
Journal of Information Technology Education Volume 6, 2007

Editor: Zlatko Kovacic

Roles of Variables in Teaching

Juha Sorva, Ville Karavirta, and Ari Korhonen
Department of Computer Science and Engineering,
Helsinki University of Technology, Espoo, Finland

jsorva@cs.hut.fi; vkaravir@cs.hut.fi; archie@cs.hut.fi

Executive Summary
Expert programmers possess schemas, abstractions of concrete experiences, which help them
solve programming problems and lessen the load on their working memory during problem solv-
ing. Possession of schemas is a key difference between novices and experts, which is why in-
structors need to help students construct them. One recent tool for facilitating schema formation
in introductory programming are roles of variables, which represent stereotypes of variable use in
computer programs (Sajaniemi, 2002). For instance, a variable with the role STEPPER is assigned
values in a systematic and predictable order (e.g. ascending integers 0, 1, 2, ...), whereas a FIXED
VALUE is a variable whose value does not change. Roles of variables embody expert program-
mers’ tacit knowledge on variable usage patterns, which can be made explicit and taught to nov-
ice programmers. A small set of roles covers the vast majority of variable use in introductory-
level programs. Prior results obtained through analysis of examination results and observation of
students suggest that using roles of variables in introductory programming education can increase
students' skills in comprehending and constructing programs (Byckling & Sajaniemi, 2006; Sa-
janiemi & Kuittinen, 2005). Little has been published about the experiences of teachers in higher
education who have adopted roles in their programming courses, or about the methods of instruc-
tion that can be used to introduce roles. The main research questions in this paper are: how can
instructors benefit from roles of variables while creating and maintaining their teaching materials,
and what kind of influence does roles-based instruction have on teaching and learning in general?

In this paper, we present the experiences of two programming teachers, who have adopted roles
of variables into their courses. In one of the two courses, a very casual 'lightweight' approach to
introducing roles of variables to students was used. In the other course, somewhat more effort
was spent on introducing roles to students. We discuss the changes made to our courses, describe
the effects that the process had on our teaching methods and materials, and suggest new ideas on
how to make use of roles of variables in pedagogy. Using feedback questionnaires and analyses
of examination answers, we also explore what impact roles of variables had on our students.

From a teachers’ point of view, we found roles of variables to be very useful. Roles are concrete
and easily linked to code. They help
with teaching stepwise refinement of
program designs, and can be taught in
introductory courses naturally alongside
other variable-related concepts, such as
type and scope. Roles provided us with
new ways to assess and improve our
teaching materials and methods.

Our assessment of the impact of roles of
variables on CS1 students is in agree-

Material published as part of this publication, either on-line or
in print, is copyrighted by the Informing Science Institute.
Permission to make digital or paper copy of part or all of these
works for personal or classroom use is granted without fee
provided that the copies are not made or distributed for profit
or commercial advantage AND that copies 1) bear this notice
in full and 2) give the full citation on the first page. It is per-
missible to abstract these works so long as credit is given. To
copy in all other cases or to republish or to post on a server or
to redistribute to lists requires specific permission and payment
of a fee. Contact Publisher@InformingScience.org to request
redistribution permission.

mailto:jsorva@cs.hut.fi�
mailto:vkaravir@cs.hut.fi�
mailto:archie@cs.hut.fi�

Roles of Variables in Teaching

408

ment with earlier findings and suggests that roles-based instruction can improve students' pro-
gramming knowledge, perhaps especially with program comprehension tasks. Not all students
involved in our experiment found roles useful for learning programming, however, and our re-
sults indicate that more than a lightweight introduction to roles is needed in order for students to
adopt them into active use. We conclude that roles of variables are a very promising pedagogical
tool for introductory programming teachers.

Keywords: roles of variables, introductory programming, CS1, CS2, pedagogy.

Introduction
Learning to program is not easy. Recent experimental studies into students’ programming ability
have shown that university students in many countries have similar difficulties in writing
(McCracken et al., 2001), tracing (Lister et al., 2004), and designing (Eckerdal, McCartney, Mo-
ström, Ratcliffe, & Zander, 2006) programs. The emergence of the expert programmer from the
novice is a process that involves the formation of multiple mental models, deep and interlinked
knowledge hierarchies, and abstract, generalized problem-solving patterns (Winslow, 1996). As
programming instructors, our job is to initiate and facilitate this process. In this paper, we look at
one tool – roles of variables – which may help us with this task.

Schemas
An expert solves problems fluently and fast and possesses domain-specific problem-solving
strategies. A novice is uncoordinated and slow and commonly resorts to generic problem-solving
strategies, such as trial-and-error and means-ends analysis. What is a complex problem for the
novice may be for the expert merely a task with a familiar solution pattern. One explanation for
this difference is suggested by schema theory. Schema theory argues that people bundle similar
experiences into cognitive constructs called schemas. Schemas are abstractions of concrete cases
of experience and have a crucial role in the way people store, organize, and understand informa-
tion. A schema can be triggered and brought to bear – consciously or unconsciously – in new
problem-solving situations similar to previously encountered ones. The importance of schemas,
sometimes called plans, has been explored in many fields, including computer programming.
(See e.g. Adelson, 1981; Chi, Glaser, & Rees, 1982; Détienne, 1990; Fix, Wiedenbeck, &
Scholtz, 1993; Rist, 1989; Soloway & Ehrlich, 1984; Sweller & Levine, 1982.) For instance, say
a student has encountered examples of (a) sequentially searching an array for the smallest integer,
and (b) searching a linked list of Movie objects for the movie with the highest gross income.
With enough practice and reflection, encountering such concrete cases contributes towards the
eventual formation of a schema for sequential searching, which can be applied to similar prob-
lems. An expert has many schemas that accommodate various kinds of scenarios he or she is
likely to encounter. A novice, lacking these schemas, flounders.

