of Machine Learning Research 2 (2001) 139-154 Submitted 3/01; Published 12/01

One-Class SVMs for Document Classification

Larry M. Manevitz manevitz@cs.haifa.ac.il

Malik Yousef yousef@cs.haifa.ac.il

Department of Computer Science
University of Haifa
Haifa 31905 Israel

Editors: Nello Cristianini, John Shawe-Taylor and Bob Williamson

Abstract

We implemented versions of the SVM appropriate for one-class classification in the
context of information retrieval. The experiments were conducted on the standard Reuters
data set.

For the SVM implementation we used both a version of Schölkopf et al. and a somewhat
different version of one-class SVM based on identifying “outlier” data as representative of
the second-class. We report on experiments with different kernels for both of these imple-
mentations and with different representations of the data, including binary vectors, tf-idf
representation and a modification called “Hadamard” representation. Then we compared
it with one-class versions of the algorithms prototype (Rocchio), nearest neighbor, naive
Bayes, and finally a natural one-class neural network classification method based on “bot-
tleneck” compression generated filters.

The SVM approach as represented by Schölkopf was superior to all the methods except
the neural network one, where it was, although occasionally worse, essentially comparable.
However, the SVM methods turned out to be quite sensitive to the choice of representation
and kernel in ways which are not well understood; therefore, for the time being leaving the
neural network approach as the most robust.
Keywords: Support Vector Machine, SVM, Neural Network, Compression Neural Net-
work, Text Retrieval, Positive Information

1. Introduction

Recently, mechanisms related to the Support Vector Machine (SVM) paradigm have pro-
duced the dramatically best results for information retrieval, e.g. in experiments as mea-
sured over the standard Reuters dataset (Dumais et al., 1998).

However, these studies are based on training using both positive and negative examples,
as the basic SVM paradigm suggests. We have been interested, however, in information
retrieval using only positive examples for training. This is important in many applications
(see Manevitz and Yousef, 2001). Consider, for example, trying to classify sites of “interest”
to a web surfer where the only information available is the history of the user’s activities.
One can envisage identifying typical positive examples by such tracking, but it would be hard
to identify representative negative examples. Of course, the absence of negative information
entails a price, and one should not expect as good results as when they are available (Dumais
et al., 1998, Joachims, 1998).

c©2001 Larry M. Manevitz and Malik Yousef.

Manevitz and Yousef

Since Schölkopf et al. (1999) recently extended the SVM methodology to handle training
using only positive information (what they call “one-class” classification), we decided to
apply their method to documentation classification and compare it with other one-class
methods, including a method we recently developed and studied based on a compression
neural network as a filter.

There are many parameters in these methods, including the representation of the data,
and the decisions involved in modifying basically two-class methods to one class ones. Our
studies are fairly broad although not completely comprehensive; below we describe each of
the choices we made.

In the end, it turns out that the suggestion of Schölkopf is quite excellent, substan-
tially better than all other methods except the neural network based one with which it
is comparable. Moreover, it is somewhat simpler to implement than the neural network
method.

However, it turns out to be surprisingly sensitive to specific choices of representation and
kernel in ways which are not very transparent. For example, the method works best with
binary representation as opposed to tf-idf or “Hadamard” representations which are known
to be superior in other methods. In addition, the proper choice of a kernel is dependent
on the number of features in the binary vector. Since the difference in performance is very
dramatic based on these choices, this means that the method is not robust without a deeper
understanding of these representation issues.

This means that, for the moment, we would prefer the neural network method for reasons
of robustness.

2. Document Representations, Data Set and Measurements

2.1 Document Representations

We used the following different representations in these experiments:

1. binary representation

2. frequency representation

3. tf-idf representation

4. Hadamard representation

These are defined as follows. List all the words (after “stemming”; i.e. removing suffixes
and prefixes to avoid duplicate entries and removing basic “stop” words) in all the training
documents sorted by the document-frequency (i.e. the number of documents it appears in).
Choose the top m such words according to this “dictionary” frequency (called “keywords”).
(See in the sequel for experiments with different values of m.)

For binary representation of a specific document, choose them dimensional binary vector
where the ith entry is 1 if the ith keyword appears in the document and 0 if it does not.

For the frequency representation, choose the m dimensional real valued vector, where
the ith entry is the normalized frequency of appearance of the ith keyword in the specific
document.

140

One-Class SVMs for Document Classification

Table 1: Number of Training/Test Items
Category Name Num Train Num Test
Earn 966 2902
Acquisitions 590 1773
Money-fx 187 563
Grain 151 456
Crude 155 465
Trade 133 401
Interest 123 370
Ship 65 195
Wheat 62 186
Corn 62 184

For the tf-idf representation (“term frequency inverse document frequency”), choose the
m dimensional real valued vector, where the ith entry is given by the formula

tf − idf(keyword) = frequency(keyword) · [log n

N(keyword)
+ 1].

where n is the total number of words in the dictionary and N is a function giving the
total number of documents the keyword appears in.

