© 2013 by Alexei Kourbatov, JavaScripter.net/math
Main article: Maximal gaps between prime k-tuples
Prime quintuplets (5-tuples) are the densest permissible clusters of 5 consecutive primes. There are two types of prime quintuplets:
The observed maximal gaps between prime quintuplets near p are at most log p times the average gap.
The approximate size of a maximal gap that ends at p is given by the following empirical formula:
whereE(max g5(p)) = a(log(p/a) − 2/5) = O(log6p)
Maximal gaps between prime quintuplets of each type are listed below.
1st quintuplet: 2nd quintuplet: Gap g5(p): 5 11 6 11 101 90 101 1481 1380 1481 16061 14580 22271 43781 21510 55331 144161 88830 536441 633461 97020 661091 768191 107100 1461401 1573541 112140 1615841 1917731 301890 5527001 5928821 401820 11086841 11664551 577710 35240321 35930171 689850 53266391 54112601 846210 72610121 73467131 857010 92202821 93188981 986160 117458981 119114111 1655130 196091171 198126911 2035740 636118781 638385101 2266320 975348161 977815451 2467290 1156096301 1158711011 2614710 1277816921 1281122231 3305310 1347962381 1351492601 3530220 2195593481 2199473531 3880050 3128295551 3132180971 3885420 4015046591 4020337031 5290440 8280668651 8286382451 5713800 9027127091 9033176981 6049890 15686967971 15693096311 6128340 18901038971 18908988011 7949040 21785624291 21793595561 7971270 30310287431 30321057581 10770150 107604759671 107616100511 11340840 140760439991 140772689501 12249510 162661360481 162673773671 12413190 187735329491 187749510491 14181000 327978626531 327994719461 16092930 508259311991 508275672341 16360350 620537349191 620554105931 16756740 667672901711 667689883031 16981320 1079628551621 1079646141851 17590230 1104604933841 1104624218981 19285140 1182148717481 1182168243071 19525590 1197151034531 1197173264711 22230180 2286697462781 2286720012251 22549470 2435950632251 2435980618781 29986530 3276773115431 3276805283951 32168520 5229301162991 5229337555061 36392070 9196865051651 9196903746881 38695230 14660925945221 14660966101421 40156200 21006417451961 21006458070461 40618500 22175175736991 22175216733491 40996500 22726966063091 22727007515411 41452320 22931291089451 22931338667591 47578140 31060723328351 31060771959221 48630870 85489258071311 85489313115881 55044570 90913430825291 90913489290971 58465680 96730325054171 96730390102391 65048220 199672700175071 199672765913051 65737980 275444947505591 275445018294491 70788900 331992774272981 331992848243801 73970820 465968834865971 465968914851101 79985130 686535413263871 686535495684161 82420290 761914822198961 761914910291531 88092570
1st quintuplet: 2nd quintuplet: Gap g5(p): 7 97 90 97 1867 1770 3457 5647 2190 5647 15727 10080 19417 43777 24360 43777 79687 35910 101107 257857 156750 1621717 1830337 208620 3690517 3995437 304920 5425747 5732137 306390 8799607 9127627 328020 9511417 9933607 422190 16388917 16915267 526350 22678417 23317747 639330 31875577 32582437 706860 37162117 38028577 866460 64210117 65240887 1030770 119732017 120843637 1111620 200271517 201418957 1147440 203169007 204320107 1151100 241307107 242754637 1447530 342235627 344005297 1769670 367358347 369151417 1793070 378200227 380224837 2024610 438140947 440461117 2320170 446609407 448944487 2335080 711616897 714020467 2403570 966813007 970371037 3558030 2044014607 2048210107 4195500 3510456787 3514919917 4463130 4700738167 4705340527 4602360 5798359657 5803569847 5210190 7896734467 7902065527 5331060 12654304207 12659672737 5368530 13890542377 13896088897 5546520 14662830817 14668797037 5966220 15434185927 15440743597 6557670 17375054227 17381644867 6590640 17537596327 17544955777 7359450 25988605537 25997279377 8673840 66407160637 66416495137 9334500 74862035617 74871605947 9570330 77710388047 77723371717 12983670 144124106167 144138703987 14597820 210222262087 210238658797 16396710 585234882097 585252521167 17639070 926017532047 926036335117 18803070 986089952917 986113345747 23392830 2819808136417 2819832258697 24122280 3013422626107 3013449379477 26753370 3538026326827 3538053196957 26870130 4674635167747 4674662545867 27378120 5757142722757 5757171559957 28837200 7464931087717 7464961813867 30726150 8402871269197 8402904566467 33297270 9292699799017 9292733288557 33489540 10985205390997 10985239010737 33619740 12992848206847 12992884792957 36586110 15589051692667 15589094176627 42483960 24096376903597 24096421071127 44167530 37371241083097 37371285854467 44771370 38728669335607 38728728308527 58972920 91572717670537 91572784840627 67170090 109950817237357 109950886775827 69538470 325554440818297 325554513360487 72542190 481567288596127 481567361629087 73032960 501796510663237 501796584764467 74101230 535243109721577 535243185965557 76243980 657351798174427 657351876771637 78597210 818872754682547 818872840949077 86266530 991851356676277 991851464273767 107597490The ratio g5(p)/log6p is never greater than 0.0987, i.e. maximal gap sizes are less than log p times the average gap, where p is the prime at the end of the gap.
Copyright © 2013, Alexei Kourbatov, JavaScripter.net.