Cognitive Load
Human working memory is very limited in capacity (Baddeley, 1994), and a novice’s working
memory resources are greatly taxed by problem-solving situations such as programming. Novice
students of programming are commonly asked to complete assignments that require understand-
ing of multiple interacting program components, algorithmic design, the sometimes less-than-
obvious program syntax, language semantics, and the notional machine (Du Boulay, 1986). In
addition, they may need to use an integrated development environment or similar tools, or to ap-
ply third-party libraries in their programs. As the novice juggles all these new concepts in their
working memory, it is burdened with a high cognitive load. Excessive cognitive load hinders

 Sorva, Karavirta, & Korhonen

 409

meaningful learning and schema formation (see e.g. Paas, Renkl, & Sweller, 2003; Tuovinen,
2000).

Schemas combine related bits of knowledge into larger chunks, which can be brought to working
memory and processed as a single entity. Sequential searching through a collection of elements,
for instance, eventually becomes a single chunk of knowledge whose details do not need to be
kept in working memory. With experience, a learner becomes increasingly familiar with common
schemas. As this happens, triggering such schemas becomes increasingly unconscious and auto-
matic, further lessening the strain on working memory.

Pedagogical Implications
If schemas play a crucial part in turning a novice into an expert, then it is crucial that we help our
students construct them. Eckerdal and Berglund (2005), drawing on work by Hazzan (2003),
called for pedagogy that helps programming students discern ‘canonical procedures’ before ma-
turing towards a more abstract ‘object conception’. A ‘canonical procedure’ is a problem-solving
procedure that is more or less automatically triggered by a given problem. We see canonical pro-
cedures as closely related to schemas. As students form and internalize schemas, they learn pro-
cedures that can be applied instinctively. Fostering schema formation will therefore aid the stu-
dent in developing canonical procedure.

In addition to facilitating the formation of schemas, it is also important to ensure that students
need to cope with as little extraneous cognitive load as possible. Cognitive load can be adjusted
by carefully choosing instructional methods and example materials (Tuovinen, 2000) and through
curricular redesign (Mead et al., 2006). The two goals of helping students form schemas and
managing cognitive load are linked. On the one hand, schemas decrease cognitive load; on the
other hand, cognitive load level affects schema formation.

Many recent works in the field of computer science education can be viewed as attempts to sup-
port schema formation by making explicit various patterns that occur in programs (e.g. Muller,
2005; Sajaniemi & Kuittinen, 2005; Wallingford, 2003). Of these approaches, roles of variables
(Sajaniemi & Kuittinen, 2005) are systematically linked to code constructs (i.e., variables), and
earlier results suggest that roles provide an excellent coverage of variable use in the implementa-
tion of algorithms. For these reasons, and since we felt that variable roles hold intuitive appeal as
a succinct way to express algorithm-related schemas and explain and discuss experts' program-
ming knowledge, we integrated roles of variables into our teaching in two courses at Helsinki
University of Technology. In this paper, we relate our experiences of this experiment from a
teachers' point of view. We will also present some early evidence of how our students took to
roles of variables.

Research Questions
Even though roles of variables are a concept that can be utilized in teaching programming to nov-
ices, roles also have potential uses in analyzing programs, including large-scale ones, and may be
useful to experts as well as novices. In this research, we do not only study our experiences with
students, but also report on what instructors have learned from this experiment. Thus, the research
questions are two-fold:

1. How can instructors make use of roles of variables in their teaching?

The method we use to study the first question includes adoption of roles in two different courses
and collecting evidence of how this contributes to the quality of courses and materials.

2. What kind of influence does roles-based instruction have on learning and teaching in general?

Roles of Variables in Teaching

410

The focus of the second question is more on students and their reactions to the experiment. How-
ever, best practices for instructors have also been suggested for teaching novice–level algorithm
design.

The next section, Roles of Variables, introduces the concept of roles of variables in more detail.
In the following section, Two Cases, we describe the ways in which roles of variables were used
in our teaching and the method we used to examine our students’ reactions to the experiment. The
section Results and Discussion examines how the experiment worked out from the teachers’
points of view; the results of our preliminary study of the students are also presented in this sec-
tion. We conclude with a brief summary of our findings.

Roles of Variables
Roles of variables are stereotypes of variable use in computer programs (Sajaniemi, 2002). Roles
embody expert programmers’ tacit knowledge on variable usage patterns, which can be made ex-
plicit and taught to students (Sajaniemi & Navarro Prieto, 2005). The concept of roles of vari-
ables was introduced by Sajaniemi (2002), who analyzed programs written by novice-level pro-
grammers. He concluded that 99% of the variables used in novice-level programs can be de-
scribed using a small set of role names that denote certain common variable usage patterns. The
original role set was found through analysis of procedural programs. Since then, the set of roles
has evolved, and roles have been applied to object-oriented as well as functional programs. In
recursive programs, roles can be applied not only to variables, but to the behavior of parameters
and return values over nested recursive calls (Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova,
2006).

Research suggests that students can benefit from instruction that uses roles. Sajaniemi and Kuitti-
nen (2005) analyzed the examination answers of groups of introductory programming students
who had received the same amount of instruction through different teaching methods. They found
that students who are taught elementary programming using roles of variables gain better pro-
gram comprehension skills than students taught in an otherwise similar way but without use of
roles as a pedagogical tool. Byckling and Sajaniemi (2006) further discovered that roles-based
instruction facilitates the development of program construction skills better than traditional in-
struction. Their results also suggest that the development of program construction skills can be
aided by the use of a role-based program animator tool instead of a regular visual debugger. Ben-
Ari and Sajaniemi (2004) showed that the concept of roles of variables is easily grasped by com-
puter science educators. So far, little has been published about the experiences of teachers in
higher education who have adopted roles in their programming courses or about the methods of
instruction that can be used to introduce roles.

In the following, we briefly introduce each role in the current version of Sajaniemi’s role set. Like
Sajaniemi, we have divided the roles into a group of eight general roles that can apply to variables
of any type, and a group of three roles related to data structure use. For a more verbose introduc-
tion to each role and concrete program examples, we refer the reader to Sajaniemi (2003).