The Hadamard product representation was discovered experimentally; it consists of the
m dimensional vector where the ith entry is the product of the frequency of the ith keyword
in the document and its frequency over all documents (in the training set). See Manevitz
and Yousef (2001) for further discussion of this representation. In any case, it is clear that
this transformation emphasizes differences between large and small feature entries.

2.2 Data Set and Measurements

To test the above ideas, we applied these filters to the standard Reuters dataset (Lewis,
1997), a preclassified collection of short articles. This is one of the standard test-beds used
to test information retrieval algorithms (Dumais et al., 1998).

For each choice of category, we used 25% of the positive data from the training set to
train; and then tested the filters on the remaining 75% of the data set. Table 1 shows the
ten most frequent categories along with the number of training and test examples in each.

We treated each of the 10 categories as a binary classification task and evaluated the
classifiers for each category separately.

For reporting the results, we used the F1 measure, the recall and the precision values.
For text categorization, the effectiveness measure of recall and precision are defined as

follows:

recall =
Number of items of category identified
Number of category members in test set

precision =
Number of items of category identified

Total items assigned to category

141

Manevitz and Yousef

Van Rijsbergen (1979) defined the F1-measure as a combination of recall (R) and Pre-
cision (P) with an equal weight in the following form: F1(R,P)= 2RP

R+P (This implies that
F1, like R and P, is bounded by 1 and the best results under this measure are the higher
values.)

3. SVM for One Class Classification: Separating Data from Origin

The SVM algorithm as it is usually construed is essentially a two-class algorithm (i.e. one
needs negative as well as positive examples). Below we present two modifications, one due
to Schölkopf and one we proposed, to allow its use for only positive data. Both mechanisms
identify “outliers” amongst the positive examples and use them as negative examples. Below
we refer to the Schölkopf method as “one-class” and to the other as “outlier”.

We investigated both algorithms under a variety of choices of parameters. Our exper-
iments were more extensive for the one-class SVM which seems to be the superior of the
two.

3.1 Schölkopf Methodology

Schölkopf et al. (1999) suggested a method of adapting the SVM methodology to the one-
class classification problem. Essentially, after transforming the feature via a kernel, they
treat the origin as the only member of the second class. Then using “relaxation parameters”
they separate the image of the one class from the origin. Then the standard two-class SVM
techniques are employed.

They framed the problem in the following way:
Suppose that a dataset has a probability distribution P in the feature space. Find a

“simple” subset S of the feature space such that the probability that a test point from P
lies outside S is bounded by some a priori specified value.

Supposing that there is a dataset drawn from an underlying probability distribution P ,
one needs to estimate a “simple” subset S of the input space such that the probability that
a test point from P lies outside of S is bounded by some a prior specified v ∈ (0, 1) . The
solution for this problem is obtained by estimating a function f which is positive on S and
negative on the complement S. In other words, Schölkopf et al., developed an algorithm
which returns a function f that takes the value +1 in a “small” region capturing most of
the data vectors, and -1 elsewhere.

The algorithm can be summarized as mapping the data into a feature space H using
an appropriate kernel function, and then trying to separate the mapped vectors from the
origin with maximum margin (see Figure 1).

f(x) =
{

+1 if x ∈ S

−1 if x ∈ S

In our context, let x1, x2, . . . , xl be training examples belonging to one class X, where
X is a compact subset of RN . Let Φ : X −→ H be a kernel map which transforms the
training examples to another space. Then, to separate the data set from the origin, one
needs to solve the following quadratic programming problem:

142

One-Class SVMs for Document Classification

Figure 1: One-class SVM

One-Class SVM Classifier. The origin is the only original member of the second class.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
���
�
�
�

Origin

-1

+1

min
1
2
‖w‖2 + 1

vl

l∑
i=1

ξi − ρ

subject to
(w · Φ(xi)) ≥ ρ− ξi i = 1, 2, ..., l ξi ≥ 0

If w and ρ solve this problem, then the decision function

f(x) = sign((w · Φ(x))− ρ)

will be positive for most examples xi contained in the training set.
In our research we used the LIBSVM (version 2.0). This is an integrated tool for support

vector classification and regression which can handle one-class SVM using the Sholkopf etc
algorithms. The LIBSVM 2.0 is available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm. We
used the standard parameters of the algorithm.

