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Abstract

The trend towards larger structures and aggressive clock frequencies has been a fundamental
driving force for modern microprocessor design. While one approach is to deeply pipeline any
high delay structure, dependencies and critical loops have made it increasingly difficult to speed
execution through extensive pipelining. One alternative is to remove larger structures from the crit-
ical path. We explore the ramifications of stripping all but the most necessary functionality out of
the processing core, leaving only a tiny u-core. Although past studies have shown the possibility
to build decoupled structures for some individual helper structures, the impact of streamlining all
of these structures at the same time has not been explored. Along with describing the challenges
in decoupling the helper engines, we focus on the performance, power consumption and thermal
behavior of the p-core architecture. We use a detailed performance, power and thermal modeling in
our analysis. Our results indicate that the y-core provides a 20% reduction in power over a conven-
tional monolithic core, while providing comparable performance (1% improvement on average).
By dynamically configuring the helper engines to different application phases, an additional 13%
power savings can be attained with only an average 3% degradation in performance. Our experi-



KURSUN, SHAYESTEH, SAIR, SHERWOOD & REINMAN

mental analysis also show that the microcore architecture has favorable thermal behavior, with 86%
fewer thermally-critical cycles compared to a monolithic core.

1. Introduction

Despite increases in the transistor count available for designing future generation processors, emerg-
ing technology trends including poor wire latency scaling, increased power density, and reduced
transistor reliability threaten to limit processor performance. Future scaling trends challenge mi-
croarchitects in improving both clock rate and IPC [1].

Prior work aimed at improving single-threaded IPC involves the discovery and exploitation of
instruction level parallelism (ILP). However, wire latency has been projected [1] to impact large
pipeline structures more than smaller structures, increasing the latency of critical processor loops.
This will impact the size of the branch prediction structures that help hide the overall pipeline
latency, the cache structures that hide instruction and data memory latency, the physical register file
that supports a large instruction window to provide more ILP, and the other auxiliary speculative
structures that further boost ILP or hide memory latency. One approach to providing aggressive
cycle times in the face of increasing latency is to deeply pipeline all aspects of the processor, from
the branch predictor to the instruction wakeup logic to the cache memories.

While deep pipelining has been effective at increasing operating frequency, one of the reasons
that performance lags behind that of the trends set by frequency is the increased latency to critical
processor loops [2] from deeply pipelined structures. Furthermore, there is extra latency from rout-
ing complexity due to large structures [3]. Larger structures also contribute to the growing power
density and thermal problems facing modern processor design through greater power dissipation
and longer clock wires [4].

One alternative approach is to decouple or factor out large structures from critical pipeline loops.
Some structures can be broken in two: a small structure that can hold enough state to provide low-
latency performance, and a larger second level structure that can hold sufficient capacity to keep
performance high. Other structures can be completely factored from the processor core and have
inherent latency tolerance that allows them to avoid becoming critical loops in the processor. Such
factoring not only helps to reduce critical loop latency, but can also simplify routing on the critical
path and help reduce power from critical path structures. Throughout the paper, factoring will be
used as a general term to describe both of these optimizations.

In this paper, we combine prior techniques in factoring into a cohesive framework and extend
this paradigm to more of the processor core. In [5], the structures that are factored from the main
processor pipeline are called helper engines. We maintain this naming convention, and refer to the
part that remains after extensive factoring as the p-core. A conventional architecture featuring larger
structures on the critical path is referred to as a monolithic architecture.

While there may be a performance penalty in dividing the processor into a u-core and helper
engines, as measured by instructions committed per cycle, there are many advantages that outweigh
these penalties. The primary advantage of such a technique is that the performance critical parts are
factored from the larger, more latency tolerant structures. This allows us to target each of these two
different domains with different circuit, architectural, or application level techniques. For example,
we can target the pu-core with very aggressive, high-power,large transistors to achieve the best cycle
time possible. On the other hand, we can use slower, less power-hungry, and more dense transistors
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for the helper engines. As a result, the u-core architecture shows favorable power and thermal
behavior.

Power consumption has become a critical design constraint for microprocessors in recent years [6].
As the number of transistors on the next generation microprocessors nears one billion, ever shrink-
ing feature sizes and exponential rises in cooling costs will further complicate this problem. We
believe that our p-core architecture can provide significant power reduction opportunities, not only
as the promising initial results of this study illustrate, but also by the flexibility the factored archi-
tecture paradigm creates for other more sophisticated power optimization techniques.

Yet another effect of the technology trends is processor heating. Thermal issues threaten critical
aspects of microprocessor design, such as reliability, proper functionality, performance and cost. To
make matters worse, the cost of cooling increases at an exponential rate for increased temperatures
[7].

To tackle the thermal issues, dynamic thermal management (DTM) has become an integral part
of microprocessor designs [8, 9, 10, 11, 12]. However, it is important to note that all DTM tech-
niques cause performance degradation to some degree, as a result of reducing the clock frequency,
decreasing the supply voltage or in some cases temporarily shutting down the entire chip. Ther-
mally efficient architectures with less overall heating are extremely desirable, as they minimize the
overhead due to DTM.

Our results reveal that the p-core architecture provides favorable power and thermal behavior
compared to a conventional monolithic architecture. As the power dissipation and on-chip tem-
peratures continue to rise for the next generation processor designs, inherent power and thermal
efficiency of architectures are expected to become even more important.