General Roles
1. A variable has the role FIXED VALUE if the variable’s value is not changed after it is initialized.

2. A variable has the role STEPPER if it is assigned values in a systematic and predictable order.
An example of a STEPPER is an index counter used when looping through array elements.

3. A variable has the role MOST-RECENT HOLDER if it holds the latest value in a sequence of un-
predictable data values. For instance, a MOST-RECENT HOLDER could be used to store the latest

 Sorva, Karavirta, & Korhonen

 411

element encountered while iterating through a collection of data elements, or the latest value
that has been assigned to an object’s attribute (i.e., to an instance variable that is a MOST-
RECENT HOLDER) by a setter method.

4. The role MOST-WANTED HOLDER describes variables that hold the ‘best’ value encountered in a
sequence of values. Depending on the program and the type of the data, the ‘’best’ value may
be the largest, smallest, alphabetically first, or otherwise most appropriate value.

5. A variable has the role GATHERER if the variable is used to somehow combine data values that
are encountered in a sequence of values, and the variable’s value represents this accumulated
result. For instance, a variable keeping track of the balance of a bank account object (the sum
of deposits and withdrawals) is a GATHERER.

6. A FOLLOWER is a variable that always holds the most recent previous value of another vari-
able. Whenever the value of the followed variable changes, the value of the FOLLOWER is also
changed. For example, the ‘previous node pointer’ used in linked list traversal is a FOLLOWER.

7. A variable is a ONE-WAY FLAG if it only has two possible values and if a change to the vari-
able’s value is permanent. That is, once a ONE-WAY FLAG is changed from its initial value to
the other possible value, it is never changed back. For example, a Boolean variable keeping
track of whether or not errors have occurred during processing of input is a ONE-WAY FLAG.

8. A variable has the role TEMPORARY if the value of the variable is needed only for a short pe-
riod. For example, an intermediate result of a calculation can be stored in a TEMPORARY in or-
der to make it more convenient or efficient to use in later calculations.

Roles Related to Data Structures
1. An ORGANIZER is a variable that stores a collection of elements for the purpose of having that

collection’s contents rearranged. An example of an ORGANIZER is a variable that contains an
array of numbers during sorting.

2. A variable is a CONTAINER if it stores a collection of elements in which more elements can be
added (and, typically, can be removed as well). For example, a variable that references a
stack could be a CONTAINER.

3. A WALKER is a variable whose values traverse a data structure, moving from one location in
the structure to another. For instance, a variable that contains a reference to a node in a tree
traversal algorithm, and a variable that keeps track of the search index in a binary search al-
gorithm can be considered to be WALKERs.

Two Cases
At Helsinki University of Technology, roles of variables were first adopted in the second pro-
gramming course (CS2) lectured by the third author in Spring 2006. In Fall 2006, roles were used
in an introductory programming course (CS1) taught by the first author. The following subsec-
tions describe what measures we took to make use of roles of variables in our courses. The reader
should note that despite the fact that students take CS1 before CS2, our experiment involves one
set of CS2 students and another set of (the following year’s) CS1 students. Therefore, none of our
students enrolled in either course had been previously taught roles of variables.

Roles of Variables in Teaching

412

CS2 - Data Structures and Algorithms
Our CS2 course teaches data structures and algorithms independently of any programming lan-
guage. While we make use of code and pseudocode examples, the focus is not on program code
but on a more abstract level. Students are required to write little code, since our goal is to give a
broader overview of data structures and algorithms than would be possible in a course that in-
cludes many coding tasks. The topics covered include basic data structures, sorting, priority
queues, dictionaries (balanced search trees and hashing), and graph algorithms. The course also
covers basic algorithm analysis. We examine a number of different sorting algorithms, for in-
stance, in order to demonstrate the fact that there is no single sorting method that is conclusively
better than the rest.

'Lightweight' introduction of roles
We did not go out of our way to change the examples we used or the order in which they were
presented in order to accommodate for roles of variables. Instead, we used existing examples and
attached roles of variables to them by annotating course materials with role names. We intro-
duced roles very briefly as they appeared in existing examples. We discussed examples using role
names quite casually, and no extra effort was put into defining the roles for the students. Roles
were not learning objectives of the course, but merely a learning aid, which students could make
use of if they wished. Lecturer’s notes included links to the roles of variables home page (Sa-
janiemi, 2003) in case someone wanted to learn more. In previous experiments with using roles in
teaching, more effort was made to define each role to students (Kuittinen & Sajaniemi, 2004); our
approach in the CS2 course was decidedly more casual and 'lightweight'.

There were two groups of students in the CS2 course, which we refer to as CS majors (Computer
Science students) and CS minors (students from other engineering disciplines such as Electrical
Engineering and Engineering Physics). Lectures were the same for both groups, and exposure to
roles of variables through lecturer’s notes and slides was identical for both CS majors and minors.

In addition to lectures, CS majors had classroom exercise sessions, which made use of code ex-
amples annotated with role names. CS majors, therefore, had an additional chance to discuss roles
in class, although we did not require the use of roles in the classroom sessions either. The class-
room exercises covered basic algorithm analysis, designing short new algorithms, simple proofs,
etc. Thus, only a subset of the exercises was such that roles were applicable. For each exercise,
one of the students was selected to present his or her solution to the rest of the group. If students
wanted to use roles when explaining a solution, it was up to them to do so; we did not specifically
encourage it. In addition, even though our teaching assistants were aware of the existence of roles
of variables as a concept, we did not instruct them to pay any specific attention to roles.

Instead of classroom exercises, CS minors had a teamwork assignment, which was also not
strongly linked to roles of variables. In this assignment, students were asked to design a solution
for a larger software application. Typically, several algorithms and data structures were needed in
order to complete the assignment. Again, if roles were used to explain a team’s solution, this
arose voluntarily from the students themselves.

