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1.  INTRODUCTION

Global and regional climate models (GCMs and
RCMs, respectively) share common computational
aspects, as well as the need to provide quantitative
projections of climate change by means of a better
characterization of relevant uncertainties. This char-
acterization requires the use of possibly large ensem-
bles of model simulations to explore the different
sources of uncertainty (Giorgi et al. 2008) and to
design and calibrate procedures for use in construct-
ing probabilistic regional climate scenarios (Déqué et
al. 2010, this Special). This process includes the devel-

opment of techniques for the generation of probabilis-
tic predictions by statistical processing of ensemble
integrations. In particular, weighting individual cli-
mate model members of an ensemble based on model
performance has been suggested as a way to reduce
the unwanted uncertainty in climate model projec-
tions (Giorgi & Mearns 2002, 2003, Murphy et al.
2004, Tebaldi et al. 2005, Tebaldi & Knutti 2007,
Knutti et al. 2010). The underlying assumption is that
uncertainties can be reduced if the results from the
‘better performing’ models are given a greater weight
in the ensemble when used to produce probabilistic
projections.
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In the European FP5 project PRUDENCE (Chris-
tensen et al. 2007, Christensen & Christensen 2007),
it was concluded that the RCM formulation plays an
almost equal role in determining uncertainty, com-
pared with that related to the boundary conditions pro-
vided by the driving GCM, at least for summer condi-
tions when the model interior is more decoupled from
the large-scale boundary conditions (Déqué et al. 2005,
2007). This suggests that weighting of RCM output is a
natural step to explore, as pursued in the European
FP6 project ENSEMBLES. This project extended the
approach in PRUDENCE by generating a matrix of
experiments that would better span the uncertainty
range that is due to both GCM and RCM formulation
(van der Linden & Mitchell 2009). One of the objectives
of ENSEMBLES was to explore performance-based
RCM weights that could to be used in the generation of
regional climate change probability distributions.

In such a pursuit, it becomes central to choose suitable
metrics of model performance that are independent of
the driving GCM and yet trace important characteristics
of regional climate. Clearly, there is no objective univer-
sal approach to the choice of metrics, as an unmanage-
able number of different metrics could be utilized to
cover all the degrees of freedom in a climate model.
A subjective selection of a limited set of metrics with a
priori largely unknown interdependencies is unavoid-
able. This adds an element of uncertainty that needs to
be explored in the development of regional-scale climate
projections based on ensemble information.

Knutti et al. (2010) and Weigel et al. (2010) demon-
strated that multi-model-based climate change infor-
mation with a weighting concept comes with special
caveats. Equally weighted multi-model averages consis-
tently outperform single models (e.g. Knutti et al. 2010).
However, specific knowledge of the individual models is
also required, such as aspects of the relative contribution
of joint model errors and model noise, in order to avoid
biased weights (Weigel et al. 2010). This is related to the
fact that the internal variability of an RCM may be large,
in Europe particularly during summer, and any perfor-
mance-based weighting could thus be misleading in
terms of apparent added value in comparison to no (i.e.
equal) weighting. Furthermore, any estimate of model
skill necessarily builds on model performance under cur-
rent or past climate conditions, and thus needs to be
somehow extrapolated to possible future conditions
when applied to projections. Indeed, the assumption of
stationarity under a changing climate can be an issue
(Christensen et al. 2008, Buser et al. 2009).

In this study, which results from work completed as
part of the ENSEMBLES project, we analyze the effect
of different procedures for model weighting based on
multiple performance metrics in an ensemble of RCM
simulations for the European region. The set of RCM

performance metrics adopted here were selected fol-
lowing 2 general guidelines. (1) They should measure
RCM performance in climatic aspects that constitute
an ‘added value’ compared with the driving global
models; this involves, for example, the representation
of sub-GCM-scale climate features simulated by RCMs
and the simulation of extremes. (2) Model performance
in reproducing observed large-scale climate character-
istics should also be included among the metrics, as
this is the primary driver of regional climate.