Prior reseach [13, 14, 15, 16] has explored factoring or decoupling certain parts of the processor
pipeline. Our contributions over prior work include:

e An extension of the factoring paradigm to the entire processor pipeline: the u-core architec-
ture

e Analysis of which structures are suitable for factoring - and the individual challenges in fac-
toring these structures

e An exploration of how far different structures can be factored

e A detailed power and performance modeling to analyze the benefits of the factored p-core
over an aggressively pipelined conventional core

e An investigation of helper engine tuning in order to achieve the best performance with mini-
mum number of helpers and minimum power dissipation

e An evaluation of thermal benefits of the u-core architecture over a conventional monolithic
architecture

The rest of this paper is organized as follows. In Section 2, prior work on the helper engine
paradigm 1is discussed. Section 3 describes our factored p-core architecture. Simulation method-
ology and benchmark descriptions can be found in Section 4. Section 5 presents performance and
power results and we conclude in Section 6.
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2. Related Work

In this section we discuss the relationship between our design and the most relevant prior work.
In Section 3, we will detail the prior work for each individual helper engine when discussing the
implementation of that helper engine.

In [5], Smith proposes a processor implementation that consists of several distributed functional
units, each fairly simple and with a very high frequency clock. These units communicate via point—
to-point interconnections that have short transmission delays. He then describes how surrounding
this simple core pipeline with helper engines that perform speculative tasks off the critical path
results in enhanced overall performance. Since the helper engines are off the critical path, they can
use slower transistors to reduce static power consumption. This is also the motivation behind our
factored design, where the speculative structures are shrunk to a bare minimum size to support near
ILP but they are duplicated in larger sizes outside of the critical path for extracting distant ILP. On
a follow-up paper [13], Kim and Smith discuss the microarchitecture and ISA that implements this
distributed processing paradigm, which utilizes hierarchical register files and with a global register
file to hold global state.

Another type of factoring is multiclustering [17]. In this approach, the structures of the execu-
tion core are split into different execution engines - much like the distributed functional units of [5].
These execution clusters help to scale the instruction scheduling window (including the overall issue
bandwidth) and the register file. However, performance can be impacted by cross cluster communi-
cation of register values and poor cluster utilization.

Both of these approaches ([13][17]) could be used to further factor the structures of our p-core,
and we will consider this enhancement for future work. However, we consider factoring the struc-
tures of the entire processor core, including some popular performance accelerating helper engines,
and explore the impact that this factoring has on both performance and power for an aggressive
clock.

3. Factored Architectures

The main idea behind factored architectures is to move a set of larger structures out of the regular
processor core, resulting in a tiny core with only the necessary components included. Figure 3
shows a conventional(monolithic) core that utilizes a variety of architectural features commonly
found in modern microprocessors. These features are necessary to extract as much ILP from the
application as possible. However, some of these units such as register file, first level caches, and
branch predictor, lie on the critical path of the processor and can therefore have a significant impact
on cycle time or critical architectural loops. Figure 3 illustrates our factored architecture, with most
of the larger blocks moved out of the critical loops. We demonstrate three different types of factored
structures:

e Hierarchical extensions: Caches and branch predictor (shown in light gray)
e Complete factorization: Value predictor and data prefetcher (shown in dark gray)

e Hybrid factorization: Register file and ROB (shown with gray stripes)

Hierarchical extensions remove larger structures from the processor core and leave a much
smaller version of the original structure in the core. This benefits structures that are tightly inte-
grated with the processor core for high performance (such as the data cache), particularly those with
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Figure 1: The monolithic core (with all the helper engines are part of the main processor, some of
them on the critical path)

high port counts (such as the register file). Complete factorization is suitable for structures with
flexible functionality and high latency tolerance that can be configured to require little or no inter-
action with the core. Some architectural features can use a hybrid of these two approaches (hybrid
factorization) - completely factoring some components (e.g. structures of the commit stage) and
hierarchically extending others (e.g. the register file).

There have been a number of previous studies on independently factoring individual parts of a
processor, as will be introduced in this Section. Yet these studies have not explored what happens
when this principle of factoring is applied to more than one structure of the core. We believe our
study is unique in synthesizing all of these different ideas together and studying their impact on
overall system power.

While structures such as caches are fairly easy to factor, other structures require more extensive
analysis and work. In this section we describe how each of the major structures may be factored,
and how we model that in our processor simulator.

3.1 Data Cache

We move the L1 data cache out of the core processor pipeline and replace it with a smaller LO cache,
as in [14]. The LO extends the cache hierarchy, therefore we access the L1 data cache on an LO miss.

3.2 Instruction Fetch

Similar to the data cache, we insert a smaller LO instruction cache and move the L1 instruction
cache out of the u-core. To compensate for the smaller cache size, we use out-of-order instruction
fetch as described in [18]. In this scheme, a placeholder is used in the instruction fetch queue
(IFQ) to maintain program order - and the execution core stalls if the next entry to be consumed
from the IFQ is still in flight. We model the complexity this brings to the IFQ by implementing
the equivalent of an MSHR [19] for the instruction cache. In the IFQ, we keep the index of the
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Figure 2: The factored p-core architecture.

MSHR that will hold the missing instruction cache block along with the instruction’s offset inside
the cache block. Subsequently, when we see an index to the MSHR in the next IFQ entry to be
consumed, we access the MSHR directly to get the required instruction word. The MSHR has a
valid bit indicating when the decoding of the instruction can commence. For the case that MSHR
runs out of indices or IFQ entries, we stall instruction fetch. However, we found this to be extremely
rare without an observable impact on execution performance. Out-of-order fetch is also used in our
baseline monolithic case, as it has the additional benefit of reducing instruction cache miss stalls.