Assessing impact on students
We wanted to see how the ‘casual’ introduction of roles of variables affected our CS2 students.
To find out whether or not students found roles of variables useful, we wrote a multiple choice
question in our CS2 course feedback form. Students were asked to select the statement that best
described how they felt about roles of variables. Giving feedback was voluntary and anonymous,

 Sorva, Karavirta, & Korhonen

 413

but students were awarded with one extra point for the final examination if they filled the feed-
back form.

We wished to find out whether or not students actually learned about roles of variables. We as-
sumed that if our students had learned about roles, they would demonstrate this by using role
names in their descriptions of the behavior of algorithms and in their algorithm implementations.
To find out if this was the case, we went through the final examination papers of the CS majors
and counted the occurrences of role names in their answers. We chose this group of students since
they had had more exposure to roles through the classroom exercises. Moreover, as indicated by
the results presented later in this paper, our CS majors had found roles of variables somewhat
more helpful than our CS minors. We analyzed the answers to two questions in the examination.
The first question required the students to explain the behavior of the Quicksort algorithm given
in pseudocode. For the second question, each student had to design a depth-first search (DFS)
algorithm using pseudocode or some programming language and then explain the behavior of the
algorithm.

CS1 - Basics of Programming
Our CS1 course introduces students to computer programming using object-oriented program-
ming and the Java programming language.

General introduction to roles
Variables are a fundamental programming construct, and they appear in programs in numerous
different ways. Depending on programming paradigm and language we can have variables con-
taining numbers, characters, objects, pointers, and references. We can have local variables, global
variables, static variables, instance variables, and parameter variables. We can have STEPPERs,
MOST-WANTED HOLDERs, and FIXED VALUEs. The lists go on. To help our CS1 students navigate
this conceptual and terminological jungle, we presented roles as an aspect of variables to be
placed side by side with two other aspects that are routinely and explicitly taught in CS1: type
and scope. (We would like to note that different uses for variables – i.e., roles – are also routinely
taught in CS1, but not always explicitly discussed or named.) We emphasized how each variable
is characterized by these three aspects; to illustrate this, students were shown diagrams similar to
those in Figure 1. This was done during week 2 of our CS1 course when the term role of variable
was first introduced.

Introduction of individual roles
As in the CS2 course in the previous spring, we again did not set out to restructure our course
materials and, instead, introduced roles as they appeared in existing examples. As a consequence
of some idiosyncrasies in course structure, roles were not introduced quite in the order suggested
by Kuittinen and Sajaniemi (2004). As we use Java ArrayLists very early on, the role CON-
TAINER was presented at the beginning of our course, for example, and we ended up introducing
instance variables that are MOST-WANTED HOLDERs before introducing MOST-RECENT HOLDERs.

Following the advice of Sajaniemi (2003), each time a new role was encountered, it was defined
to the students informally in course materials and during lectures, with an emphasis on how this
new role differs from previously encountered ones. At this point, we also listed some example
situations where the new role may be useful and discussed how variables with this role typically
appear in Java source code. Each role was associated with an illustration as it was introduced. The
illustrations we used were mostly different ones than the visual metaphors used in the PlanAni
animator tool (Sajaniemi & Kuittinen, 2003). As the course proceeded, we continued to point out

Roles of Variables in Teaching

414

cases where a previously introduced role was encountered again in lecture examples, and used
roles to draw parallels between examples. Students who did not come to lectures had less expo-
sure to roles than those who did, despite the availability of lecture notes. (Lecture attendance was
voluntary.)

The programming assignments in our CS1 course require students to read plenty of given pro-
gram code, which they then extend, modify, and correct. We annotated this given code – a few
thousand lines of commented code in total – with comments indicating the role of each variable.

Not all variables were annotated in this way, however; parameter variables were considered FIXED
VALUEs ‘by default’, for instance.

Roles and algorithm design
When writing code of their own, we wanted our students to think about the intended use of each
variable (the role) just as they think of the kind of data to be stored in the variable (the type). To
this end, we used roles as a tool during lectures when discussing how to implement the classes
and methods in Java programs.

In algorithmic design, we commonly used stepwise refinement (Wirth, 1971) to progress from a
pseudocode solution towards actual Java code. Roles served as a stepping stone in this process,

(a) by type (b) by scope

(c) by role

Figure 1: Categorizations of Java variables

 Sorva, Karavirta, & Korhonen

 415

helping us bridge the gap from idea to code. After an initial pseudocode solution was created, we
discussed the kinds of programming constructs (loops, variables, etc.) needed for the actual im-
plementation. As a part of this process, we selected roles and types for variables. We then refined
our pseudocode to explicitly use these constructs. Students were encouraged to follow a similar
procedure when working on their assignments.

A simple example of an algorithm in pseudocode that makes use of roles is shown in Figure 2.
Given a collection of Movie objects, the algorithm finds and returns the one with the highest box
office income. (The reader may note that this example is not explicit about how greatestSoFar
is initialized and what happens when its initial value is compared to the first element in the col-
lection. This can lead to an in-class discussion about the kind of bugs you can expect if you ne-
glect to initialize a MOST-WANTED HOLDER properly, and to a more refined pseudocode solution.)

Assessing Impact on Students
In our online course feedback questionnaire at the end of CS1, we included a few questions re-
lated to roles of variables. Using a four-point Likert-like scale, students were asked whether they
saw roles of variables as something useful, whether roles had helped them understand given code,
whether roles had helped them understand examples of step-by-step method design using pseu-
docode, and whether roles had helped them design and write their own programs. Answering the
questionnaire was an obligatory part of passing the CS1 course, but the answers were neverthe-
less processed anonymously. We had some non-Finnish-speaking students taking the course but
their course feedback is not considered in this paper, since they had different materials and a dif-
ferent feedback form than the Finnish-speaking majority. The feedback questions asked of the
students were not quite identical in the CS1 course compared to those used in the CS2 course.
The CS1 questions were designed later than the CS2 ones and probed the topic in some more de-
tail; this was deemed to be useful by the teacher for reasons of course development, despite hav-
ing an adverse effect on the comparability of the feedback results of the two courses.