This resulted in the selection of 6 metrics and the
development of corresponding weights for each of the
ENSEMBLES RCMs. These are described in detail in
other contributions to this Special. They are based on
multi-decadal simulations using ERA-40 reanalysis
fields as boundary conditions. Here we aggregate the
information contained in the individual metrics and
weights by exploring different methods for compound-
ing these 6 weights into a single weight for each of the
ENSEMBLES RCMs. The rationale for deriving a sin-
gle weight based on multiple performance metrics is
that a fundamental requirement for increasing the reli-
ability (and thus the weight) of a model is that this
model should perform well in a range of different met-
rics, to minimize possible compensation effects by dif-
ferent systematic model biases. In addition, such overall
model weights can be more easily used in the genera-
tion of joint regional climate change projections. There
may well be other aspects of uncertainty that will
eventually need consideration in this context, such as
the limited size of the ensemble, incomplete validation
data sets used, etc. All such caveats of course need to
be kept in mind in possible applications of the methods
presented. In addition, we stress that the unavoidable
element of subjectivity discussed above is still present
in our method, so that our work should, at this stage, be
considered mostly as exploratory of the relevance of
model weighting. This is particularly the case in view
of the fact that this work presents the first published
attempt to develop and implement metrics and weights
specifically designed for application to RCM ensembles.

2.  EXPERIMENTAL SET-UP,
EVALUATION METRICS

AND WEIGHTS

2.1.  RCMs and simulations

RCM data from 15 simulations at 13 institutes were
used (Table 1). These RCMs cover most of Europe
with a horizontal grid spacing of approximately 25
km. The experiments were set up so that each model
covered the same minimum domain (Fig. 1). Apart
from this, the exact extent of the model domain was
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up to each institute to decide. As a
result, a few models were run for
larger domains covering a greater
portion of the Atlantic (Models 1,
9–11, 15) than the other models. A
majority of the models use an identi-
cal rotated latitude–longitude grid
whereas the others use different Lam-
bert-conformal projections for their
respective grids (see Table 1). One of
the institutes, the Hadley Centre, ran
3 members from a perturbed physics
ensemble (Collins et al. 2010) in
which the physical parameterizations
in their RCM, HadRM3H, were differ-
ent. These differences in the physics,
also applied in their global model,
lead to different climate sensitivity in
the different model versions. The 3
model versions include a reference
(denoted as Q0), one with high
climate sensitivity (i.e. larger global
temperature response to greenhouse
gas forcing) (Q16), and one with low
climate sensitivity (Q3). Two insti-
tutes, C4I and SMHI (see Table 1), ran
the Rossby Centre RCA3.0 model
(Kjellström et al. 2005). Differences
between the 2 RCA3.0 simulations
include a larger domain size and more
vertical levels in the C4I simulations,
compared with the SMHI simulations.
Two institutes, DMI and Met. No, ran
different versions of the HIRHAM
model, with DMI using a newer sys-
tem with modifications in the formula-
tion of advection and some of the
physics routines, as well as an entire
rewrite of the code in Fortran90 (see
references listed in Table 1).

All models were run with lateral
boundary conditions and sea-surface
temperature (SST) taken from the
European Centre for Medium-range
Weather Forecasts reanalysis product
ERA40 (Uppala et al. 2005), although
a few of the participating groups
did not use the full horizontal and ver-
tical resolution offered by ERA40.
Sensitivity experiments (with Model 4,
data not shown) with different resolu-
tions of ERA40 boundary conditions
indicated that this has only a marginal
effect on the overall model perfor-
mance. The ERA40 period covers T
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1958–2002, a few model simulations used a slightly
later initial time, but all included the 1960s. There-
fore, here we base the model evaluation on data for
the common period 1961–2000, unless otherwise
noted. We also point out that, apart from differences
in model formulations between different RCMs, phys-
iographic characteristics—such as topography,
land/sea and land/lake contrasts, vegetation, surface
albedo, soil type and other fields related to such
quantities—also vary across the models. In addition,
the treatment of greenhouse gases (GHGs) and
aerosols differs across the RCMs. Most, but not all,
models prescribe increasing CO2 concentrations fol-
lowing observations, but the treatment of other GHGs
differs across the RCMs. Furthermore, HadRM3H is
the only model that explicitly takes into account
changing sulphate aerosol concentrations (Table 1).

2.2.  Individual metrics used for RCM validation

A set of 6 model performance metrics was estab-
lished in the procedure to generate RCM weights. As
mentioned above, although not fully comprehensive,
the proposed metrics cover a wide range of the so-
called added value for dynamical downscaling; such as
sub-GCM-scale and meso-scale information, fine-scale

processes to better capture higher order statistics and
extreme events (Rummukainen 2010). In addition, the
metrics take into account some of the basic require-
ments for a model to be assessed as credible in terms of
representing essential features of both the observed
climate and possible future climate conditions. These
metrics include the annual cycle of precipitation and
temperature, large-scale agreement with the driving
model to capture variations in the large-scale atmos-
pheric flow, and observed temperature trends. Table 2
summarizes the data sets used for deriving the final
individual weights f1, f2, …, f6. In the following we give
a short description of the 6 metrics. For a more compre-
hensive description, see references in Table 2.