For this “one-class SVM”, one has to choose the original frequency representation, (e.g.
the number of features), the appropriate kernel, and for each kernel the appropriate param-
eters. We allowed, linear, sigmoid, polynomial and radial basis kernels; each chosen with
the standard parameters. For the original feature representation, we used binary, tf-idf and
Hadamard representations. For the number of features we tried 10, 20, 40, 60 and 100
features for the one-class SVM.

3.2 Outlier Methodology

The basic idea is to work first in the feature space, and assume that not only is the origin
in the second class (as in the previous section), but also that all data points “close enough”
to the origin are to be considered as noise or outliers.

143

Manevitz and Yousef

Figure 2: Outlier SVM

of the second class. The diagram is conceptual only.
Outlier SVM Classifier. The origin and small subspaces are the original members

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

Standard
subspace

+1

-1

Origin

Standard Subspace

�
�
�
�

If a vector has few non-zero entries, then this indicates that this document shares very
few items with the chosen feature subset of the dictionary. So, intuitively, this item will
not serve well as a representative of the class. In this way, it is reasonable to treat such a
vector as an outlier. (Note that while the idea of choosing the outliers as data points close
to the origin is a general one, the intuitive justification of this procedure is specific to this
application.)

Geometrically, using the Hamming distance means that all vectors lying on standard
sub-spaces of small dimension (i.e. axes, faces, etc.) are treated as outliers (see Figure 2).

Hence, we decided to identify these outliers by counting the features of an example with
non-zero value; and if this is less than a threshold, then the feature is labeled as a negative
example.

This raises the problem as to how to choose the appropriate values for the threshold.
We investigated this in two ways: (1) by experimentally trying different global values of
the threshold and (2) by determining individual thresholds for the different categories. One
should note that, in principle, this determination of threshold can be done automatically,
e.g. by comparing results on a test set. After having determined the threshold one then
continues with the standard two-class SVM.

For this “outlier-SVM”, one also has to choose the original frequency representation,
and how far from the origin a point can be (in our case, in Hamming distance) before being
classified as an outlier.

For the outlier-SVM we tried 10 and 20 features for binary representations. Note that
the features are individual category-specific, i.e. different features for each category. (We
did sample runs with other representations (e.g. Hadamard, tf-idf) and larger numbers of
features, but since the results were clearly poor, we did not complete the experiments.)

In addition, we experimented with varying the Hamming distance in order to define the
outlier threshold. Note that this decision can also be chosen automatically (by comparing
results on a test set after training) so we also did some statistics over the data set wherein

144

One-Class SVMs for Document Classification

each category had its own such threshold. Table 6 lists the number of documents designated
as outliers for each choice of Hamming distance.

We allowed, linear, sigmoid, polynomial and radial basis kernels; each chosen with the
“standard” parameters for the two class SVM.

4. Other Methods

In recent research (Manevitz and Yousef, 2001) we proposed a one-class neural network
classification scheme and compared it over the standard Reuters data set with variants
appropriate to the positive example case of several algorithms, using various choices of
parameters and various methods of representing the details. For extensive details, see
Manevitz and Yousef (2001).

Here we will compare the two SVM one-class algorithms with the following ones from
that study:

1. Prototype (Rocchio’s) algorithm

The Prototype algorithm is widely used in information retrieval (Pazzani and Billsus,
1997, Balabanovic and Shoham, 1995, Pazzani et al., 1996, Lang, 1995, and others) .
This algorithm is used frequently because it is considered as a baseline algorithm and
it is simple to implement. For more details see Joachims (1996).

The basic idea of the algorithm is to represent each document, e, as a vector in a
vector space so that documents with similar content have similar vectors. The value
ei of the ith key-word is represented as the tf-idf weight.

The Prototype algorithm learns the class model by combining document vectors into
a prototype vector . This vector is generated by adding the document vectors of all
documents in the class. Classification is done by judging the angular distance from
the prototype vector. In our experiments, we used the F1 measure to optimize the
threshold.

2. Nearest Neighbor

This is a modification of the standard Nearest Neighbor algorithm (Yang and Liu,
1999) appropriate for one-class learning. This algorithm was original presented in
detail by Datta (1997); and the method of optimizing the parameters is explained by
Manevitz and Yousef (2001).

3. Naive Bayes

Traditional Naive Bayes calculates the probability of being in a class given an example,
which has specific values for the different attributes. One calculates this by assuming
the different attributes are independent, applying Bayes’ theorem and using the a
priori probability of the different classes.

