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ABSTRACT: Six spatial interpolation techniques (inverse distance weighted, global polynomial inter-
polation, local polynomial interpolation, completely regularized spline, kriging and cokriging with 4
sub-types) were evaluated to determine the best spatial distribution of 6 different climate parameters
(solar radiation, sunshine duration, temperature, relative humidity, wind speed and rainfall) in the
region of the Southeastern Anatolia Project (GAP) of Turkey. Based on the root mean square error
values of predictions made using measured values from 1971 to 1999, simple cokriging yielded the
best results for temperature, solar radiation, relative humidity, wind speed and completely regular-

ized spline for sunshine duration and rainfall.
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1. INTRODUCTION

Meteorological variables required for applications in
hydrology and water resources management are usu-
ally measured at meteorological stations, and the data
are only valid for the point where it is measured. Spa-
tial interpolation can be used to estimate meteorologi-
cal variables at other locations. Although there are sev-
eral methods to perform this, it can be difficult to
determine which one best reproduces actual condi-
tions. Each method's advantages and disadvantages
depend strongly on the characteristics of the data set: a
method that fits well with some data can be unsuitable
for a different set of data. Thus, criteria must be found
to decide whether the method chosen is suited for the
point data set. It is also important to specify the aims of
the interpolation, because different aims can require
different criteria for evaluation of the interpolation
(Borga & Vizzaccaro 1997, Caruso & Quarta 1998,
Campling et al. 2001).

The correct determination of the spatial distribution
of meteorological variables is as important as their
measurement. Depending on the spatial attributes of
the data, the accuracy of the results may vary widely
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among spatial interpolation methods. The choice of
spatial interpolator is especially important in moun-
tainous regions with fewer data, where the values of
variables may change over short spatial scales (Collins
1996).

We compared 6 spatial interpolation techniques for 6
climate variables (solar radiation, sunshine duration,
temperature, relative humidity, wind speed and rain-
fall) to determine the best climatic surface generation
method for the Southeastern Anatolia Project (GAP)
region (Fig. 1). The interpolation techniques were:
inverse distance weighted (IDW), global polynomial
interpolation (GPI), local polynomial interpolation
(LPI), completely regularized spline (CRS), kriging and
cokriging with 4 sub-types.

2. BACKGROUND

Interpolation of point data was mainly performed for
rainfall data. The simplest and most common method
is the Thiessen (1911) polygon method, which uses a
polygon of influence around each gauge with the
boundaries at a distance halfway between gauge pairs.
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Fig. 1. Location of meteorological stations and rainfall gauges in the GAP region, Turkey

Although this is essentially used for estimation of areal
rainfall, it has also been applied to the interpolation of
point measurements (Goovaerts 2000).

The U.S. National Weather Service developed
another method called ‘inverse square distance' (see
Bedient & Huber 1992). In this method, the unknown
rainfall quantity is estimated as a weighted average of
surrounding values, the weights being reciprocal to
the square distances from the unsampled location.
Like the Thiessen polygon method, this technique does
not permit consideration of factors such as topography.
The isohyetal method (Chow 1964) was designed to
overcome this deficiency by using the location and
quantity for each gauge, as well as knowledge of the
factors affecting these quantities, to interpolate lines of
equal rainfall quantity (isohyets). This requires an
extensive gauge network (Goovaerts 2000). Tabios &
Salas (1985) and Phillips et al. (1992) have demon-
strated that geostatistical prediction techniques pro-
vide better estimates of rainfall than the above conven-
tional methods. Interpolation techniques and mapping
studies are summarized in Table 1.

Monthly mean climate surfaces were developed for
the African continent by Hutchinson et al. (1996) and
for Australia by Hutchinson & Kesteven (1998). The
gridded climate data were obtained by fitting thin plate
smoothing spline functions of longitude, latitude and
elevation to point values of climate variables. Some
studies compared only geostatistical methods and iden-
tified one that gave the best result. Borga & Vizzaccaro
(1997) compared kriging and multiquadratic surface fit-
ting for hydrologic variables; kriging performed better
at lower gauge density, while at higher gauge density