2.2.1.  f1: large-scale circulation based on a weather
regime classification

This metric tests whether the RCMs are able to
reproduce observed weather regimes (Sanchez-
Gomez et al. 2008). Large-scale circulation is an impor-
tant constraint of regional climate and its variability
(van Ulden et al. 2007) and a satisfactory representa-
tion of large-scale regimes is a prerequisite for accept-
able RCM performance. Sanchez-Gomez et al. (2008)
evaluated several related metrics: (1) mean behaviour

Clim Res 44: 179–194, 2010182

Fig. 1. The domain of the regional climate models (RCMs) running on the RCM domains using a rotated latitude longitude grid.
The colours depict the altitude in one of the models (UCLM-PROMES). Eight subdomains are shown (BI: British Isles; IP: Iberian
Peninsula; Fr: France; ME: mid-Europe; Sc: Scandinavia; Md: Mediterranean region; Al: Alps; EE: Eastern Europe), as well as the
larger European domain (EUR), for which most metrics have been calculated. Numbers indicated in the corners of each 

domain identify the models (see Table 1)
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for each season in terms of mean frequency of occur-
rence of weather regimes, mean persistence and spa-
tial structure of the composite; (2) interannual variabil-
ity of the frequency of occurrence of weather regimes;
and (3) daily chronology of weather regimes. To calcu-
late the first metric (f1), the work of Sanchez-Gomez et
al. (2008) was repeated for 13 of the available RCM
simulations at 25 km. Models 9–11 are run with the
same model dynamics, the same lateral boundary forc-
ing technique and, for the most part, the same physics.
They are therefore considered as equivalent in terms
of large-scale dynamical regimes and thus only 1
model configuration analyzed was considered repre-
sentative for all 3 model versions.

2.2.2.  f2: meso-scale signal based on seasonal mean
temperature and precipitation

RCMs are expected to provide added information on
the meso-scale in comparison to coarse resolution
GCMs. As a measure of the meso-scale signal, Cop-
pola et al. (2010) use a spatial filter that removes the
large-scale component (>200–250 km) in both obser-
vations and RCMs. For temperature and precipitation,
they calculate separately the spatial correlation coeffi-
cients between observations and RCMs and the inter-
annual variability for both temperature and precipita-
tion. They also evaluate the correlation between
temperature and precipitation at the meso-scale. The
resulting 5 sub-weights are multiplied to obtain the
weight function (f2).

2.2.3.  f3: probability density distributions of daily and
monthly temperature and precipitation

The statistical properties of daily and monthly tem-
perature and precipitation are important for many ap-

plication purposes, but they also provide a summary
measure of the overall model performance in capturing
means and higher order moments. The chosen metric
(f3) considers empirical probability density functions
(PDFs) for precipitation and maximum and minimum
temperature (Kjellström et al. 2010). Whereas daily
data are seen as largely representing regional informa-
tion and, hence, form a relevant RCM metric, the
monthly precipitation field is much more strongly con-
trolled by the driving GCM. Therefore, the metric de-
veloped for the monthly precipitation statistics is not
used directly, but is given a lower weight in the final
metric. This is achieved by taking the square root of the
resulting sub-weights derived from the monthly means
when combining the sub-weights into the final metric.

2.2.4.  f4: extremes in terms of re-occurrence periods
for temperature and precipitation

Consideration of the far tails of distributions (99th,
99.9th and 99.99th percentiles) provides additional
information to the full PDF information as captured in
f3. We evaluate such extremes in 2 ways: by consider-
ing daily precipitation extremes taken directly from
the empirically deduced PDFs (Lenderink 2010) and by
using generalized extreme-value theory (Buonomo
unpubl.) for daily precipitation and daily maximum/
minimum temperatures. Weighting factors from each
of the extremes are combined after being individually
averaged over the seasons into annual numbers and
then multiplied by each other to obtain the f4 weight
function.