P. Datta (1997) showed how to modify the algorithm for positive data only and we
follow his presentation.

E is the class of training documents in a category. We calculate p(d|E) as the product
of p(w|E) for all keywords that appear in the document d. Each of the p(w|E) is

145

Manevitz and Yousef

Figure 3: A Neural Network with Bottleneck
Trained Identity Function

Input

Compression
(dimension k)

Output
(dimension m)(dimension m)

fullly connected fully connected

estimated independently using the formula: p(w|E) = nw+1
n+m where nw is the number

of times word w occurs in E, n is the total number of words in E, and m is the number
of keywords.

The threshold is calculated as a fraction (optimized using the F1 measure) of the
minimum over all examples in E of the value p(d|E)

4. Compression Neural Network

The algorithm is based on a feed-forward three layer neural network with a “bot-
tleneck”. That is, under the assumption that the documents are represented in an
m-dimensional space; we choose a three level network with m inputs, m outputs and
k neurons on the hidden level, where k < m. Then the network is trained, under stan-
dard back-propagation, to learn the identity function on the sample examples (see
Figure 3). This design was first used by G.W. Cottrell and Zipser (1988) to produce a
compression algorithm. See also Japkowicz et al. (1995) for another use as a novelty
detector.

The idea is that while the bottleneck prevents learning the full identity function on
m-space; the identity on the small set of examples is in fact learnable. Then the set
of vectors for which the network acts as the identity function is a sort of sub-space
which is similar to the trained set. This avoids the “saturation” problem of learning
from only positive examples. Thus the filter is defined by applying the network to a
given vector; if the result is the identity, then the vector is “interesting”.

By running the same experiments using the two SVM-one class algorithms, we are in a
position to make a comparative study.

The reader is referred to Manevitz and Yousef (2001) for detailed descriptions of each
of the above algorithms and the various choices of parameters investigated.

5. Results

We present our results in a series of tables listing the F1, recall and precision values over
different parameters. The main summary table is Table 8 where results from all the tables
are gathered for comparison.

146

One-Class SVMs for Document Classification

5.1 One-class SVM (Schölkopf algorithm) Results

The results for this algorithm were very sensitive to the parameters. However, under proper
choices it can give the best results.

In particular:

• This algorithm worked much better with the binary representation; in fact the results
under all kernels were extremely poor under the other three representations we tested
(frequency, tf-idf, and Hadamard). Table 5 presents the Hadamard results with 20
features; results with tf-idf and frequency were equally poor.

• 10 features were best in general, but this depended on the choice of kernel. For
polynomial kernel the 20 features were dramatically better. On the other hand, for
radial basis kernel 10 features were dramatically better than 20 features (see Table
3).

• Increasing the number of features further caused large decreases in performance (see
Table 4).

Aside: Note that the features are category-specific in our approach; unlike other stud-
ies such as performed by Joachims (1998), for example. This makes direct dimension
comparison difficult. Roughly, the total number of features over all categories in our
experiments is about 100 (for twenty features per category).

• We investigated the effect of removing the near-Hamming distance examples from the
data set before running this algorithm. We did this for vectors with 10 features. Since
the results are worse in all cases in comparison with the original algorithm, we do not
reproduce the data tables here.

In summary, the best choice of parameters for this algorithm were 10 features, binary
representation with radial basis kernel. However, the sensitivity to changes in any of these
parameters makes it difficult to generalize to other applications. The linear kernel, however,
while giving somewhat worse results did not seem to be as sensitive.

5.2 Outlier-SVM Results

The results were generally somewhat worse than the one-class SVM results reported above,
especially when looked over the array of categories. Occasionally, (e.g. for polynomial
kernel with 10 features) this method was superior. Compare Table 3 with Table 2.

For larger categories, outlier-SVM obtained somewhat better results. Using macro av-
eraging (i.e. taking into account the differing number of items in each category), this
algorithm reports somewhat better results than the one-class SVM (see Table 8).

• We only tested this algorithm for binary representation.

• 10 features were preferable to 20 features. Compare Table 7 and the subtables in
Table 2.

• For 10 features, the best choice of Hamming distance for outlier threshold was 4 or
5. Looking at Table 6 this means that roughly a third of the data were specified

147

Manevitz and Yousef

Table 2: F1 Values for the Outlier-SVM with different kernels. All with binary representa-
tion and vector dimension 10. The number in the first row indicates the number
of non-zero feature entries which is required to consider an object an outlier.