the accuracy of both estimators was similar. Goovaerts
(2000) presented geostatistical approaches for incorpo-
rating elevation into the spatial interpolation of rainfall
and found that ordinary kriging yielded more accurate
predictions than other methods when the correlation
between rainfall and elevation was moderate. Price et
al. (2000) compared 2 methods—thin plate smoothing
splines (ANUSPLIN) and a statistical method termed
‘Gradient plus Inverse Distance Squared’ (GIDS)—for
elevation-dependent spatial interpolation of climatic
data from sparse weather station networks. They used
30 yr monthly mean minimum and maximum tempera-
tures and precipitation data from regions in western
and eastern Canada and found that ANUSPLIN pro-
duced better results. Collins (1996) suggested the use of
polynomial regression for temperature interpolation;
ordinary kriging, surface under tension, and ordinary
kriging with global climatological variogram have been
recommended for rainfall interpolation by Atkinson &
Lloyd (1998), Saveliev et al. (1998), and Campling et al.
(2001), respectively.

Some researchers found no significant differences
between methods. Dirks et al. (1998) determined that
results depended on the sampling density, and that for
high-resolution networks the kriging method did not
show greater predictive skill than simpler techniques
such as the inverse square distance method. Michaud
& Sorooshian (1994) reported that kriging and multi-
quadratic interpolation gave similar results for 5 min
convective rainfall.

Some studies have examined statistical relationships
between geographical variables (orography, latitude
and distance from sea) or landscape variables and
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climatological variables. Hevesi et al. (1992) reported a
significant correlation between average annual precip-
itation and elevation recorded at 62 stations in Nevada
and SE California. Ninyerola et al. (2000) developed a
multiple regression analysis between temperature and
rainfall as response variables, and some geographical
variables (altitude, latitude, distance from the sea, so-
lar radiation and a cloudiness factor) as predictor vari-
ables. Daly et al. (2000) introduced PRISM (a regression
based model that uses point data) to develop 103 yr
(1895-1997) gridded monthly precipitation and maxi-
mum/minimum temperatures at 4 km resolution for the
contiguous USA on the basis of approximately 8000

stations. Additionally, Daly et al. (2002) used PRISM, a
digital elevation model (DEM), other spatial data sets,
and human-expert parameterization to generate re-
peatable estimates of annual, monthly and event-based
climatic elements. They prepared precipitation maps
for the Olympic Mountains and temperature maps for
coastal California.

3. STUDY REGION

The study was implemented in SE Turkey (Fig. 1),
where GAP (a multi-sector integrated regional devel-

Table 1. Studies on spatial interpolation of climate variables; recommended methods are shown in bold. IDW: Inverse Distance

Weighted, GPI: Global Polynomial Interpolation, LPI: Local Polynomial Interpolation, CRS: Completely Regularized Spline,

KR: Kriging, KO: Ordinary Kriging, KS: Simple Kriging, KU: Universal Kriging, KD: Disjunctive Kriging, KI: Indicator Kriging,

KT: Detrended Kriging CK: CoKriging, CKO: Ordinary CoKriging, CKS: Simple CoKriging, CKU: Universal CoKriging,

CKD: Disjunctive CoKriging, TPSS: Thin Plate Smoothing Spline, GIDS: Gradient plus Inverse-Distance-Squared, TP: Thiessen
Polygon, ISD: Inverse Square Distance

Region Variables® Interpolation methods Source
Switzerland 1 KO, KI Atkinson & Lloyd (1998)
Northern Italy 1 KR, multiquadratic surface fitting Borga & Vizzaccaro (1997)
Southeastern Nigeria 1 KO with global climatological variogram, Campling et al. (2001)

KO with phase variogram, KO with rain

depth variogram
Eastern and western North America 5 IDW, optimal inverse distance, cubic Collins (1996)

splining, polynomial regression, trend

surface analysis, lapse rate, KR, CK
Norfolk Island 1 KR, IDW, TP, areal mean Dirks et al. (1998)
Pacific Northwest (USA) 5 Neutral stability algorithm, linear lapse Dodson & Marks (1997)

rate adjustment
Algarve region (Portugal) 1 KS with varying local means, KR with an Goovaerts (2000)

external drift, colocated CK, TP, ISD, KO
Jalisco (Mexico) 1,5 IDW, TPSS, CK Hartkamp et al. (1999)
Australia 1,3,5, 7 TPSS Hutchinson & Kesteven (1998)
Africa 1,5 TPSS Hutchinson et al. (1996)
Australia 1,3,5, 7,8 TPSS, KO Jeffrey et al. (2001)
Western Canada 1,5 GIDS, KT, nearest neighbour, CK, ISD, Nalder & Wein (1998)