What We Did Not Do
In the CS2 course in particular, the way we introduced roles was decidedly ‘lightweight’. We did
not spoon-feed roles of variables to those of our students who were not interested in learning
them. Although various CS1 lecture examples in particular will have been more difficult to un-
derstand without grasping role terminology, it was perfectly possible for a student so inclined to
ignore any explicit teaching of variable roles and still pass the courses. We had no assignments in
either course specifically about roles, nor did we require students to explicitly use roles in any
assignment. We did not use roles-based animations of programs in either course (cf. Sajaniemi &
Kuittinen, 2003).

Say greatestSoFar is a MOST-WANTED HOLDER of type Movie.
Say current is a MOST-RECENT HOLDER of type Movie.
For each element in the collection this.movies:
 1. Store the element in the MOST-RECENT HOLDER current.
 2. If current has grossed more than greatestSoFar, it is now the
 most wanted value. Assign the value of current to greatestSoFar.
Finally, return the value of greatestSoFar.

Figure 2: Pseudocode using role names

Roles of Variables in Teaching

416

Results and Discussion
In the following, we take a retrospective look into the process of applying roles of variables in the
CS2 and CS1 courses as outlined in the previous section.

CS2 - Data Structures and Algorithms
The original motivation to adopt roles of variables into our teaching was to let the instructors ex-
periment with these novel concepts and to monitor how students assimilate this new knowledge.
As it turned out with the CS2 course, the experiment was a learning experience perhaps especially
for the instructor.

Roles of variables helped us develop our materials and teaching processes further. This happened
not only because roles helped us provide additional documentation of algorithm behavior in code
and pseudocode, but also because adopting roles forced us to re-examine our program examples
in detail. This brought to light some anomalies, which had previously gone unnoticed. Some 25
different program examples were annotated, five of which needed to be transfigured. We give two
examples of these in the following subsections. We then report on the same experiment from the
students’ point of view.

Conflicting roles and names of variables
The name given to a variable can be very misleading if it is not consistent with the way the vari-
able is used. The code fragment in Figure 3 is an example taken from the lecturing material that
we used in CS2 before adopting roles. This material made widespread use of variables named
temp. In Figure 3, the role of the variable temp is not a TEMPORARY even though its name sug-
gests such an interpretation. The variable is a GATHERER, which iteratively accumulates a hash
value for a key string. Each intermediate result stored in the GATHERER variable represents the
hash value for an increasingly long prefix of the key string k. Each consecutive hash value is cal-
culated based on the previous one, until the hash value for the entire key string has been formed.
The variable name hashValueOfPrefix would be more informative and more descriptive of
the variable’s role in the algorithm.

Obviously, one can improve uninformative variable names without thinking about them in terms
of roles. However, we found roles helpful in that they triggered this process of careful examina-
tion of variable names in our CS2 examples, and provided a framework that enabled us to sys-
tematically examine and discuss the ways variables are used and how this usage should be re-
flected in variable names.

Variables with dual responsibilities
As we looked through our CS2 teaching materials, it turned out that some variables in our exam-
ples had ambiguous behavior. A single variable was sometimes used for multiple different tasks,
and closer examination revealed that minor changes to code removed this ambiguity and signifi-
cantly clarified such examples.

 1 temp = 0;
 2 for (i = 0; i < key_length; i++)
 3 temp = ((32*temp) + value(k[i])) modulo N;

Figure 3: A code fragment, which uses Horner's rule to determine the hash value
of a key string k.

 Sorva, Karavirta, & Korhonen

 417

In Figure 4(a), a recursive implementation for mergesorting linked lists is presented. The local
variables first and last are both FIXED VALUEs; i is a STEPPER. The behavior of N over recur-
sive calls is that of a STEPPER. (It indicates the length of the linked list that is currently being
processed. The length decreases systematically as the recursion deepens.) The behavior of the
variable list is less easy to define. Locally within the function body, list is used as a WALKER,
and traverses through the linked list sequentially, searching for the middle point. Its recursive be-
havior as a parameter is also that of a WALKER as it keeps track of locations in the data structure.
However, the manner in which the variable ‘walks’ through the linked list during recursion is dif-
ferent from the sequential traversal that is used locally within a method activation. In recursion,
the value of the parameter list jumps to the beginning of a sublist at each recursive call. This
dual responsibility of the variable can be confusing for novice programmers – and experts – who
are trying to grasp the algorithm.

In Figure 4(b), the code has been changed in order to prevent the dual WALKER role of the variable
list, and the role of each variable is marked explicitly in the code. In the loop on lines 11 and
12, a non-parameter local variable curr is used for sequential list traversal. A separate parameter
variable first is used for the recursive WALKER behavior. (In the case of Figure 4, the number of
variables in the code did not increase. The change was effected by analyzing the responsibilities
of each variable and reassigning these responsibilities to the existing variables.)

Again, such clarification of source code is something that can be accomplished without using
roles of variables. Roles-based analysis of programs can and did, however, help in locating prob-
lematic examples.

Assessing impact on students
Table 1 shows the results of the multiple choice question in our CS2 feedback form. The number
of students who chose each answering option is indicated on the corresponding line in the table,
as is the relative popularity of each answer. We examined the reactions of CS majors and CS mi-

 1 node mergesort(node list; int N) { 1 node mergesort(node first; int N) {
 2 2 /* first: walker, N: stepper */
 3 node first, 3 node curr; /* curr: walker */
 4 last; 4 node mid; /* mid: temporary */
 5 int i; 5 int i; /* i: stepper */
 6 if (list->next == NULL) { 6 if (first->next == z) {
 7 return list; 7 return first;
 8 } else { 8 } else {
 9 first = list; 9 curr = first;
10 // locate middle point 10 // locate middle point
11 for (i = 2; i <= (N / 2); i++) 11 for (i = 2; i < (N / 2); i++)
12 list = list->next; 12 curr = curr->next;
13 last = list->next; 13 mid = curr->next;
14 list->next = NULL; 14 curr->next = NULL;
15 return merge(15 return merge(
16 mergesort(first, N / 2), 16 mergesort(first, N / 2),
17 mergesort(last, N-(N/2))); 17 mergesort(mid, N-(N/2)));
18 } 18 }
19 } 19 }

 (a) before (b) after

Figure 4: Implementations for the mergesort algorithm before and after the process of
role-based code clarification.