2.2.5.  f5: long-term trends in temperature

RCMs should be capable of capturing forced trends
when these are present in the driving boundary condi-
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Table 2. Metrics used to infer the final weights. Z500hPa: geopotential height; P: precipitation; T: mean temperature; EUR: 
European domain. See Fig. 1 for areas considered

Metric Variables Period Reference Data type Seasons Area Source
data set

f1 Z500hPa 1961–2000 ERA40 Daily DJFM, JJAS Minimum domain Sanchez-Gomez et al. (2008)

f2 P, T 1961–2000 CRU TS1.2 Monthly DJF, MAM, JJA, EUR Coppola et al. (2010)
SON

f3 P, Tmin, Tmax 1961–1990 EOBS2.0 Daily DJF, MAM, JJA, EUR Kjellström et al. (2010)
SON

f4 P, Tmin, Tmax 1971–2000 EOBS2.0 Daily DJF, MAM, JJA, EUR Lenderink (2010), 
SON Buonomo (unpubl.)

f5 T 1961–2000 EOBS2.0 Monthly DJF, MAM, JJA, Average of 8 Lorenz & Jacob (2010)
SON, ANN subdomains

f6 P, T 1961–2000 EOBS2.0 Monthly EUR Halenka et al. (unpubl.)
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tions. However, the omission or misrepresentation in
RCMs of possible local to regional forcings, such as
from aerosols or land-use changes, may inhibit this
behaviour. Because changes in local/regional forcings
are potentially important for the future regional cli-
mate, this component is assessed by comparing model
trends with corresponding observations (Lorenz &
Jacob 2010). Linear trends are calculated for Europe
and evaluated to yield f5. Only temperature is con-
sidered, because moisture in ERA40 is strongly influ-
enced by changes in the observational system during
the reanalysis period. This metric considers skill scores
for how well the observed trends are matched by the
RCMs in all seasons as well as for annual averages. To
calculate f5, 1⁄2 of the annual skill score and 1⁄8 of each
seasonal skill score are added.

2.2.6.  f6: annual cycle in temperature and
precipitation

The annual cycle of temperature and precipitation is
a basic measure of model performance. The model’s
ability to capture the annual cycle provides insight into
the model’s response to altered radiative forcing, such
as that arising from increased levels of GHGs. Halenka
et al. (unpubl.) investigate this and obtain f6.

2.3.  Combining individual metrics into one weight
per RCM

Each of the 6 metrics chosen above describes essen-
tial features of the European climate. To receive a high
weight, a model needs to perform well in all metrics
considered, so as to minimize possible counterbalanc-
ing effects of different systematic biases. This consid-
eration needs to be accounted for in combining the dif-
ferent performance metrics into an overall weight. The
simplest possible combination of the relative scores or
weights from the individual metrics (normalised to
have a sum equal to 1) would be to either add or multi-
ply them. The former case can be seen as a form of
averaging the importance of each metric, whereas the
latter implicitly assumes that the weights are essen-
tially independent of each other and that a model
needs to perform well for all metrics to obtain a high
score.

The multiplicative approach was chosen as our
baseline, following Giorgi & Mearns (2002), but we
also consider alternative approaches as described in
the next section. As part of the ENSEMBLES project,
these metrics were defined for different seasons and
both for European sub-regions (indicated in Fig. 1;
the same as those defined within the PRUDENCE

project; see e.g. Christensen & Christensen 2007) and
for Europe as a whole. Information on more tradi-
tional model evaluation is also available on the
ENSEMBLES web site (http://ensembles-eu.metoffice.
com/) and in van der Linden & Mitchell (2009). Here
we focus on the whole European scale and on the
annually averaged quantities. We stress that, by mak-
ing this choice, many detailed aspects of model skill
are washed out and the combined score may not
reflect the specific model performance for a particular
region or season.

As mentioned above, the performance of a particular
RCM as assessed by the metrics above can be com-
bined into a single weight for each RCM by, for exam-
ple, a multiplication of the weights f1, f2, …, f6: 

WPROD =   
6

Π
i =1

fi
ni (1)

where all the individual weights are first normalized
to yield a value between 0 and 1 (see accompanying
papers in this issue, and references in Table 2) before
entering Eq. (1). The final weight (WPROD) for each
model is also normalized across the models in order to
facilitate application to the model ensemble. The sim-
ple multiplication can be refined by allowing for the
exponent ni in Eq. (1) to be chosen as any positive
number. Assuming ni = 1 implies weighting the vari-
ous metrics equally, whereas choosing any positive
value different from 1 shifts the emphasis across the
individual metrics (a value of 0 would imply equal
weighting of the RCMs). This latter approach would
be warranted if some metrics were considered to be
more fundamental than others, for example when
applying the method to a specific impact sector or if
some of the metrics were not independent from each
other. Other methods could be introduced based on
more sophisticated approaches, for example paying
attention to how the different metrics are correlated
or formulated.