KU, KO
Western Oregon 1 KR, KT, CK Phillips et al. (1992)
Western and eastern Canada 1 TPSS, GIDS Price et al. (2000)
Scotland 1 KO, modified residual kriging Prudhomme & Reed (1999)
Russia 1 Locally weighted polynomial regression Rajagopalan & Lall (1998)
Switzerland 1 Surface under tension, KR, zone kriging Saveliev et al. (1998)

with anisotropy semivariogram, zone

kriging with isotropy semivariogram
Central USA 1 KU, optimal interpolation, KO, TP, inverse Tabios & Salas (1985)

square distance
Northwestern USA 1,2,3,5 Truncated Gaussian weighting filter Thornton et al. (1997)
GAP region (Turkey) 1to6 IDW, GPI, LPI, CRS, KO, KS, KU, KD, CKO, This study

CKS, CKU, CKD
41: rainfall, 2: relative humidity, 3: solar radiation, 4: sunshine duration, 5: temperature, 6: wind speed, 7: evaporation,

8: vapour pressure
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opment project for sustainable development) is being
implemented. GAP objectives include the improve-
ment of living standards and incomes of the population
to eliminate regional development disparities and
contribute to social stability and economic growth by
enhancing productivity and employment opportunities
in the rural sector. The project area covers 9 adminis-
trative provinces (Adiyaman, Batman, Diyarbakir,
Gaziantep, Kilis, Mardin, Siirt, Sanliurfa and Sirnak),
bordering on Syria and Iraq. The GAP region has a sur-
face area of 75358 km? (9.7% of the area of Turkey).
Turkey has 8.5 million ha of irrigable land, of which
almost 20% 1is located in the GAP region's wide
plains in the basins of the lower Euphrates and Tigris
rivers. Both rivers have their sources in eastern Ana-
tolia and flow to the Persian Gulf. Since SE Anatolia
receives less precipitation than the other regions of
Turkey, it is planned to use the water of the Tigris
and Euphrates for irrigation and energy generation by
controlling the irregular flow regimes of both rivers
(GAP Regional Development Administration website:
WwWw.gap.gov.tr).

The primary set of climate data for the GAP region
includes solar radiation, sunshine duration, tempera-
ture, relative humidity, wind speed and rainfall,
recorded from 1971 to 1999. All variables were mea-
sured at 27 meteorological stations, except for rain-
fall, which was determined at an additional 85 rainfall
gauges (see Fig. 1).

The GAP area is located in the continental Mediter-
ranean region, where annual precipitation is between
400 and 800 mm (see Table 2). This continental regime
differs from the general Mediterranean regime in that
it contributes more spring rain to the total precipitation
(about 30 to 35% at most GAP stations; Komuscu et al.
1998, Turkes 1999). Besides the meteorological vari-
ables, we used digital elevation model (DEM) data
from a 1/250 000 scale digital topographic map with a
resolution of 0.01° extending from 38°45' to 36°30' N

and from 36°30" to 43°30'E. The DEM data were
required to consider elevation as a covariate for the
cokriging methods.

4. METHODS

Interpolation techniques can be grouped into 2 main
categories: deterministic and geostatistical. Determin-
istic interpolation techniques create surfaces from
measured points, based on either the extent of similar-
ity (e.g. IDW) or the degree of smoothing (e.g. CRS). A
deterministic interpolation can either force the result-
ing surface to pass through the data values or not. An
interpolation technique that predicts a value identical
to the measured value at a sampled location is known
as an exact interpolator. An inexact interpolator pre-
dicts a value that is different from the measured value
and should be used to avoid sharp peaks or troughs in
the output surface. IDW and CRS are exact interpola-
tors, while GPI and LPI are inexact (Johnston et al.
2001).

Geostatistical interpolation techniques (e.g. kriging,
cokriging) utilize the statistical properties of the mea-
sured points. Geostatistical techniques quantify the
spatial autocorrelation among measured points and
account for the spatial configuration of the sample
points around the prediction location (Borga & Vizzac-
caro 1997, Campling et al. 2001, Johnston et al. 2001;
for general descriptions see Isaaks & Srivastava 1989,
Cressie 1993, Rivoirard 1994, Kitanidis 1997, Chiles &
Delfiner 1999). The following deterministic and geo-
statistical methods were used in the study.