Linear kernel

3 4 5 6 7 Optimal
F1 F1 F1 F1 F1 F1

Earn 0.689 0.750 0.712 0.586 0.446 0.750
Acq 0.488 0.504 0.450 0.323 0.195 0.504
Money 0.492 0.563 0.508 0.425 0.292 0.563
Grain 0.444 0.523 0.481 0.283 0.133 0.523
Crude 0.199 0.359 0.474 0.371 0.275 0.474
Trade 0.352 0.423 0.348 0.346 0.313 0.423
Int 0.308 0.455 0.465 0.422 0.298 0.465
Ship 0.402 0.287 0.265 0.142 0.040 0.402
Wheat 0.271 0.389 0.265 0.188 0.162 0.389
Corn 0.228 0.332 0.306 0.356 0.185 0.356

Average 0.387 0.458 0.427 0.344 0.233 0.484

Polynomial kernel

3 4 5 6 7 Optimal
F1 F1 F1 F1 F1 F1

Earn 0.718 0.784 0.705 0.584 0.445 0.784
Acq 0.319 0.484 0.414 0.283 0.088 0.484
Money 0.111 0.522 0.448 0.397 0.221 0.522
Grain 0.093 0.468 0.270 0.152 0.042 0.468
Crude 0.091 0.540 0.540 0.338 0.271 0.540
Trade 0.078 0.078 0.451 0.327 0.273 0.451
Int 0.073 0.346 0.480 0.354 0.096 0.480
Ship 0.115 0.078 0.020 0.000 0.000 0.115
Wheat 0.036 0.036 0.192 0.168 0.125 0.192
Corn 0.037 0.037 0.325 0.294 0.157 0.325

Average 0.167 0.337 0.384 0.289 0.171 0.436

Radial kernel

3 4 5 6 7 Optimal
F1 F1 F1 F1 F1 F1

Earn 0.688 0.751 0.712 0.586 0.440 0.751
Acq 0.488 0.503 0.449 0.304 0.117 0.503
Money 0.462 0.578 0.538 0.437 0.269 0.578
Grain 0.502 0.574 0.460 0.228 0.025 0.574
Crude 0.128 0.357 0.541 0.376 0.237 0.541
Trade 0.352 0.429 0.380 0.275 0.278 0.429
Int 0.253 0.441 0.457 0.365 0.092 0.457
Ship 0.327 0.333 0.142 0.040 0.000 0.333
Wheat 0.036 0.271 0.253 0.230 0.218 0.271
Corn 0.142 0.315 0.351 0.357 0.215 0.357

Average 0.337 0.455 0.428 0.319 0.189 0.479

Sigmoid kernel

3 4 5 6 7 Optimal
F1 F1 F1 F1 F1 F1

Earn 0.668 0.756 0.723 0.581 0.431 0.756
Acq 0.439 0.475 0.443 0.298 0.071 0.475
Money 0.468 0.535 0.525 0.431 0.038 0.535
Grain 0.429 0.547 0.448 0.155 0.000 0.547
Crude 0.124 0.382 0.494 0.372 0.257 0.494
Trade 0.362 0.449 0.377 0.268 0.292 0.449
Int 0.190 0.397 0.472 0.291 0.000 0.472
Ship 0.333 0.327 0.050 0.000 0.000 0.333
Wheat 0.036 0.261 0.221 0.213 0.129 0.261
Corn 0.037 0.337 0.344 0.313 0.177 0.344

Average 0.308 0.446 0.409 0.292 0.139 0.466

148

One-Class SVMs for Document Classification

Table 3: One-class SVM using the binary representation.
Vector Dimension 10

Linear Sigmoid Polynomial Radial basis
F1 R P F1 R P F1 R P F1 R P

Earn 0.676 0.534 0.912 0.702 0.566 0.924 0.409 0.547 0.326 0.676 0.534 0.921
Acq 0.483 0.489 0.477 0.481 0.483 0.478 0.185 0.391 0.121 0.482 0.491 0.474
Money 0.541 0.504 0.585 0.516 0.451 0.604 0.074 0.481 0.040 0.514 0.481 0.552
Grain 0.585 0.447 0.846 0.533 0.388 0.850 0.084 0.491 0.046 0.585 0.447 0.846
Crude 0.545 0.490 0.614 0.532 0.470 0.611 0.441 0.462 0.423 0.544 0.490 0.613
Trade 0.445 0.376 0.545 0.476 0.396 0.597 0.363 0.463 0.299 0.597 0.492 0.433
Int 0.473 0.410 0.558 0.454 0.367 0.593 0.145 0.483 0.085 0.485 0.440 0.541
Ship 0.563 0.600 0.531 0.518 0.471 0.575 0.025 0.471 0.013 0.539 0.564 0.516
Wheat 0.474 0.376 0.642 0.450 0.365 0.586 0.619 0.516 0.774 0.474 0.376 0.642
Corn 0.293 0.380 0.238 0.339 0.380 0.307 0.036 0.440 0.019 0.298 0.391 0.240