Given the subjective nature of the metrics aggre-
gation into weights, in order to explore the sensi-
tivity to different aggregation approaches we also
introduce 2 additional ways to combine the 6 in-
dividual metrics. The first considers a varying value of
the exponents ni. This second total weight (WREDU) is a
variant of the baseline in that the spread for all the sub-
weights is ‘normalized’ such that the ratio between the
highest and lowest assigned individual weight is 1.2.
This choice implies a maximum overall ratio across
model weights of 3 and is simply chosen to illustrate an
intermediate case between equal weights (n = 0) and
the weights according to Eq. (1) with n = 1. Formally,
this is obtained by using ni different from 1 in Eq. (1)
(see the explanation in Table 3), defining the re-nor-
malized sub-weights

~
fi,j as:
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~
fi,j = fi,j

ni (2)

for each model j, and each sub-weight i, and choosing
ni such that:

(3)

for each sub-weight i.
Finally, we examine a third way of obtaining the

total weight (WRANK) by means of first ranking all mod-
els according to their order of performance in terms of
each of the metrics. We then sum these 6
ranks and transform this rank sum into a
model weight by dividing the sum of the
ranks by the rank sum of each model and
then normalize it so that the total sum of
the weights is equal to 1.

3.  RESULTS

3.1.  Final weights

The final weight for each model and
each of the 3 approaches (WPROD, WREDU

and WRANK) is shown in Fig. 2 and Table 3
along with the corresponding 6 individual
metrics. The total weight picks out a ‘win-
ner’ in the sense that one model (KNMI-
RACMO2) has a significantly higher score
than the others. The weight obtained by
KNMI-RACMO2 is almost 17 times as high
as that for the model receiving the lowest

score when using our baseline approach (WPROD). A
closer inspection of the individual metrics reveals that
some are more discriminating than others (Table 3). In
particular, f2 and f4 contribute most substantially to
the spread. This is not surprising, as these metrics are
both calculated as products of several different
sub-metrics. By contrast, most of the other metrics are
constructed by averaging only one metric over the
different seasons.

How the 3 alternative aggregation methods modify
the ‘classical’ case of no weighting is illustrated in

max

min
.

,

,

j
i j

j
i j

f

f

�

�

( )
( ) = 1 2
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Table 3. Revised individual regional climate model (RCM) metrics and their 3 different combinations into RCM weights. WPROD is
calculated based on f1 to f6 according to Eq. (1) with n1 to n6 = 1. WREDU is calculated in a similar way, but with n1 to n6 calculated
to maintain the ratio between the highest and lowest assigned individual weight equal to 1.2 ( f1

^0.69, f2
^0.145, f3

^3.1, f4
^0.125, f5

^0.905,
f6

^1.33). WRANK is calculated according to the rank of the RCMs. The numbers are rounded to retain 3 decimals. The RCM 
acquiring the highest and the lowest respective value for each metric and weight is indicated

Model f1 f2 f3 f4 f5 f6 Wprod Wredu Wrank

1 0.058 0.050 0.067 0.044 0.066 0.069 0.026 0.058 0.057
2 0.071 0.058 0.067 0.070 0.060 0.069 0.054 0.066 0.08
3 0.069 0.059 0.067 0.113 0.066 0.061 0.084 0.064 0.066
4 0.068 0.039 0.066 0.062 0.070 0.068 0.035 0.066 0.053
5 0.075 0.073 0.067 0.036 0.059 0.069 0.038 0.067 0.073
6 0.073 0.112 0.065 0.066 0.069 0.067 0.112 0.075 0.073
7 0.070 0.137 0.069 0.132 0.066 0.068 0.268 0.094 0.123
8 0.070 0.041 0.067 0.057 0.065 0.067 0.032 0.064 0.055
9 0.061 0.048 0.067 0.054 0.071 0.066 0.034 0.063 0.057

10 0.061 0.049 0.066 0.030 0.064 0.062 0.016 0.047 0.036
11 0.061 0.051 0.067 0.080 0.073 0.066 0.055 0.069 0.071
12 0.068 0.072 0.066 0.038 0.069 0.069 0.039 0.068 0.063
13 0.072 0.089 0.065 0.063 0.065 0.066 0.077 0.065 0.057
14 0.057 0.053 0.067 0.054 0.067 0.069 0.035 0.063 0.062
15 0.067 0.068 0.067 0.099 0.070 0.065 0.096 0.074 0.073
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Fig. 2. WPROD, WREDU and WRANK for each of the regional climate models
(RCMs). See Table 1 for model numbers and Table 3 for definition of weights
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Fig. 2 (with no weighting or equal weighting given
by a value of 0.066 for each model). The baseline
case (WPROD) exhibits the largest differentiating
effect. The other methods result in a reduced varia-
tion across the RCM ensemble, but retain the same
overall performance ranking of the RCMs. The latter
result is not entirely trivial because the spread in
WPROD is determined primarily by 2 sub-weights (f2