Roles of Variables in Teaching

418

nors separately since their exposure to roles during the course had been different. We did Pear-
son’s chi-square test for the data and the probability of a chi-square of 6.42 with four degrees of
freedom is p=0.1696. We would have rejected the null hypothesis "there is no difference between
the data sets" if the p-value were smaller than the significance level [alpha] = 0.05. However, this
was not the case and we concluded that there were no statistically significant differences between
the CS majors and CS minors. As indicated by Table 1, almost one third of the CS2 students were
oblivious to roles of variables. Another third did not understand roles or did not consider them
useful. The remaining third of the students considered roles of variables interesting or useful
(though not necessarily for the purposes of our CS2 course).

As noted above, we analyzed the final examination answers of the CS majors to see if roles of
variables featured in their answers. Four out of the 87 CS majors who participated in the final
examination used role names in their description of the Quicksort algorithm. Two students clearly
used the name of a variable role in their answers to the DFS algorithm design question. All these
students used the role names correctly. Three more students used role-like terminology in their
answers (‘flag’, ’current node’ (x2)). In an earlier experiment, Kuittinen and Sajaniemi (2004)
had found that of students that had been taught using roles throughout a CS1 course, 35% used
role names when asked to freely summarize a given program in an examination. Due to the dif-
ferent nature of our course and examination question, our result can not be directly compared to
this prior result. Nevertheless, it seems clear that a lightweight introduction in CS2 has a signifi-
cantly lesser impact on students than that observed by Kuittinen and Sajaniemi.

We did not, then, observe widespread use of roles of variables by students who had received a
lightweight introduction to the concept. The most obvious explanation is that the limited amount
of teaching time we allocated for roles in the CS2 course is not enough for the roles to be adopted
into active use by students. A more emphatic use of roles in teaching could result in better learn-
ing of roles and of the course topics. An alternative explanation for the limited use of roles by
students is that the algorithms in question have competing vocabulary strongly related to the algo-
rithm itself. In the Quicksort explanations in the examination, for example, the term pivot was
used in most of the answers. Similarly, in DFS, it is natural to divide the vertices of the graph in
three parts: visited, fringe, and unvisited. The relatively high number of DFS-specific terms used
in the students’ answers indicates an understanding of the algorithm on a higher level of abstrac-
tion than the code level where roles of variables operate.

There was a sizable minority of students who felt they benefited from roles of variables. We find
this result acceptable in light of the very small costs of the lightweight introduction we used, de-
spite the lack of widespread adoption of roles by students. In the future, our students will have
had a greater exposure to roles before they even start the CS2 course.

Table 1: CS2 students' opinions about roles of variables

CS majors CS minors
Answer

N % N %

I have not heard of roles of variables 25 30 98 32

I did not quite understand the roles 14 17 73 24

I understood the roles but do not consider them useful 16 20 39 13

Roles helped me understand algorithms 21 26 60 19

Roles were interesting but did not help with this course 6 7 40 13

 Sorva, Karavirta, & Korhonen

 419

CS1 - Basics of Programming

Teacher perspective
We found the inclusion of roles in our CS1 teaching materials to be exciting and easier than we
expected. Annotating our example materials, redesigning pseudocode examples, and writing in-
troductions for each role did not take many days, even if one includes the time it took to read up
on relevant roles literature. We found that many of our examples were readily explained using
roles. We felt that roles made it easier to point out what similarities there were between different
examples and how programming patterns/recipes could be applied to similar tasks, using the same
combination of roles. Roles helped us document how multiple code locations that make use of the
same variable work together and implement a ‘delocalized plan’ to accomplish a task (cf. Solo-
way, Pinto, Letovsky, Littman, & Lampert, 1988). It seems likely to us that all this aids students
in schema formation and helps instill them with ‘canonical procedure’.

Prior to refurbishing our teaching materials, we had expected roles to be a useful documentative
aid suitable in particular for the procedural parts of our programs (local variables inside methods).
We had had some reservations about how well the roles concept is applicable to object-oriented
programs. As a result, we were pleasantly surprised to find that member variables could also be
annotated quite conveniently, which often succinctly clarified the inner workings of classes.

Further windfall from adopting roles appeared as we were able to identify points in our lecture
sequence where multiple roles were introduced in quick succession. In one case, we had even in-
troduced two new roles in the same example, possibly causing an unnecessarily high cognitive
load for our students. Identifying such examples and restructuring them so that different ways of
using variables appear more gradually may help with cognitive load management.

In our course materials, most roles were used for both member variables and local variables. An-
notating a member variable and a local variable with the same role name indicates that we think
of them as similar. However, our experience suggests that in many people’s perception a MOST-
RECENT HOLDER member variable, for instance, is used rather differently than a MOST-RECENT
HOLDER local variable. A settable attribute of an object (the name of a person object, say) is ex-
perienced as being quite different from a local variable that stores the most recent element en-
countered in a collection during iteration. While such variables do have a certain similarity in us-
age, this similarity is not very obvious to all. We are undecided as to whether it is a similarity that
needs or should be emphasized to novices. This kind of dividedness of roles is potentially confus-
ing and may pose a challenge to instructors and role set developers.

We can not discard out of hand the argument that learning roles of variables adds to students’
cognitive load as they have to struggle with even more variable-related terminology. However,
we would like to stress that when we used roles to teach variable use, we did not teach our stu-
dents to do anything with variables that we would not otherwise have taught. Roles just provided
us with a vocabulary to better discuss these topics. We find it unlikely that any cognitive load
inherent in learning roles would not be compensated for by the way roles clarify program behav-
ior. We feel that systematically presenting roles as a ’third dimension’ of variables as per Figure 1
may further assist in the matter.