Avg 0.507 0.460 0.594 0.500 0.433 0.612 0.238 0.474 0.214 0.519 0.470 0.577

Vector Dimension 20

Linear Sigmoid Polynomial Radial basis
F1 R P F1 R P F1 R P F1 R P

Earn 0.652 0.521 0.873 0.686 0.562 0.880 0.678 0.555 0.871 0.321 0.479 0.241
Acq 0.488 0.495 0.481 0.489 0.497 0.482 0.491 0.482 0.501 0.194 0.465 0.122
Money 0.487 0.470 0.504 0.494 0.479 0.509 0.503 0.428 0.611 0.084 0.541 0.045
Grain 0.504 0.467 0.548 0.504 0.467 0.548 0.487 0.412 0.596 0.071 0.480 0.038
Crude 0.496 0.430 0.586 0.496 0.430 0.588 0.485 0.408 0.599 0.111 0.589 0.062
Trade 0.441 0.359 0.571 0.441 0.361 0.566 0.453 0.366 0.592 0.239 0.496 0.157
Int 0.440 0.456 0.424 0.425 0.429 0.420 0.425 0.356 0.528 0.092 0.518 0.050
Ship 0.220 0.517 0.139 0.219 0.517 0.139 0.310 0.410 0.250 0.025 0.405 0.013
Wheat 0.449 0.392 0.525 0.449 0.392 0.525 0.420 0.338 0.552 0.097 0.548 0.053
Corn 0.376 0.356 0.395 0.376 0.358 0.395 0.352 0.282 0.468 0.029 0.673 0.015

Avg 0.455 0.446 0.504 0.458 0.449 0.505 0.460 0.403 0.557 0.126 0.519 0.079

Table 4: One-class SVM using the binary representation, with different vector dimensions.
Some sample categories.

Linear Sigmoid Polynomial Radial basis
F1 R P F1 R P F1 R P F1 R P

dimension 40

Grain 0.479 0.453 0.707 0.425 0.331 0.594 0.059 0.524 0.031 0.478 0.453 0.506
Ship 0.135 0.482 0.078 0.203 0.205 0.202 0.027 0.589 0.014 0.135 0.482 0.078
Wheat 0.416 0.392 0.442 0.307 0.226 0.482 0.030 0.548 0.015 0.414 0.392 0.439
Corn 0.340 0.380 0.308 0.325 0.250 0.464 0.029 0.625 0.015 0.339 0.380 0.307

dimension 60

Grain 0.436 0.434 0.438 0.398 0.300 0.593 0.056 0.486 0.029 0.434 0.434 0.435
Ship 0.177 0.400 0.114 0.229 0.169 0.358 0.029 0.671 0.014 0.178 0.405 0.014
Wheat 0.383 0.381 0.385 0.254 0.182 0.419 0.028 0.591 0.014 0.388 0.387 0.389
Corn 0.326 0.347 0.307 0.272 0.195 0.450 0.027 0.592 0.013 0.324 0.347 0.303

dimension 100

Grain 0.412 0.425 0.400 0.259 0.157 0.727 0.031 0.232 0.017 0.412 0.425 0.400
Ship 0.164 0.446 0.100 0.150 0.092 0.400 0.028 0.625 0.014 0.164 0.446 0.100
Wheat 0.530 0.376 0.897 0.258 0.150 0.903 0.039 0.634 0.020 0.530 0.376 0.897
Corn 0.273 0.320 0.237 0.186 0.125 0.370 0.028 0.619 0.014 0.272 0.320 0.236

149

Manevitz and Yousef

Table 5: One-class SVM using the Hadamard representation, with vector dimension 20
(m=20).

Linear Sigmoid Polynomial Radial basis
F1 R P F1 R P F1 R P F1 R P

Earn 0.592 0.440 0.905 0.285 0.172 0.824 0.000 0.000 0.000 0.523 0.369 0.896
Acq 0.253 0.368 0.192 0.007 0.005 0.014 0.000 0.000 0.000 0.039 0.321 0.049
Money 0.266 0.278 0.255 0.168 0.312 0.114 0.000 0.000 0.000 0.266 0.278 0.255
Grain 0.067 0.035 0.888 0.066 0.035 0.615 0.098 0.910 0.051 0.067 0.035 0.888
Crude 0.139 0.101 0.227 0.068 0.116 0.048 0.000 0.000 0.000 0.139 0.101 0.227
Trade 0.523 0.755 0.400 0.273 0.795 0.165 0.000 0.000 0.000 0.523 0.755 0.400
Int 0.149 0.083 0.704 0.169 0.102 0.487 0.000 0.000 0.000 0.162 0.094 0.583
Ship 0.150 0.707 0.084 0.105 0.641 0.057 0.000 0.000 0.000 0.150 0.707 0.084
Wheat 0.054 0.225 0.031 0.014 0.059 0.008 0.051 0.962 0.026 0.057 0.236 0.032
Corn 0.079 0.304 0.046 0.019 0.043 0.012 0.040 0.989 0.020 0.079 0.304 0.046

Avg 0.227 0.329 0.373 0.117 0.228 0.234 0.018 0.286 0.009 0.200 0.320 0.346

as outliers. This indicates that it would be useful to find a better criteria for the
original specification of keywords. This is somewhat difficult because in our context
only positive information is available.