and f4).
These weights are only meaningful vis-à-vis the

entire set of RCMs used in their construction. (1) The
weights for the models are relative to one another. If
instead some subset of the RCMs were to be used, the
values for the weights would need to be recalibrated
with respect to each other. (2) The evident sensitivity of
the combined weights to specific assumptions on cer-
tain metrics emphasizes the subjective nature of the
weighting procedure and the exploratory nature of this
work. Due consideration of the underlying assumptions
concerning the weights, as well as the overall subjective
component of the choice of metrics and aggregation
process, is necessary. (3) Even though weights based
on extremes seem to differentiate models, this is condi-
tional to the underlying observational data used to cal-
culate the metrics. For example, the E-OBS gridded
daily data set used for deriving f4 underestimates
extremes (Hofstra et al. 2009). This could mean that a
good match between a particular model and the data
does not necessarily identify the best model. The ‘re-
normalization’ procedure picks out weights f2 and f4 to
be the most discriminating ones, as the values of ni

are close to 0.1 in both cases. As already mentioned,
the proposed normalization and ranking procedures
reduce the sensitivity to any individual metric, but still
retain the overall separation into higher and lower
weights. The actual choice of 1.2, viz. normalization, in
the example shown here is an ad hoc choice for illus-
trative purposes.

3.2.  Calculating a weighted ensemble mean

Here we illustrate how the weights can be used to
calculate weighted ensemble averages for seasonal
mean temperature and precipitation using WPROD as
defined above. Biases in the ensemble means are
calculated with respect to the E-OBS2.0 data set (Hay-
lock et al. 2008), both for weighted means and for the
corresponding un-weighted means. By comparing the
biases we investigate whether the weighting proce-
dure improves the ensemble mean.

The differences between the 2 ensemble means are
relatively small for all seasons, both for temperature
(Figs. 3 & 4) and precipitation (Figs. 5 & 6). The
weighted mean does not always outperform the un-

weighted mean. In fact, sometimes the weighting leads
to a lower quality ensemble mean. This is because the
weights are not based on performance metrics related
to climate means. A summary over the entire European
area is given in Table 4. The differences in seasonal
mean precipitation are quite small, whereas tempera-
tures are improved for summer (JJA). However,
weighting also leads to overall worse agreement for
temperature during winter (DJF) both in terms of mean
absolute error and fractional area improved by apply-
ing the weighting.

The weights in Table 3 are for the whole Europe
domain and mostly for annual averages. The RCM
performance against observations, however, varies, for
example, between winter and summer. This is illus-
trated for seasonal mean temperature and precipita-
tion in Figs. 3–6 by showing biases in the ERA40-
forced RCM simulations with respect to the E-OBS
gridded data for the period 1961–1990. Figs. 3 & 5
show that the ‘best’ performing model (KNMI-
RACMO2) has a warm and dry bias in Eastern Europe
in summer. As this model is given a high total weight
for the all-Europe metrics, it contributes to the deterio-
ration of the weighted ensemble mean in this region
compared with other RCMs (e.g. SMHI-RCA3.0). For
winter, Fig. 4 reveals an example of the opposite, in
which Meto-HC-HadRM3Q3 performs relatively well
over Western Europe compared with many other
RCMs. In this case, the downgrading of this model
owing to its low weight contributes to the poorer
agreement of the weighted ensemble mean compared
to the un-weighted ensemble mean in some areas
(e.g. parts of France).

Fig. 4 shows a large cold bias in OURANOS-
MRCC4.2.3. However, the final weight for this model
(Table 3) is among the better ones, ranking as num-
ber 4. This shows that the weighting system does not
strongly penalize this poor performance in wintertime

186

Table 4. Weighted / unweighted means over all land grid points in
the European domain. MAE: mean absolute error; RMSE: root
mean square error; areal fraction: area where the weighting leads
to smaller MAE; bold: measures that improved when weighting 

was applied

Variable Period MAE RMSE Areal 
fraction

Precipitation JJA 0.292 / 0.286 0.565 / 0.543 0.55
DJF 0.372 / 0.377 0.455 / 0.465 0.53

Temperature at 2 m JJA 0.740 / 0.824 0.928 / 1.018 0.74
DJF 1.049 / 0.985 1.452 / 1.407 0.34

Total cloud fraction JJA 10.60 / 11.10 12.87 / 13.33 0.63
DJF 7.34 / 6.08 7.97 / 7.70 0.45
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temperature compared with other models. In terms of
the individual weights, it can be seen that OURA-
NOS-MRCC4.2.3 has the lowest score for f3, which
holds information about the entire probability distrib-
ution of temperatures. However, as f3 does not con-
tribute strongly to the spread across RCMs in the final
weights (WPROD), OURANOS-MRCC4.2.3 does not
show a low final weight compared to the other RCMs.
The ranking procedure shows that all models but 2
have a poor ranking, i.e. they are among the 3 worst
models for at least 1 of the 6 metrics considered. Vice
versa, all models rank among the top 3 for at least 1 of
the 6 metrics.