Assessing impact on students
We observed that some CS1 students started voluntarily using role names when discussing pro-
grams during the course, and at least a few expressed chagrin when faced with the task of reading
code that was not annotated with role names. On the other hand, there were other students who
had been quite oblivious to roles despite their inclusion in teaching. No clear complaints about

Roles of Variables in Teaching

420

using roles reached the ears of the instructors, although a few of the more experienced program-
mers in our class argued that they were a ‘trivial’ waste of time. This perhaps serves to underline
the fact that roles are a vehicle for conveying tacit expert knowledge to novices.

The results of our course questionnaire indicated that the vast majority (over 90%) of the 290
Finnish-speaking respondents had at least heard of roles of variables by the end of the CS1 course
(see Table 2). As indicated in Table 3, when asked whether roles of variables seemed useful, over
three quarters of the students who commented on the issue at least ‘somewhat agreed.’ The ma-

jority also agreed that roles had helped with understanding given code and method design exam-
ples. A sizable minority of students felt that roles had at least somewhat helped them when they
designed or wrote their own programs. In general, a larger proportion of programming beginners
felt they had benefited from roles compared to students with prior programming experience; the
same was true of students who attended more lectures compared to students who did not come to
many lectures.

Our assessment of the impact of roles is based on students' self-evaluations of the usefulness of
roles, a different method than the external analyses of Sajaniemi and his colleagues (Byckling &
Sajaniemi, 2006; Sajaniemi & Kuittinen, 2005). Our results conform to those prior results and
suggest that roles of variables can help students in gaining programming knowledge. The fact that
our students felt roles were less useful for program construction tasks compared to program com-
prehension tasks agrees with the earlier finding that introducing roles without using role-based
simulations of programs may have a limited impact on program construction skills (Byckling &
Sajaniemi, 2006).

Conclusions
In this paper, we have described our experiment of integrating roles of variables into our teaching
on two computer science courses. Our motivation for this experiment arose out of a wish to learn
better how instructors could benefit from roles of variables in their work and enhance students'
schema formation as well as to manage students' cognitive load during introductory programming
education. We have discussed the effects of these experiments on a teacher's work, described new

Table 2: CS1 students' opinions about roles of variables

Answer N %
I had not heard of roles of variables before reading this question 24 8

I had noticed roles but did not pay too much attention to them 170 59
I studied and/or made use of the roles during the course 92 32

Table 3: CS1 course students opinions about roles of variables continued (0=no
comment, 1=totally disagree, 2=somewhat disagree, 3=somewhat agree, 4=totally agree)

Statement 0 1 2 3 4
Roles of variables seem potentially useful 33 10 47 166 34

Roles in the program examples helped me understand how the code works 44 32 65 107 42
Roles of variables in the pseudo-code design examples helped me
understand the examples 64 16 49 125 35

Roles of variables were useful when designing and writing code of my own 50 45 91 82 20

 Sorva, Karavirta, & Korhonen

 421

ideas on how to make use of roles in pedagogy, and assessed the effect of the experiment on the
students.

From a teachers’ point of view, we found roles of variables to be very useful. Roles are concrete,
easily linked to code and to pseudocode designs, and we found them easy to use both as a docu-
mentative tool and when doing stepwise refinement of programs. It feels natural to teach them in
introductory programming alongside other variable-related concepts, such as type and scope. In
short, roles provided us with new ways to assess and improve our teaching materials and meth-
ods. In some cases, examples in teaching materials even became clearer for the instructor himself.
Surely, this can only be good for the students as well.

We have no clear evidence as to whether using role names significantly increases students’ cogni-
tive load when the concept and terminology need to be learned and understood. However, we be-
lieve that the long-term benefits of facilitating schema formation are very likely to outweigh any
initial costs of learning roles. This matter calls for further study.

Our assessment of the impact of roles on CS1 students agrees with earlier findings and suggests
that roles-based instruction can improve students' programming knowledge, perhaps especially
with program comprehension tasks. However, not all students involved in our experiment found
roles useful for learning programming, and it is clear that some of our students were not moti-
vated to learn about roles. This was particularly evident in our CS2 course, where fewer than 25%
of the students felt that roles of variables had helped them understand algorithms. We must use
caution when drawing conclusions from this result. The result does not mean that roles of vari-
ables do not help novices understand algorithms. Indeed, we believe that many more of our stu-
dents could have benefited from thinking about programs in terms of roles, had they chosen to do
so. The result quoted above may say more about the ‘lightweight’ manner in which we introduced
roles in the CS2 course. One third of the students did not even recognize the term role of variable
at the end of the course. If many students do not even consider adopting roles of variables into
their thinking when roles are introduced ‘casually’, then we should examine the phenomenon fur-
ther and find ways to improve our teaching of roles. This is in line with the previous studies that
suggest using role-based program animators to teach roles of variables more explicitly rather than
lightweight (Sajaniemi & Kuittinen, 2005). Other ways to introduce roles of variables, however,
could also be considered. For example, an explicit requirement to think about roles of variables in
exercises might work to this effect.

In conclusion, we can say that our experiments with roles of variables have been very encourag-
ing. Our experiences and results suggest that roles of variables have the potential to be an excel-
lent tool to teachers of introductory programming, and we are looking forward to making even
better use of roles in the future.

Acknowledgements
This work was supported by the Academy of Finland under grant number 210947.

References
Adelson, B. (1981). Problem solving and the development of abstract categories in programming lan-

guages. Memory and Cognition, 9(4), 422–433.

Baddeley, A. (1994). The magical number seven: Still magic after all these years? Psychological Review,
101(2), 353–356.

Ben-Ari, M., & Sajaniemi, J. (2004). Roles of variables as seen by CS educators. SIGCSE Bulletin, 36(3),
52–56.