In summary, the best parameters for this algorithm were binary representation, feature
length 10, and linear kernel function (there was not much difference from the radial basis
kernel).

6. Comparisons and Conclusions

In Table 8, we list the best F1 results from one-class SVM, outlier-SVM and the four other
algorithms from the work by Manevitz and Yousef (2001). The results from ten Reuters
categories are presented. We also list, in this table, the “macro” averages which take into
account the different number of items in each category.

Looking over this table, and focusing on the unweighted average, we see that the one-
class SVM as proposed by Schölkopf et al., gives the best overall performance. This is quite
clear with respect to all the other algorithms except the compression NN algorithm which
is comparable. Schölkopf’s proposal has the usual advantages of SVM; in particular it is
less computationally intensive than neural networks.

Under the “macro” averaging, the NN and outlier-SVM were somewhat superior. This
means that while the one-class SVM was more robust with regards to smaller categories, the
NN and outlier-SVM showed good results by emphasizing success in the larger categories.

On the other hand, the one-class SVM was very sensitive to the parameters and choice
of kernel. The neural network method, in comparison, seemed relatively stable over these
parameters. (In our experiments, the linear kernel was, however, fairly stable although
its results were slightly worse than the neural network algorithm.) Thus, under current
knowledge, i.e. until understanding of the parameter choice is clearer, it would seem that
the neural network method is the preferred one.

150

One-Class SVMs for Document Classification

Table 6: Cumulative number of negative examples (outliers) used from the training set to
train the outlier-SVM classifier.

Vector Dimension 10

Category Name Original 1 2 3 4 5 6 7

Earn 966 35 144 231 318 451 630 765
Acquisitions 590 33 78 157 254 371 467 532
Money-fx 187 7 26 43 67 101 123 157
Grain 151 2 21 37 61 100 122 139
Crude 155 1 16 30 55 72 92 110
Trade 133 2 9 17 27 50 73 91
Interest 123 3 8 19 38 51 84 107
Ship 65 8 20 33 46 53 58 63
Wheat 62 1 5 8 23 39 46 49
Corn 62 2 7 8 20 30 35 44

Vector Dimension 20

Category Name Original 3 4 5 6 7 8

Earn 966 41 120 235 410 538 650
Acquisitions 590 98 148 235 311 368 422
Money-fx 187 18 30 48 74 97 118
Grain 151 13 29 45 68 96 110
Crude 155 14 23 37 49 65 82
Trade 133 8 14 18 27 39 51
Interest 123 11 14 35 45 62 78
Ship 65 20 31 35 40 47 52
Wheat 62 1 7 15 23 32 45
Corn 62 2 7 9 11 26 32

151

Manevitz and Yousef

Table 7: Outlier-SVM using binary representation with different kernel functions, outliers
with Hamming distance 7, vector dimension 20.

Linear Sigmoid Polynomial Radial basis
F1 R P F1 R P F1 R P F1 R P

Earn 0.605 0.490 0.791 0.593 0.451 0.864 0.391 0.249 0.909 0.592 0.477 0.779
Acq 0.449 0.376 0.556 0.452 0.366 0.591 0.329 0.214 0.706 0.449 0.371 0.567
Money 0.480 0.463 0.498 0.474 0.415 0.551 0.315 0.202 0.716 0.484 0.431 0.551
Grain 0.350 0.364 0.337 0.369 0.271 0.574 0.091 0.048 0.849 0.384 0.289 0.573
Crude 0.455 0.501 0.416 0.522 0.541 0.504 0.458 0.354 0.647 0.493 0.511 0.476
Trade 0.419 0.618 0.317 0.432 0.735 0.306 0.078 1.000 0.041 0.441 0.685 0.325
Int 0.390 0.391 0.388 0.378 0.321 0.461 0.137 0.075 0.736 0.379 0.332 0.440
Ship 0.280 0.189 0.536 0.221 0.128 0.806 0.000 0.000 0.000 0.236 0.143 0.666
Wheat 0.225 0.413 0.154 0.197 0.268 0.155 0.031 0.016 0.428 0.183 0.376 0.121
Corn 0.217 0.391 0.150 0.352 0.467 0.282 0.037 1.000 0.019 0.353 0.472 0.282

Avg 0.378 0.419 0.414 0.399 0.396 0.509 0.186 0.315 0.505 0.399 0.408 0.478

Table 8: Comparison of One-class SVM (binary representation), Outlier-SVM (binary rep-
resentation), Neural Networks (Hadamard representation), Naive Bayes, Nearest
Neighbor (Hadamard representation), and Prototype Algorithms (tf-idf represen-
tation). (Each method with the best representation tested.)