4.  DISCUSSION AND CONCLUSIONS

We applied performance indices and weighting
schemes to a large ensemble of RCM simulations for
present-day climate using realistic boundary condi-
tions from the ERA40 reanalysis completed as part of
the ENSEMBLES project. Details about these separate
indices can be found in the accompanying papers in
this issue. Here, we concentrate on ways of combining
the information from the 6 performance indices into a
weighting scheme.

The different weighting schemes yield a wide range
of inter-model spread of weights, although the general
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Fig. 3. Summer (JJA) temperature at 2 m (T2m; °C). (a) E-OBS; (b) difference between unweighted ensemble mean and E-OBS; and (c) differ-
ence between weighted ensemble mean and E-OBS. Panels 1–15 show the difference between model and E-OBS for each individual regional
climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies to 

all other panels
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ranking of model performance is maintained for all
schemes. Our baseline weighting, in which the 6 indi-
vidual indices are multiplied in order to give a strin-
gent performance test, provide the largest inter-model
spread, with one model emerging as best performer. In
this case the weighting scheme has a significant effect
on the ensemble performance.

However, the different weighting procedures do not
appear to provide a strong and consistent superiority in
simulating ensemble means when compared with other
and simpler methods to combine multiple model infor-
mation (such as simple unweighted averaging). One
reason for this is that mean biases do not enter the set of

performance indices utilized. This finding generally
confirms results from previous work (e.g. Wilby & Har-
ris 2006, Fowler & Ekström 2009, Knutti et al. 2010).

The results furthermore illustrate that not all aspects of
model quality are captured by the present weighting,
which is based on circulation, temperature and precipi-
tation. For some applications it might be relevant to focus
more on other climate aspects, such as snow, wind or soil
moisture deficit, which may be more directly tied to the
specific problem at hand. Indeed, from a practical point
of view, metrics that are more tied to the needs of some
specific impact sectors could be selected. To illustrate
this, we have made an additional analysis by comparing
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Fig. 4. Winter (DJF) temperature at 2 m (T2m; °C). (a) E-OBS; (b) difference between unweighted ensemble mean and E-OBS; and (c) differ-
ence between weighted ensemble mean and E-OBS. Panels 1–15 show the difference between model and E-OBS for each individual regional
climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies to 

all other panels
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total seasonal mean cloud fraction from the RCMs with
the ISCCP-D2 data set (Rossow et al. 1996). Note that
this comparison utilizes a data set independent from
those used to construct the weights. Data for the period
1983–2000 were used for this comparison and the results
show a large spread among the RCMs (Figs. 7 & 8). A
common feature in many, but not all, RCMs is that they
appear to overestimate the north–south gradient in
cloud cover, with excessive cloudiness in Scandinavia
and too few clouds in southeast Europe. Applying the
weights to calculate a weighted ensemble mean leads to
a small improvement in summer, but only a marginal dif-
ference or no improvement in winter (Table 4).

An intrinsic limitation of the weighting procedure
lies in the quality of the observational data used to cal-
culate the weights. In the case of the E-OBS data set, a
number of problems have been identified and cor-
rected in the second version used here. It is neverthe-
less possible that important errors remain. An indica-
tion of such problems can be given by studying the
ensemble mean biases in seasonal mean temperature
for winter (Fig. 4). In Latvia there is a large positive
bias along the Baltic Sea coast and a relatively strong
negative bias in the eastern part of the country. These
biases are local in nature and much larger than those
for the rest of Europe. This may be an indication of
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Fig. 5. Summer (JJA) precipitation (mm d–1). (a) E-OBS; (b) difference between unweighted ensemble mean and E-OBS; and (c) difference
between weighted ensemble mean and E-OBS. Panels 1–15 show the difference between model and E-OBS for each individual regional
climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies to 

all other panels
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problems with the observational data set, as there is no
obvious a priori reason why all RCMs would have lo-
calized problems in this low-altitude area with no com-
plex terrain. Another example of when an ensemble of
RCMs may aid in identifying suspect values in obser-
vational data sets can be seen for wintertime precipita-
tion in large parts of Poland and northern Finland (Fig.
6). In both areas, the observations have much lower
precipitation than found in all simulations. Although E-
OBS is accompanied by a measure of interpolation un-
certainty for each day and each grid box, it is not obvi-
ous how this uncertainty measure translates into the
metrics considered. Yet it is clear that observational

data quality issues should be included in future analy-
sis. This underlines the overall difficulty in assessing
the quality of a model when observations are still likely
to be affected by significant uncertainties.