4.1. Inverse distance weighted. IDW interpolation
explicitly implements the assumption that objects that
are close to one another are more alike than those that
are farther apart. Thus, IDW assumes that each mea-
sured point has a local influence that diminishes with
distance. To predict a value for any unmeasured loca-

Table 2. Long-term averages of annual climatic elements typical for the provinces in the GAP region

Stn Latitude Longitude Solar radiation Sunshine Temperature Relative Wind Rainfall
(N) (E) (cal cm™?) duration (h) (°C) humidity (%) speed (ms™!)  (mm)
Adiyaman 37.75° 38.28° 311.2 8.0 17.0 51.5 0.2 688
Batman 37.88° 41.12° 306.0 7.5 16.6 58.2 1.0 473
Diyarbakir 37.90° 40.23° 405.5 7.8 15.5 56.9 2.6 474
Elazig 38.67° 39.23° 355.0 7.4 12.9 54.9 2.2 413
Gaziantep 37.07° 37.38° 348.9 7.0 14.8 61.4 1.3 545
Hakkari 37.58° 43.73° 374.5 7.8 10.2 55.1 1.6 733
Kilis 36.72° 37.12° 407.3 7.8 16.8 54.8 2.5 494
Mardin 37.30° 40.73° - 8.2 15.9 48.7 4.0 689
Mus 38.73° 41.48° 356.0 7.2 10.0 62.3 1.3 757
Siirt 37.92° 41.95° 377.2 7.6 15.8 51.5 1.5 692
Sanliurfa 37.13° 38.77° 385.5 7.9 18.2 52.7 1.5 455
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tion, IDW will use the measured values surrounding
the prediction location. Those measured values closest
to the prediction location will have the greatest influ-
ence on the predicted value (Ashraf et al. 1997, Nalder
& Wein 1998, Johnston et al. 2001).

4.2. Global polynomial interpolation. GPI fits a
smooth surface that is defined by a mathematical func-
tion to the input sample points. The GPI surface
changes gradually and captures coarse-scale pattern
in the data. It creates a slowly varying surface using
low-order polynomials that possibly describe some
physical process. However, the more complex the
polynomial, the more difficult it is to ascribe physical
meaning to it. Furthermore, the calculated surfaces are
highly susceptible to outliers (extremely high and low
values), especially at the edges (Johnston et al. 2001).
A first-order globyl polynomial (GP) fits a single plane
through the data; a second-order GP fits a surface with
a bend in it, allowing the calculation of surfaces repre-
senting valleys; a third-order GP allows for 2 bends;
and so forth. However, when a surface has a different
shape, as in a landscape that slopes, levels out, and then
slopes again, a single GP will not fit well (Johnston et
al. 2001).

4.3. Local polynomial interpolation. While GPI fits a
polynomial to the entire surface, LPI fits many polyno-
mials, each within specified overlapping neighbor-
hoods. The search neighborhood can be defined using
the search neighborhood dialog. The shape, maximum
and minimum number of points, and the sector config-
uration can be specified. Alternatively, a slider can be
used to define the width of the neighborhood in con-
junction with a power parameter that will, based on
distance, decrease the weights of the sample points
within the neighborhood. Thus, LPI produces surfaces
that account for more local variation (Rajagopalan &
Lall 1998, Johnston et al. 2001).

4.4. Completely regularized spline. Radial basic
function (RBF) methods such as CRS are exact interpo-
lation techniques; the surface is forced through each
measured sample value. RBFs include thin-plate
spline, spline with tension, CRS, multiquadric function,
and inverse multiquadric function. Each function has a
different shape and results in a slightly different inter-
polation surface. RBF methods are a form of artificial
neural network.

RBFs are conceptually similar to fitting a rubber
membrane through the measured sample values while
minimizing the total curvature of the surface. The
selected basic function determines how the rubber
membrane will fit between the values.

As opposed to IDW, RBF methods can predict values
above the maximum and below the minimum mea-
sured values. RBFs are used for calculating smooth sur-
faces from a large number of data points. The functions

produce good results for gently varying surfaces such
as elevation. The techniques are inappropriate when
there are large changes in the surface values within a
short horizontal distance and/or when the sample data
are prone to error or uncertainty (Johnston et al. 2001).