Roles of Variables in Teaching

422

Byckling, P., & Sajaniemi, J. (2006). Roles of variables and programming skills improvement. SIGCSE
Bulletin, 38(1), 413–417.

Chi, M., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. Sternberg (Ed.), Advances in the
psychology of human intelligence (pp. 7–75). Hillsdale, NJ, USA: Erlbaum.

Détienne, F. (1990). Expert programming knowledge: A schema-based approach. In J. M. Hoc, T. R. G.
Green, R. Samurcay, & D. J. Gilmore (Eds.), Psychology of programming (pp. 205–222). Academic
Press.

Du Boulay, B. (1986). Some difficulties of learning to program. Journal of Educational Computing Re-
search, 2(1), 57–73.

Eckerdal, A., & Berglund, A. (2005). What does it take to learn ‘programming thinking’? Proceedings of
the First International Computing Education Research Workshop, 135–143.

Eckerdal, A., McCartney, R., Moström, J. E., Ratcliffe, M., & Zander, C. (2006). Can graduating students
design software systems? SIGCSE Bulletin, 38(1), 403–407.

Fix, V., Wiedenbeck, S., & Scholtz, J. (1993). Mental representations of programs by novices and experts.
Proceedings of the SIGCHI conference on Human factors in computing systems, 74 - 79.

Hazzan, O. (2003). How students attempt to reduce abstraction in the learning of computer science. Com-
puter Science Education, 13(2), 95–122.

Kuittinen, M., & Sajaniemi, J. (2004). Teaching roles of variables in elementary programming courses.
SIGCSE Bulletin, 36(3), 57–61.

Lister, R., Seppälä, O., Simon, B., Thomas, L., Adams, E. S., Fitzgerald, S., et al. (2004). A multi-national
study of reading and tracing skills in novice programmers. SIGCSE Bulletin, 36(4), 119–150.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., et al. (2001). A multi-
national, multi-institutional study of assessment of programming skills of first-year CS students. SIG-
CSE Bulletin, 33(4), 125–180.

Mead, J., Grey, S., Hamer, J., James, R., Sorva, J., St. Clair, C., & Thomas, L. (2006). A cognitive ap-
proach to identifying measurable milestones for programming skill acquisition. SIGCSE Bulletin,
38(4), 182–194.

Muller, O. (2005). Pattern oriented instruction and the enhancement of analogical reasoning. Proceedings
of the First International Computing Education Research Workshop, 57–67.

Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent develop-
ments. [Introduction to special issue]. Educational Psychologist, 38(1).

Rist, R.S. (1989). Schema creation in programming. Cognitive Science, 13, 389–414.

Sajaniemi, J. (2002). An empirical analysis of roles of variables in novice-level procedural programs. Pro-
ceedings of IEEE 2002 Symposia on Human Centric Computing Languages and Environments, 37–39.

Sajaniemi, J. (2003). The roles of variables home page. Retrieved December 5, 2006, from
http://cs.joensuu.fi/~saja/var_roles/

Sajaniemi, J., Ben-Ari, M., Byckling, P., Gerdt, P., & Kulikova, Y. (2006). Roles of variables in three pro-
gramming paradigms. Computer Science Education, 16(4), 261–279.

Sajaniemi, J., & Kuittinen, M. (2003). Program animation based on the roles of variables. Proceedings of
the 2003 ACM symposium on Software visualization, 7–16.

Sajaniemi, J., & Kuittinen, M. (2005). An experiment on using roles of variables in teaching introductory
programming. Computer Science Education, 15(1), 59–82.

Sajaniemi, J., & Navarro Prieto, R. (2005). Roles of variables in experts’ programming knowledge. Pro-
ceedings of the 17th Annual Workshop of the Psychology of Programming Interest Group, 45–159.

http://cs.joensuu.fi/~saja/var_roles/�

 Sorva, Karavirta, & Korhonen

 423

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming knowledge. IEEE Transactions on
Software Engineering, 10(5), 595–609.

Soloway, E., Pinto, J., Letovsky, S., Littman, D., & Lampert, R (1988). Designing documentation to com-
pensate for delocalized plans. Communications of the ACM, 13(11), 1259–1267.

Sweller, J., & Levine, M. (1982). Effects of goal specificity on means-ends analysis and learning. Journal
of Experimental Psychology: Learning, Memory and Cognition, 8, 463–474.

Tuovinen, J. E. (2000). Optimising student cognitive load in computer education. Proceedings of the Aus-
tralasian Conference on Computing Education, 235–241.

Wallingford, E. (2003). The elementary patterns home page. Retrieved December 5, 2006, from
http://www.cs.uni.edu/~wallingf/patterns/elementary/

Winslow, L. E. (1996). Programming pedagogy – A psychological overview. SIGCSE Bulletin, 28(3), 17–
22.

Wirth, N., (1971). Program development by stepwise refinement. Communications of the ACM, 14 (4),
221–227.

Biographies
Juha Sorva is a programming instructor and doctoral student at Hel-
sinki University of Technology, Finland. He received his M. Sc.
(Computer Science) from the same university. His research interests
are introductory programming pedagogy, novices' understanding of
program execution and the underlying computer, educational software,
and other topics in the field of computer science education research.
His hobbies include schema formation and struggling with cognitive
load.

Ville Karavirta is a researcher at Helsinki University of Technology.
He received his M.Sc. (Computer Science) in 2005 and is currently a
PhD student at HUT. His research interests are computer science edu-
cation, algorithm visualization, and electronic learning environments.

Ari Korhonen is a researcher and instructor at Helsinki University of
Technology (HUT). He received his M.Sc. (Computer Science) in
1997, and his D.Sc. (Tech) diploma in 2003. His research includes data
structures and algorithms in software visualization, various applications
of computer aided learning environments, and automatic assessment in
computer science education.

http://www.cs.uni.edu/~wallingf/patterns/elementary/�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [305 305]
 /PageSize [432.000 648.000]
>> setpagedevice