3.3 Data Prefetch

We model a stream buffer architecture [20] guided by a stride-filtered markov predictor as proposed
in [21]. In the monolithic microprocessor, the address predictors guide prefetches to the stream
buffer, which is accessed in parallel with the data cache. When factored, the address predictors and
stream buffers are moved further away from the core pipeline. The stream buffers of the factored
prefetch engine are only accessed on LO misses. We allow a single prediction and a single prefetch
per cycle, guided by the address predictor trained on the LO miss stream.

3.4 Value Prediction

Value prediction [22] is one approach to break true data dependencies and create more instruction
level parallelism in an application. We use a hybrid value predictor [23], yet we only predict load
instructions. This structure can be accessed early in the pipeline as we only need the PC of the
instruction to make the prediction. Our predictor makes a single prediction per cycle. We make
use of an extra bit associated with each instruction in the instruction cache to dynamically mark
instructions for value prediction. In this study, we only mark instructions that are loads and that can
be confidently predicted by our value predictor.
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One way of factoring the value predictor is to store the predicted load value in the register
allocated to the load instruction we are predicting. When the data access completes, it overwrites
the predicted value in the destination register with the actual load value. If the predicted value and
the actual value do not match, a checker engine similar to the ARB [24] detects the misprediction
and squashes the mispredicted result and its dependents with the same hardware that is used in a
branch misprediction.

While value prediction has not reached popularity in current microprocessor designs, our experi-
mental results indicate that it provides a significant performance improvement for some benchmarks.
Our investigation of tuning helper engines for individual applications (Section 5.3) illustrates that
for some benchmarks, the value predictor is essential for high performance. For instance, mcf, a
memory bound application, sees a notable performance improvement with value prediction.

3.5 Branch Address Prediction

Our architecture makes use of a basic block target buffer (BBTB) [25], a branch address predictor
that predicts an entire basic block each cycle. The PC at the head of the basic block serves as an
index to the predictor, which returns a target address, a fallthrough address, a branch type, and two
per-branch prediction counters: one to make per-branch direction predictions, and one to arbitrate
between the per-branch prediction and the global branch direction prediction. In the y-core design,
we reduce the size of the BBTB in the core pipeline and add a second level BBTB as done in [15].
Similarly we decouple branch prediction from the instruction cache using fetch target queue (FTQ).
On a first level BBTB miss, the second level BBTB is probed and fetch stalls until a response is
received from the second level. If the second level misses, we guess a fixed fetch block size and
continue fetching until a misprediction is detected.

3.6 Register File and Commit

In the factored architecture we use a multi-level register file similar to the one proposed in [16].
The basic differences are that we model an inclusive register file hierarchy where the second level
register file (RF1) includes all the state contained in the first level register file (RF0). Since commit
is a vital part of the processor pipeline, this helper engine is never disabled, but the second level
register file can be dynamically configured with either 128 or 512 entries at runtime depending on
the needs of the application. On a branch misprediction, the second level register file recovers the
state of the first level register file. The first level register file releases physical registers when they
are no longer the most recent version of a given logical register and when there are no more in-flight
instructions that are waiting to consume their value. The second level register file releases a given
physical register pr that is mapped to a logical register /r only after the instruction defining pr has
committed and a subsequent instruction remapping /r has committed. This ensures that the value
will not be required for a branch misprediction or to provide precise exceptions. We leverage the
fact that the second level register file is only used for commit and branch recovery by factoring the
second level register file, reorder buffer (ROB), and commit hardware into a helper engine, similar
to [26]. However, our ROB only holds status information for instructions in the pipeline — all result
values are stored in the register file, as in the Pentium 4 [27]. Moreover, unlike the future file, our
first level register file holds a subset of the total physical registers rather than only the most recent
versions of logical registers (effectively holding more state than the future file). In the core pipeline,
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a simple tag allocator handles ROB allocation, with a tag implicitly mapping to an ROB entry and
providing a means to hook up dependent instructions. The register map remains in the core pipeline.

This is a hybrid of complete factorization and hierarchical extension, as the register file is ex-
tended with a second level structure, but the commit hardware and ROB are completely factored,
with only tag allocation in the ROB impacting the core timing.

4. Methodology

The simulator used in this study was derived from the SimpleScalar/Alpha 3.0 tool set [28], a suite of
functional and timing simulation tools for the Alpha AXP ISA. The timing simulator executes only
user-level instructions. Simulation is execution-driven, including execution down any speculative
path until the detection of a fault, TLB miss, or branch misprediction. Our processor operates at a
5.6GHz clock rate.

We used the SPEC2000 benchmark set for our experiments. Phansalkar et. al. [29], developed
a technique that measures the inherent similarity of programs based on their microarchitecture-
independent characteristics. Their results show that the SPEC2000 benchmark set can be divided
into 8 clusters. Following their approach we show results for a representative subset of the SPEC
suite.

The programs were compiled on a DEC Alpha AXP-21164 processor using the DEC C and
C++ compilers under OSF/1 V4.0 operating system using full compiler optimization (-04 -1ifo).
We picked the 4 most dominant phases as determined by the hardware phase detection technique
described in [30] and simulated these phases as representative samples of the program. On average,
they accounted for approximately 70% of the execution time of each benchmark. All benchmarks
were simulated using the ref inputs. For each phase, we simulated 30 Million instructions after
warming up our architectural structures for 10 Million instructions. The results we report do not
include the warmup time for the 10 Million instructions.

4.1 Architectural Model

We have made significant modifications to SimpleScalar to model the various speculative techniques
and different configurations in this study. We modeled all of the structures and latencies in the
microcore and monolithic architectures.

Table 1 presents the simulation parameters for the monolithic and microcore architectures we
explore in this paper. Cache and register file access latencies are extracted from Cacti [31] for a
70nm Technology at 5.6 GHz frequency.