One-class Outlier- Neural Naive Nearest Prototype
SVM Radial SVM Networks Bayes Neighbor
Basis Linear
F1 F1 F1 F1 F1 F1

Earn 0.676 0.750 0.714 0.708 0.703 0.637
Acq 0.482 0.504 0.621 0.503 0.476 0.468
Money 0.514 0.563 0.642 0.493 0.468 0.484
Grain 0.585 0.523 0.473 0.382 0.333 0.402
Crude 0.544 0.474 0.534 0.457 0.392 0.398
Trade 0.597 0.423 0.569 0.483 0.441 0.557
Int 0.485 0.465 0.487 0.394 0.295 0.454
Ship 0.539 0.402 0.361 0.288 0.389 0.370
Wheat 0.474 0.389 0.404 0.288 0.566 0.262
Corn 0.298 0.356 0.324 0.254 0.168 0.230

Avg 0.519 0.484 0.513 0.425 0.423 0.426

Macro 0.572 0.587 0.615 0.547 0.530 0.516

Acknowledgments

This work was partially supported by HIACS, the Haifa Interdisciplinary Center for Ad-
vanced Computer Science.

152

One-Class SVMs for Document Classification

References

M. Balabanovic and Y. Shoham. Learning information retrieval agents: Experiments with
automated web browsing. In Working Notes of AAAI Spring Symposium Series on In-
formation Gathering from Distributed, Heterogeneous Environments. AAAI-Press, 1995.

P. Datta. Characteristic Concept Representations. PhD thesis, University of California,
Irvine, 1997.

S.T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and
representation for text categorization. In Proceedings of the seventh International Con-
ference on Information and Knowledge Management (CIKM’98), pages 148–155, 1998.

P. Munro G.W. Cottrell and D. Zipser. Image compression by back propagation: an example
of extensional programming. In N.E. Sharkey, editor, Advances in Cognitive Science,
volume 3. Ablex, 1988.

N. Japkowicz, C. Myers, and M. Gluck. A novelty detection approach to classification. In
Proceeding of the Fourteenth International Conference On Artificial Intelligence, pages
518–523. Montreal, Canada, 1995.

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TF-IDF for text cat-
egorization. Technical Report CMU-CS-96-118, School of Computer Science, Carnegie
Mellon University, Pittsburgh, 1996.

T. Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Proceeding 10 European Conference on
Machine Learning (ECML), pages 137–142. Springer Verlag, 1998. URL
http://www-ai.cs.uni-dortmund.de/DOKIMENTE/Joachims 97a.sp.gz.

K. Lang. NewsWeeder:Learning to filter news. In Twelfth International Conference on
Machine Learning, pages 331–339. Lake Tahoe, CA, 1995.

D. Lewis. Reuters-21578 text categorization test collection.
http://www.research.att.com/~lewis, 1997.

L. Manevitz and M. Yousef. Document classification via neural networks trained exclusively
with positive examples. Technical report, Department of Computer Science, University
of Haifa, Haifa, 2001.

M. Pazzani and D. Billsus. Learning and revising user profiles: The identification of inter-
esting web sites. Machine Learning, 27:313–331, 1997.

M. Pazzani, J. Muramatsu, and D. Billsus. Syskill & Webert:Identifying interesting web
sites. In AAAI Conference 1996, pages 54–61, 1996.

B. Schölkopf, J.C. Platt, J.Shawe-Taylor, A.J. Smola, and R.C. Williamson. Estimating
the support of a high-dimensional distribution. Technical report, Microsoft Research,
MSR-TR-99-87, 1999.

153

Manevitz and Yousef

C.J. van Rijsbergen. Information Retrieval. Butterworths, London, second edition, 1979.

Yiming Yang and Xin Liu. A re-examination of text categorization methods. In
Marti A. Hearst, Fredric Gey, and Richard Tong, editors, Proceedings of SIGIR-
99, 22nd ACM International Conference on Research and Development in Informa-
tion Retrieval, pages 42–49, Berkeley, US, 1999. ACM Press, New York, US. URL
http://www.cs.cmu.edu/ yiming/papers.yy/sigir99.ps.

154