4.5. Kriging. Over the past several decades kriging
has become a fundamental tool in geostatistics (Caruso
& Quarta 1998). Kriging forms weights from surround-
ing measured values to predict values at unmeasured
locations. As with IDW interpolation, the closest mea-
sured values usually have the most influence, but krig-
ing weights are more sophisticated. IDW uses a simple
algorithm based on distance, whereas kriging weights
come from a semivariogram developed from the spatial
structure of the data. To create a continuous surface or
map of the phenomenon, predictions are made for
locations in the study area based on the semivariogram
and the spatial arrangement of nearby measured val-
ues (Collins 1996, Johnston et al. 2001). Four different
kriging types were used in this study.

4.5.1. Ordinary kriging (KO): This is the most gen-
eral and widely used of the kriging methods. It esti-
mates the value of the climatic variable at a given point
from the values at surrounding stations and from a var-
iogram model for that variable (Nalder & Wein 1998,
Johnston et al. 2001).

4.5.2. Simple kriging (KS): This uses the average of
the entire data set (while ordinary kriging uses a local
average, i.e. the average of the scatter points in the
kriging subset for a particular interpolation point). As a
result, KS may be less accurate than ordinary kriging,
but it generally produces a result that is smoother.

4.5.3. Universal kriging (KU): This assumes that
there is an overriding trend in the data which can be
modeled by a deterministic function, i.e. by a poly-
nomial. This polynomial is subtracted from the original
measured points, and the autocorrelation is modeled
from the random errors. Once the model is fit to the
random errors, before making a prediction, the polyno-
mial is added back to the predictions to give meaning-
ful results (Nalder & Wein 1998, Johnston et al. 2001).

4.5.4. Disjunctive kriging (KD): This requires the
assumption of bivariate normality. This assumption is
difficult to verify, and the solutions are mathematically
and computationally complicated. KD can use either
semivariograms or covariances, and it can use transfor-
mations, but it cannot allow for measurement error
(Johnston et al. 2001).

4.6. Cokriging. Cokriging is similar to kriging,
except that it uses additional covariates, e.g. the cli-
matic variable and elevation. In other words cokriging
uses the advantages of inter-variable correlation. Cok-
riging is most effective when the covariates are highly
correlated (Collins 1996, Ashraf et al. 1997, Nalder &
Wein 1998). Four different cokriging types similar to



36 Clim Res 28: 31-40, 2004

the kriging types were used in this study: ordinary
(CKO); simple (CKS); universal (CKU); and disjunctive
(CKD).

4.7. Cross validation. Cross validation is used to
compare measured values with interpolated values
using only the information available in the sample data
set. A cross validation study can help to choose be-
tween different weighting procedures, between differ-
ent search strategies, or between different estimation
methods. The sample value at a particular location is
temporarily discarded from the sample data set; the
value at the same location is then estimated using the
remaining samples. Once the estimate is calculated,
the calculated value can be compared with the true
value that was initially removed from the sample data
set. This procedure is repeated for all available sample
values (Isaaks & Srivastava 1989). In this study all
parameters of methods were optimized for minimum
cross validation error.

4.8. Comparison. Errors were calculated as 'actual
minus predicted’ and the mean of these errors was cal-
culated in 4 ways: mean error (ME), indicating the de-
gree of bias; mean absolute error (MAE), providing a
measure of how far the estimate can be in error, ignor-
ing its sign; mean relative error (MRE), providing a
measure of how far the estimate can be in error relative
to the measured mean; root mean square error (RMSE),
providing a measure that is sensitive to outliers.

5. RESULTS AND DISCUSSION

Yearly prediction maps were generated for each
meteorological variable with the 12 interpolation
methods. Long-term yearly mean temperature maps
are given in Fig. 2 as an example. Detailed statistics of
the measured and calculated data from 1971 to 1999
are given in Table 3. In earlier studies, generally
MAE, MRE and RMSE were used to determine which
method was the best, and we considered MAE and
RMSE.