Note that the difference in branch misprediction penalty is the extra latency attributed to the
larger branch predictor, register file and instruction cache in the monolithic core.

4.2 Power and Thermal Simulator

A complete analysis of the static and dynamic power consumption and resulting temperature char-
acteristics of different architectures is crucial to our study. Our power/thermal simulator performs
cycle-accurate analysis of investigated architectures based on the following recently developed
power and thermal models. We used process parameters for a 70nm process at 5.6GHz with 1V
supply voltage, in order to have a better understanding of next generation submicron, low supply
voltage, aggressively clocked microprocessors.
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block size, 4 cycle latency

block size, 3 cycle latency

Monolithic Microcore
Core LO Helper Engines
Instruction Window 256 entry ROB 256 entry ROB
and Physical RF 256 entry RF1 128 entry RFO 256 entry RF1
BBTB 2048-entry 4-way set associative 256-entry 4-way set associative | 2048-entry 4-way set associative
L1 Data 64KB 4-way set associative, 8KB 4-way set associative, 16KB 64-way set associative,
Cache dual port with a 32 byte dual port with a 32 byte single port with a 32 byte

block size, 6 cycle latency

L1 Instruction
Cache

64KB 2-way set associative,
single port with a 32 byte
block size, 4 cycle latency

8KB 2-way set associative,
single port with a 32 byte
block size, 2 cycle latency

64KB 2-way set associative,
single port with a 32 byte
block size, 5 cycle latency

Value Predictor
(1 prediction per cycle)

2K-entry stride
8K-entry markov

none

2K-entry stride
8K-entry L2 markov

Address Predictor
(1 prediction per cycle)

2K-entry stride
4K-entry markov

none

2K-entry stride
4K-entry markov

Stream Buffer

32-entry FA buffer

none

32-entry FA buffer

Branch Misprediction 26 cycles 20 cycles

Core Width 8-way issue, 4-way decode, 4-way commit

Memory and 150 cycle memory latency, 512KB 4-way set associative unified (instruction and data)
L2 Cache cache with a 64 byte block size and 12 cycle latency

Functional Units 8 integer ALUs, 2 integer MULT/DIV, 2 FP ALU, 2 FP MULT/DIY, 2 load/store

Table 1: Simulation parameters for the monolithic and microcore architectures.

We have incorporated Wattch [32] models for dynamic power analysis of the microprocessor
blocks. The experimental results we present are extracted with the most aggressive conditional
clocking strategy, where the dynamic power scales linearly with access to the ports.

For submicron technologies, such as 70nm, leakage power constitutes a significant portion of the
overall power. ITRS [33] predicts that leakage power is likely to increase exponentially and make up
50% of the total power dissipation for the next deep submicron processes. Hence, an accurate and
reliable leakage power analysis is a necessity. We adapted leakage models from Hotleakage [34] in
our power/thermal simulator. Hotleakage models are extended and improved versions of the well-
known Butts and Sohi leakage equations [35]. We also used leakage parameters from Hotleakages’
pre-determined values specific to the 70nm process technology.

A detailed and accurate thermal analysis of the different architectures we explore in this study
is crucial. It has been shown that thermal metrics based on power consumption or power den-
sity of individual blocks do not provide accurate thermal estimation [10]. HotSpot [10] provides
accurate thermal model that enables more detailed and localized thermal analysis of the micropro-
cessor. It is based on the equivalent circuit of thermal resistance and capacitances, that model the
microarchitectural blocks and other aspects of the chip thermal package. We used Hotspot’s thermal
resistance/capacitance models and RC solvers for our analysis.

Dynamic and leakage power consumption for each microprocessor unit are collected over a pre-
determined thermal sampling interval, as the temperatures change over periods greater than every
cycle. We experimented with various sampling interval lengths in order to explore the trade off
between error rate and computational overhead. Hotspot proposes a 10K instruction sampling in-
terval for 180nm and 3.3GHz, our results showed similar error rates for 10K sampling interval for
70nm and 5.6 GHz as well. For our temperature results, we simulate 300 Million instructions after
fast-forwarding application-specific number of instructions as proposed in [36].
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Figure 3: Performance and power comparison of the monolithic core and our p-core architecture.

Our power/thermal simulator also incorporates the thermal runaway phenomena exposed by the
Hotleakage and Hotspot models. Thermal runaway is caused by the exponential dependency of
leakage power on temperature: increased temperature increases leakage power, increased leakage
power causes an even further increase in temperature. This positive feedback loop between leakage
power and temperature is quite significant and can lead to device failure.

5. Results

In this section we evaluate the impact of factored architectures based on the performance and power
dissipation and temperature results from our experimental analysis.

5.1 Impact of Factoring

Figure 5.1 compares the performance and power dissipated by three architectures relative to the
monolithic core.

e y-core Architecture (U): excludes the first level (L1) data cache, L1 instruction cache, L1
BBTB, value predictor, or data prefetcher. The L2 register file is tuned to hold at most 128
registers. This demonstrates how well the architecture would perform if all structures were
simply scaled down without factoring.

e Optimized Monolithic(OM): a conventional core with serial access caches, BBTB, and reg-
ister file. These structures are much more energy efficient, as they pinpoint the specific data
array that is required for each access to the structure, consuming energy for that array alone.
However, energy savings come at a cost of latency in accessing the structures. We optimisti-
cally assume that all structures can be pipelined to accomodate this increased latency without

10

Normalized Power
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L1 DCache | L1ICache | L2 Cache | Register File | BBTB | Branch Misprediction
Baseline 4 cycle 4 cycle 20 cycle 4 cycle 3cycle | 31cycle
Optimized || 6 cycle 5 cycle 25 cycle 7 cycle Scycle | 37 cycle

Table 2: Latency parameters for the monolithic and p-core architectures.

impacting the cycle time of the processor, and further assume that the BBTB can be pipelined
using a technique like multiple block ahead prediction [37] without any loss of accuracy.

e y-core Architecture with Helper Engines (UwH): all of the helper engines are activated and
the L2 register file is tuned to 512 registers. These configurations are summarized in Table 2.