Here we have explored different methodologies for
producing model weights based on aggregated infor-
mation of different metrics of model performance. The
rationale behind the choice of a single aggregated
weight is that a model should perform well in all met-
rics so as to minimize the possible effects of counter-
balancing systematic errors. Two caveats should, how-
ever, be emphasized. (1) In our baseline approach we
produced our overall model weight from the product of
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Fig. 6. Winter (DJF) precipitation (mm d–1). (a) E-OBS; (b) difference between unweighted ensemble mean and E-OBS; and (c) difference
between weighted ensemble mean and E-OBS. Panels 1–15 show the difference between model and E-OBS for each individual regional
climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies to 

all other panels
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the weights associated with the individual perfor-
mance metrics. This implies a very stringent test, as a
good model is expected to have relatively high weights
in all metrics. However, each weight can be considered
differently depending on the specific application, as
allowed by our general weighting framework. In fact,
as shown in Table 3, some weights exhibit a much
higher inter-model spread than others. This may be
associated with the way the weight is produced, can
profoundly affect the overall weight of the model. (2)
We stress in some of our approaches that our weights
are normalized using the full ensemble, i.e. they are
relative in that they measure not the absolute perfor-

mance of a model but the relative performance com-
pared with the other models in the ensemble. The spe-
cific weights generated are thus likely sensitive to the
exact mix of RCMs employed. Further work to address
this aspect could involve resampling subsets of the
available RCMs.

The choice of the metrics and how the individual
weights are combined has an obvious and unavoidable
subjective component. Given the extremely large
number of degrees of freedom in a climate model, it is
impossible to devise an all-encompassing objective
weighting. We tried to use a wide range of metrics
important for estimating the added value and the per-
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Fig. 7. Summer (JJA) cloud fraction (%). (a) ISCCP-D2; (b) difference between unweighted ensemble mean and ISCCP-D2; and (c) difference
between weighted ensemble mean and ISCCP-D2. Panels 1–15 show the difference between model and ISCCP-D2 for each individual
regional climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies 

to all other panels
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formance of RCMs and combined them in stringent
ways. The inevitable subjectivity of this approach, how-
ever, makes it necessary to evaluate the sensitivity of
the overall weights to the criteria used to derive them
as well as their interdependencies. Given the strong
interlinkages between atmospheric flow, temperature
and precipitation, the chosen metrics may in fact be
correlated. A preliminary result from a simple test of
the dependencies between the different metrics sug-
gests that, particularly, metrics f1, f3 and f6 are corre-
lated. However, as these metrics do not discriminate
strongly between the models, this may not be a very
robust result.

Because of the subjective component of the weight-
ing approach and the many uncertainties associated
with it, we suggest that the weighting itself is a source
of uncertainty in the generation of climate change
scenarios and that this uncertainty is suitably
explored by considering multiple metrics and aggre-
gation procedures. Ensemble model weighting is still
a highly controversial issue and, as our results con-
firm, the value of weighting has not been clearly
demonstrated. Our work should thus be considered
exploratory, in particular because it provides the first
attempt to apply targeted model weighting to a large
ensemble of RCMs.
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Fig. 8. Winter (DJF) cloud fraction (%). (a) ISCCP-D2; (b) difference between unweighted ensemble mean and ISCCP-D2; and (c) difference
between weighted ensemble mean and ISCCP-D2. Panels 1–15 show the the difference between model and ISCCP-D2 for each individual
regional climate model (see Table 1 for model numbers). The left-most color scale applies to panel (a) only; the right-most color scale applies

to all other panels
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Finally, when RCMs are forced with boundary condi-
tions from GCMs, the systematic biases in the latter
affect the results and should be considered. When
using specific reanalyses as boundary conditions, this
is less troublesome. When forcing is acquired from
GCMs, bias patterns (not shown) differ, the implication
being a wider spread across the ensemble of RCMs
(e.g. Jacob et al. 2007).

In conclusion, we still know rather little about how to
construct a credible and robust weighting procedure
for multi-model regional climate change projections.
The use of intercomparative quantities as performance
indicators is one possible alternative.
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