5.1. Inverse distance weighted. IDW performed
poorly for all climate variables. It had no lowest MAE
and RMSE value, but it had 2 maximum MAE and
RMSE values (solar radiation and wind speed). IDW
results were implausible when data were sparse.
Among 19 previous studies (Table 1) IDW was recom-
mended only by Dirks et al. (1998) for rainfall interpo-
lation. The one advantage of IDW was that it consis-
tently adhered to the measured range of the data, as
mentioned by Johnston et al. (2001). The pattern of
IDW was very changeable depending on the point data
(Fig. 2a).

5.2. Global polynomial interpolation. GPI produced
the poorest results. It had no lowest, and 8 of the 12

highest MAE and RMSE values. The GPI method may
be suitable for slowly varying surfaces, but in the GAP
region there were significant changes from point to
point in all climate variables. The pattern of GPI con-
sisted of almost straight lines and variability was small
(Fig. 2b).

5.3. Local polynomial interpolation. LPI produced
poor results. Since the LPI method defined smaller
regions with many polynomials, rather than whole
region, its error values were equal to or smaller than
those for GPI. Consequently, LPI cannot be recom-
mended for the GAP region. LPI created a pattern sim-
ilar to GPI, but its variability was greater (Fig. 2c).

5.4. Completely regularized spline. Of the methods
which do not use elevation as ancillary information,
CRS was the most plausible from a visual standpoint.
CRS had minimum MAE and RMSE values in rainfall
and minimum RMSE in sunshine duration. The CRS
method did not have the highest error value for any cli-
mate parameter. CRS gave the best result for a large
number of data points and varying surfaces, and this
was exemplified by the rainfall data. If useable eleva-
tion values are lacking, CRS may be used in climate
interpolation in the GAP region. CRS created 2 high
temperature centers, with significant temperature
decreases around them (Fig. 2d).

5.5. Kriging. Only KS and KD had minimum MAE
and RMSE values, in the case of wind speed. The KO
and KU methods did not produce any minimum MAE
and RMSE values. Subtypes of kriging generally gave
similar results, especially KO and KU.

Tabios & Salas (1985) found that KU gave lower
MAE than KO for annual precipitation in the central
USA, but in this study on the GAP region they pro-
duced the same MAE values. Goovaerts (2000) found
that KO produced the most accurate rainfall values. In
this study KO gave the second lowest MAE value for
rainfall. While the patterns of KO and KU were similar
to those of the LPI method, the patterns of KS and KD
were similar to CRS (Fig. 2e-h).

5.6. Cokriging. The inclusion of elevation as a
covariate reduced the error, as expected. This applies
especially to temperature and solar radiation.

CKS produced the lowest MAE values in tem-
perature, sunshine duration, solar radiation, relative
humidity and the lowest RMSE values in temperature,
solar radiation, relative humidity and wind speed.
Although cokriging was used in 5 of the 19 previous
studies, only Philips et al. (2000) suggested it for rain-
fall interpolation (Table 1). CKD had minimum MAE
values (equal to CKS) in relative humidity and wind
speed. The other 2 cokriging subtypes (CKO and CKU)
had no minimum or maximum error values. They
produced almost the same error values as the kriging
method.



Apaydin et al.: Spatial interpolation of climate data in Turkey 37

Fig. 2. Long-term yearly predicted temperature in the GAP region of Turkey. (

) Inverse Distance Weighted, (b) Global Poly-

nomial Interpolation, (c) Local Polynomial Interpolation, (d) Completely Regulanzed Spline, (e) Ordinary Knglng, (f) Simple
Kriging, (g) Universal Kriging, (h) Disjunctive Kriging, (i) Ordinary CoKriging, (j) Simple CoKriging, (k) Universal CoKriging,
(m) Disjunctive CoKriging

The patterns produced by CKO and CKU were
almost identical. Since interpolation of point data was
dependent on the elevation, distribution was very vari-
able from point to point. CKS and CKD also created
very changeable distributions, but they led to colder
results than the others (Fig. 2i-m).

5.7. Effect of elevation on climate interpolation. The
analysis showed that when information is available on
the elevation of the stations (DEM), then CKS should
be used to produce the climate surface. In the absence
of this information, KD or CRS may be used. Kriging

and cokriging estimation errors were compared to
show the effect of elevation on interpolation. For tem-
perature estimates, all cokriging error values (i.e. MAE
and RMSE values for CKO, CKS, CKU and CKD) were
smaller than those for the kriging method. This was
similar for solar radiation values, but to a lesser extent.
There was no significant correlation between elevation
and sunshine duration, relative humidity, and rainfall,
when comparing the kriging and cokriging methods.
Error values for wind speed were almost identical in
both kriging and cokriging analyses.