In Figure 5.1 we present the average of individual phase results, weighted by the amount of
execution time contributed by that phase. All results are normalized to the performance of the
monolithic core. All architectures make use of simple serial access structures for address and value
prediction to save energy.

The optimized monolithic (OM) architecture provides a dramatic power reduction over the base-
line monolithic architecture (21% reduction on average). Yet, it can also impact performance due to
the added latency of the core structures, dropping IPC by 10% on average.

The main performance benefit of the u-core (U) over the monolithic architecture comes from
the fact that the smaller structures in the p-core have shorter access latencies, as in the case of the
LO caches. However, for the u-core architecture, performance is severely impacted by insufficient
capacity in the caches and BBTB, insufficient instruction window size, and the lack of value predic-
tion and data prefetching. This drop in performance can actually increase the total power consumed
by the p-core architecture over the baseline monolithic architecture, as seen in crafty, mesa, and
especially mcf. The larger power dissipation is due to various reasons, including: an increase in L2
activity due to LO misses, wasted power on wrong path execution, and simply the overall increase
in run time (i.e. a larger amount of leakage power).

However, when all helper engines are enabled, the p-core architecture is able to achieve higher
performance. Even though the structures on the p-core are much smaller than their monolithic
counterparts, they are able to capture enough ILP such that the pipeline remains full while accesses
to the larger helper engines are pending. In fact benchmarks such as art, bzip, galgel, gap,
mcf, and parser are able to outperform the monolithic case, despite the latency of their helper
engines. The benchmark apsi experiences a 14% drop in performance due to the reduction in state
tracked by the LO data cache. As will be seen, the miss rate for the first level data cache in apsi
increases in the y-core.

Note that the primary impact of the p-core architecture is on the power consumption of the
factored hardware. The fact that it minimizes performance impact while improving power con-
sumption is in stark contrast to most other low-power techniques that try to take advantage of the
slack in programs by slowing down the processor. In those schemes, the goal is to maximize power
savings with the least amount of slowdown possible. Our results demonstrate that we are able to
save as much power as the optimized monolithic (OM) architecture (within 3% on average) yet with
performance comparable or better than the baseline monolithic architecture (1% improvement on
average).

11
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Dcache | Icache | BBTB BBTB

Miss Miss Miss | Mispredict

IPC Rate Rate Rate Rate

applu || 2.00 0.15 0.01 0.00 0.02
apsi 0.96 0.17 0.02 0.00 0.07
art 0.91 0.39 0.00 0.00 0.06
bzip 1.43 0.03 0.00 0.00 0.05
crafty || 0.72 0.02 0.06 0.08 0.07
eon 1.03 0.01 0.04 0.04 0.04
galgel || 1.83 0.16 0.00 0.00 0.05
gap 1.35 0.03 0.01 0.01 0.06
mcf 0.62 0.42 0.00 0.00 0.05
mesa || 1.58 0.01 0.03 0.01 0.04
parser || 0.83 0.04 0.00 0.00 0.06

Table 3: Statistics for the baseline monolithic architecture.

DLO | DL1 ILO IL1 | BBTBO | BBTBI1 BBTB

Miss | Miss | Miss | Miss Miss Miss | Mispredict

IPC | Rate | Rate | Rate | Rate Rate Rate Rate

applu 195 | 020 | 0.62 | 0.04 | 0.12 0.00 0.15 0.02
apsi 0.83 | 032 | 039 | 0.04 | 0.44 0.09 0.58 0.11
art 094 | 047 | 0.69 | 0.00 | 0.46 0.00 0.00 0.06
bzip 1.49 | 005 | 043 | 0.00 | 0.63 0.00 0.02 0.06
crafty || 0.69 | 0.18 | 0.11 | 0.08 | 0.72 0.28 0.29 0.10
eon 097 | 0.07 | 0.06 | 0.07 | 0.55 0.22 0.20 0.07
galgel || 1.90 | 0.29 | 0.48 | 0.00 | 0.92 0.00 0.00 0.05
gap 1.34 | 0.04 | 025 | 0.04 | 0.46 0.19 0.05 0.07
mcf 0.67 | 044 | 0.85 | 0.00 | 0.59 0.00 0.00 0.05
mesa 1.46 | 0.11 | 0.03 | 0.09 | 0.28 0.23 0.05 0.07
parser || 0.88 | 0.09 | 040 | 0.02 | 0.04 0.02 0.05 0.07

Table 4: Statistics for the y-core architecture with all helper engines enabled.
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OCore [OFirst Level Helper M Prefetching + Value Prediction M Second Level Data Cache

0.8
i
g 0.6
£0.4
0.2

applu  apsi art bzip2  crafty eon galgel gap mcf  mesa parser

Figure 4: Power breakdown for Monolithic and p-core architectures. (Normalized by monolithic
architecture power for each benchmark)

Figure 5.1 shows how different helper engines contribute to power consumption in our y-core
architecture. Power values are normalized to the baseline monolithic architecture (shown in the
first bar). The second bar represents the power of the y-core with all helper engines enabled. We
separated value prediction and prefetching from other helpers, because they are completely factored.
First level helper accounts for power consumed in all the other helper engines including the DL1,
IL1, BBTBI, and the hierarchically extended register file.

Figure 5.1 also illustrates the reduction in core power in the u-core compared to the baseline
monolithic architecture. The core dissipates 90-94% of the power in baseline monolithic architec-
ture, compared to 54-60% in the p-core architecture. With more power dissipated in the latency
tolerant helper engines, the p-core is able to take better advantage of optimizations trading perfor-
mance for power.

Further data is presented in Tables 3 and 4. Despite an increase in the LO miss rates for the
hierarchically extended structures (note that the register file design does not miss), the p-core with
helper engines (UwH) is still able to reduce the power impact with a slight average IPC improve-
ment.

5.2 How Far Can We Factor?

To better explore how far we can scale the size LO structures without performance loss, we simulated
a fairly large design space of structure sizes for the hierarchically extended helper engines.

Figure 5.2 presents results for different data cache sizes and associativities. We adjusted laten-
cies for each configuration using CACTI [31]. While smaller associativities seem to help reduce
power dissipation, associativity is critical for high performance in applications like apsi and ap—
plu. Capacity is also important — applications such as art and galgel see a degradation in
performance when going to smaller sized caches, even with comparable associativities.

Results for different BBTB sizes (in number of entries) and associativities are illustrated in Fig-
ure 5.2. Although some benchmarks are unaffected by reduced BBTB state, others suchas crafty,
eon, gap, mesa, and parser see dramatic degradation in performance as overall predictor size
or associativity are decreased. Despite available backing storage from the helper engines, there is
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Figure 6: IPC impact of LO BBTB scaling.
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clearly a critical amount of state that must be maintained in the core to achieve high performance.
We skip the results for the LO instruction cache size, as almost of the benchmarks seem to be tolerant
of that. Only me sa saw any significant IPC degradation, even for 1KB instruction caches.

5.3 Tuning Helper Engines

The results presented thus far, have assumed that all of the helper engines are on at all times. As
discussed in Section 2, programs can be divided into blocks of similar execution behavior, called
phases. Various techniques have been proposed to extract the phase behavior of a program. Program
phase behaviour can provide even more significant energy savings by allowing us to selectively turn
on/off a subset of the available helper engines. Note that it would be possible to dynamically tune
the monolithic architectural structures to a particular program phase (as in [38]), but this approach
limits how far the latency of these structures can be reduced, as the structures still consume the
same chip area whether they are on or off, and can still impact wire routing and wire latency.
Tuning the helper engines is one alternative to this, and will migrate the control logic needed to
perform the reconfiguration and the actual larger structures themselves away from the core. The
p-core structures could still be dynamically tuned as in prior work to provide even more power
savings. The flexibility of helper engine design allows us to independently control individual units
so that only the critical helpers for the execution of a given application phase are actually on, thus
reducing overall power dissipation. In the u-core design, there are number of helper engines (our
initial implementation has six) all working together to speed up the execution of a program. The key
observation here is that for any given program phase, some helpers are more helpful than others, yet
in the simplest design they are all being used and all consuming power. In many cases it is possible
to turn off the non-critical helper engines to reduce the power consumption. To achieve this, we
need a policy for turning helper engines on/off or tuning them (e.g. in the case of the L2 register
file).

However it is not very straight-forward to determine which helper engines should be turned
on/off to minimize the power for a given performance target. The performance improvement due to
each helper engine is not independent from the status of the other helper engines. For example, using
only the large branch predictor or the large instruction cache provides no additional performance,
yet by using both there might be significant improvement. This is a fairly simple example, the real
interactions between helpers like value prediction and prefetching are far more complex. This part
of the experiments is targeted to investigate the above effect.

Figure 5.3 illustrates the optimal configuration (in E}”Teg%ﬂ) for the four most dominant phases of

each benchmark. The columns of the table represent the helper engines (r=ROB, v=value prediction,
b=branch prediction, i=instruction cache, p=prefetching, c=data cache). A marked square indicates
that for the given phase the corresponding helper engine should be“on” for best performance.

Helper engine configurations usually refer to “on” or “off”. However, the L2 register file is
never turned off, but is tuned so that either 128 or 512 entries in the file are active and available
for renaming. The final two columns show the normalized IPC and total power dissipation for each
configuration relative to keeping all helper engines on. The configurations in Figure 5.3 all achieve
performance within 5% of the highest performance configuration. They were found by a brute
force search of the design space, simulating every possible case and taking the configuration with

the lowest ?Ilfg%y measurement. It is important to observe in Figure 5.3 that there is no one good
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r|v]bli|p]c IPC | Power bli|p]c IPC | Power
applu 11X X[X]X] 0.97 0.92 apsi 1 X[ X]X] 0.96 0.70
2 X[ [ X]X]X] 0.97 0.76 2 X[X[X]X] 0.98 0.71
31X X[X]X] 0.95 0.92 3 X[X]X] 0.96 0.70
4 X[X|X] 0.95 0.71 4 X[X] |X] 0.98 0.65
art 1 X[X] 0.98 0.64 bzip2 1 X 0.95 0.61
2 X[X] 0.97 0.65 2 X[X[X]X] 0.96 0.72
3 X[X] 0.96 0.64 3 X 0.96 0.60
4 X|[X] 0.97 0.65 4 X] 1.00 0.56
crafty 1 X[ X X] 0.98 0.63 eon 1 X| X X] 0.99 0.64
2 X[X] |X] 0.99 0.63 2 X[X] |X] 0.99 0.63
3 X[X] |X] 0.99 0.63 3 X[X] |X] 0.98 0.63
4 X[X] |X] 098 0.63 4 X[X| |X] 097 0.64
galgel | 1 |X 0.97 0.86 gap 1 X| X X] 0.96 0.63
2 X[X] 0.97 0.63 2 X[X] |X] 0.97 0.71
31X X] 0.96 0.87 3 X[X] |X] 0.97 0.63
41X X] 0.96 0.87 4 X 1.00 0.70
mcf 1 X X[X] 0.98 0.71 mesa 1 X[X X] 0.97 0.63
2 X X] 0.98 0.67 2 X[X] |X] 0.97 0.64
3 X X[X] 0.97 0.71 3 X[X] |X] 0.97 0.64
4 X X| 0.98 0.67 4 X[X| |X] 097 0.64
parser | 1 XXX X] 0.98 0.68
2 X[X[X]X]X] 0.96 0.74
3 X[X] |X] 0.96 0.64
4 X[ X[ X]X]X] 0.96 0.73

Figure 7: Optimal configuration.
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Figure 8: Performance and thermal behavior of a microcore(u-core) vs a monolithic core

configuration, but rather there are multiple good configurations for each benchmark. Furthermore
for some benchmarks very different configurations are best suited for different phases.

Obviously, a brute force search among exponential number of possible cases is not a good design
choice for a runtime system. Therefore we include hardware use counters along with each helper
engine to determine the utility of each structure. For each program phase (dynamically identified
as in [30]), the utility of each structure can be determined after the initial execution of that phase,
where the usage counts of each helper engine determines whether or not that engine should be
activated in that phase. Usage counters will only be incremented when a helper engine is actually
successfully used, not just probed (i.e. the number of L1 data cache hits would be counted, not the
number of accesses). Each helper engine would have an activation threshold that the usage counter
would need to exceed before it is considered necessary for that phase. This dynamically formed
phase configuration can be stored in a predictor and used guide future configuration of the helper
engines. However, such an approach is not guaranteed to find an optimal configuration. Future work
will explore such approaches and more intelligent schemes to selectively enabling helper engines.

5.4 Thermal Characteristics of a Microcore vs a Monolithic Core

Figure 5.4 compares the performance and thermal behavior of a conventional monolithic core and
the p-core architecture on some of the SPEC 2000 benchmarks. The upper half of the figure shows
performance in BIPS for different benchmarks, and the lower half illustrates the heating behavior
of the investigated architectures. This latter component shows the percentage of cycles for which at
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least one block exceeds the indicated temperatures: 75°C, 79°C, 82°C and 85°C. Darker colors in
the lower graphs indicate higher temperatures. The rest of the figures in this section are similarly
constructed. For example, galgel sees comparable performance with either the y-core or mono-
lithic architecture, but the monolithic core sees a temperature greater than 85°C almost 97% of the
time. The p-core only exceeds 85°C around 18% of the time, and stays below 82°C around 42% of
the time. Note that for many benchmarks, and particularly in monolitic architectures, temperature
frequently exceeds the thermal threshold, 82°C. These results should be considered as an upper
bound for performance that are not be achievable without some form of thermal management. On-
chip temperatures for the y-core architecture are significantly lower than the monolithic core, but it
still retains good performance comparable to that of the monolithic core. This can be attributed to
the significantly smaller structures in the y-core that are much more power efficient. It is important
to note that the I'TRS projects a reduction in maximum permited junction temperatures for the fu-
ture generations of process technologies. The maximum tolerated junction temperatures are around
85°C for 130nm and even lower for smaller process technologies.

6. Conclusion

In this paper, we have proposed a factored architecture that is enhanced by a number of different
helper engines. The critical pipeline structures of instruction fetch, branch prediction, data memory
access, and the register file have all been hierarchically extended, and the value predictor, data
prefetch engine, and commit hardware have been completely decoupled from the factored core. This
new microcore architecture is able to reduce total processor power dissipation by 20% on average,
while it attains comparable or better performance than a deeply pipelined monolithic design at
the same clock frequency. This power gain does not take into account further possible reduction
in routing complexity and wire delay that can be achieved by reducing the size of structures in
the critical pipeline core. The flexibility of the microcore architecture opens the door to further
energy-saving techniques that can be applied to the more latency tolerant helper engine structures.
Furthermore, through dynamic configuration of the helper engines to different application phases, an
additional 13% power savings can be attained with only an average 3% degradation in performance.
We demostrated that the microcore architecture provides lower on-chip temperatures compared
to a conventional monolithic architecture. Factoring larger and power-hungry structures out of the
core limits the number of accesses to such blocks and reduces the amount of heat generated by them.
Our experimental results show that the microcore reduces the number of cycles over the critical
thermal threshold by 86% on average, even without any dynamic thermal management technique.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock rate versus ipc: The end of
the road for conventional microarchitectures,” in 27th Annual International Symposium on
Computer Architecture, 2000.

[2] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,” in Proceedings of the
Eighth International Symposium on High-Performance Computer Architecture, 2002.

[3] E. Sprangle and D. Carmean, “Increasing processor performance by implementing deeper
pipelines,” in 29th Annual International Symposium on Computer Architecture, 2002.

18



(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

AN EVALUATION OF DEEPLY DECOUPLED CORES

D. Brooks, P. Cook, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J. Well-
man, V. Zyuban, and M. Gupta, “Power-aware microarchitecture: Design and modeling chal-
lenges for next-generation microprocessors,” in IEEE Micro, Nov. 2000.

J. E. Smith, “Instruction-level distributed processing,” IEEE Computer, vol. 34, pp. 59-65,
Apr. 2001.

T. Mudge, “Power: A first class design constraint for future architecture and automation,” in
Proceedings of the 7th International Conference on High Performance Computing, 2000.

S. Gunther, F. Binns, D. Carmean, and J. Hall, “Managing the impact of increasing micropro-
cessor power consumption,” in Intel Technology Journal Q1, 2001.

D. Brooks and M. Martonosi, “Adaptive thermal management for high-performance micropro-
cessors,” in Workshop on Complexity Effective Design, June 2000.

D.Brooks and M.Martonosi, “Dynamic thermal management for high-performance micropro-
cessors,” in International Symposium on High-Performance Computer Architecture (HPCA-7),
pp- 171-182, Jan. 2001.

K.Skadron, M.Stan, W. Huang, S.Velusamy, K. Sankaranarayanan, and D. Tarjan,
“Temperature-aware microarchitecture,” in 30th Annual International Symposium on Com-
puter Architecture, pp. 2—13, June 2003.

W.Huang, J.Renau, S-M.Yoo, and J. Torrellas, “A framework for dynamic energy effiency and
temperature management,” in 33rd International Symposium on Microarchitecture, pp. 202—
213, Dec. 2000.

C.-H. Lim, W. Daasch, and G.Cai, “A thermal-aware superscalar microprocessor,” in Interna-
tional Symposium on Quality Electronic Design, pp. 517-522, Mar. 2002.

H.-S. Kim and J. E. Smith, “An instruction set and microarchitecture for instruction level dis-
tributed processing,” in Proceedings of the 29th annual international symposium on Computer
architecture, pp. 71-81, June 2002.

J. Kin, M. Gupta, and W. Mangione-Smith, “The filter cache:an energy efficient memory struc-
ture,” in IEEE International Symposium on Microarchitecture, Dec. 1997.

G. Reinman, T. Austin, and B. Calder, “A scalable front-end architecture for fast instruction
delivery,” in 26th Annual International Symposium on Computer Architecture, May 1999.

R. Balasubramonian, S. Dwarkadas, and D. Albonesi, “Reducing the complexity of the reg-
ister file in dynamic superscalar processors,” in Proceedings of the 34th Annual International
Symposium on Microarchitecture, Dec. 2001.

K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic, “The multicluster architecture: Reducing
cycle time through partitioning,” in International Symposium on Microarchitecture, 1997.

J. Stark, P. Racunas, and Y. N. Patt, “Reducing the performance impact of instruction cache
misses by writing instructions into the reservation stations out-of-order,” in 30th International
Symposium on Microarchitecture, pp. 34—43, Dec. 1997.

19



[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]
[34]

KURSUN, SHAYESTEH, SAIR, SHERWOOD & REINMAN

D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,” in 8th Annual Interna-
tional Symposium of Computer Architecture, pp. 81-87, May 1981.

N. Jouppi, “Improving direct-mapped cache performance by the addition of a small fully as-
sociative cache and prefetch buffers,” in Proceedings of the 17th Annual International Sympo-
sium on Computer Architecture, May 1990.

T. Sherwood, S. Sair, and B. Calder, ‘“Predictor-directed stream buffers,” in 33rd International
Symposium on Microarchitecture, Dec. 2000.

M. Lipasti and J. Shen, “Exceeding the dataflow limit via value prediction,” in Proceedings of
the 29th Annual ACM/IEEE International Symposium on Microarchitecture, December 1996.

K. Wang and M. Franklin, “Highly accurate data value prediction using hybrid predictors,” in
30th Annual International Symposium on Microarchitecture, pp. 281-290, Dec. 1997.

M. Franklin and G. S. Sohi, “Arb: A hardware mechanism for dynamic reordering of memory
references,” IEEE Transactions on Computers, vol. 46, May 1996.

T. Yeh and Y. Patt, “A comprehensive instruction fetch mechanism for a processor support-
ing speculative execution,” in Proceedings of the 25th Annual International Symposium on
Microarchitecture, pp. 129—-139, Dec. 1992.

J. E. Smith and A. R. Pleszkun, “Implementation of precise interrupts in pipelined processors,”
in 12th Annual International Symposium on Computer Architecture, 1985.

G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel, “The mi-
croarchitecture of the pentium 4 processor,” Intel Technology Journal Q1, 2001.

D. C. Burger and T. M. Austin, “The simplescalar tool set, version 2.0,” Technical Report
CS-TR-97-1342, U. of Wisconsin, Madison, June 1997.

A Phansalkar, A.Joshi, L.Eeckhout, and L.Kohn, “Measuring program similarity: Experiments
with spec cpu benchmark suites,” pp. 2—13, Mar. 2005.

T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,” in 30th Annual Interna-
tional Symposium on Computer Architecture, June 2003.

P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing, power, and area
model,” in Technical Report, 2001.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for architectural-level power

analysis and optimization,” in 27th Annual International Symposium on Computer Architec-
ture, pp. 83-94, June 2000.

in International Technology Roadmap for Semiconductors, 2003.

Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan, “Hotleakage: A
temperature-aware model of subthreshold and gate leakage for architects,” in University of
Virginia Dept of Computer Science Tech Report CS-2003-05, Mar. 2003.

20



AN EVALUATION OF DEEPLY DECOUPLED CORES

[35] J. Butts and G. Sohi, “A static power model for architects,” in 27th Annual International
Symposium on Computer Architecture, pp. 191-201, June 2000.

[36] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically characterizing large
scale program behavior,” in Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems, Oct. 2002.

[37] A. Seznec, S. Jourdan, P. Sainrat, and P. Michaud, “Multiple-block ahead branch predictors,”
in Proceedings of the Seventh International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 116—127, Oct. 1996.

[38] D. Albonesi, “Selective cache ways: On-demand cache resource allocation,” in 32nd Interna-
tional Symposium on Microarchitecture, Nov. 1999.

21