9°C

i . |
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Table 3. Summary statistics for the interpolation of observed climate data (1971-1999). CV: coefficient of variation; ME: mean
error; MAE: mean absolute error; MRE: mean relative error; RMSE: root mean square error; N = number of data. Model abbrevi-
ations as in Table 1. Lowest MAE, MRE and RMSE values are in bold and highest values are underlined

Mean SD CVv Min. Median Max. ME MAE MRE RMSE

Temperature (°C); N = 643

Measured 14.50 3.22 0.22 2.1 15.2 20.8

IDW 14.52 2.14 0.15 8.4 15.0 18.8 0.02 1.81 12.48 2.33
GPI 14.55 2.56 0.18 7.8 14.6 20.1 0.06 191 13.17 243
LPI 14.37 2.66 0.18 6.8 14.6 20.1 -0.13 1.52 10.48 2.06
CRS 14.60 2.55 0.17 7.0 15.0 19.2 0.11 1.54 10.62 2.07
KO 14.57 2.21 0.15 7.6 14.9 18.8 0.08 1.67 11.52 2.18
KS 14.57 2.12 0.15 7.9 15.0 19.2 0.07 1.81 12.48 2.24
KU 14.58 2.19 0.15 7.6 14.9 18.8 0.08 1.67 11.52 2.18
KD 14.54 2.13 0.15 8.1 15.0 19.2 0.04 1.83 12.62 2.26
CKO 14.87 2.32 0.16 8.0 15.3 19.5 0.37 1.54 10.62 1.99
CKS 14.24 2.46 0.17 5.9 14.9 18.4 -0.25 1.45 10.00 1.82
CKU 14.86 2.34 0.16 8.0 15.3 19.5 0.37 1.54 10.62 1.99
CKD 14.13 2.05 0.15 8.5 14.2 20.6 -0.36 1.79 12.34 2.16
Sunshine duration (h); N = 419

Measured 7.44 0.77 0.10 2.8 7.5 9.1

IDW 7.37 0.49 0.07 5.5 7.5 8.5 -0.06 0.50 6.72 0.67
GPI 7.45 0.48 0.06 6.2 7.4 9.2 0.01 0.54 7.26 0.73
LPI 7.38 0.49 0.07 6.0 7.4 8.6 -0.06 0.47 6.32 0.64
CRS 7.40 0.56 0.07 4.6 7.5 9.5 -0.03 0.46 6.18 0.60
KO 7.44 0.39 0.05 6.5 7.4 8.5 0.00 0.51 6.85 0.70
KS 7.38 0.39 0.05 5.8 7.4 8.4 -0.06 0.47 6.32 0.62
KU 7.44 0.39 0.05 6.5 7.4 8.5 0.00 0.51 6.85 0.70
KD 7.42 0.40 0.05 6.2 7.5 8.3 -0.01 0.48 6.45 0.63
CKO 7.45 0.38 0.05 6.5 7.5 8.4 0.02 0.51 6.85 0.70
CKS 7.40 0.39 0.05 6.4 7.4 8.4 —-0.04 0.45 6.05 0.62
CKU 7.45 0.38 0.05 6.5 7.5 8.4 0.02 0.51 6.85 0.70
CKD 7.41 0.35 0.05 6.6 7.4 8.6 -0.02 0.47 6.32 0.65
Solar radiation (cal cm2); N = 312

Measured 364.87 43.07 0.12 182.3 368.9 460.4

IDW 364.46 21.47 0.06 230.1 365.0 420.7 -0.43 34.83 9.55 46.39
GPI 364.81 20.77 0.06 291.9 364.9 458.4 -0.08 34.56 9.47 45.00
LPI 364.37 21.59 0.06 284.6 363.6 464.6 -0.51 33.51 9.18 43.83
CRS 364.67 20.24 0.06 271.7 364.8 422.3 -0.20 34.07 9.34 45.33
KO 363.34 20.91 0.06 304.4 360.4 418.6 -1.64 34.74 9.52 45.48
KS 364.94 12.41 0.03 332.2 367.8 392.1 0.04 30.37 8.32 40.52
KU 363.34 20.91 0.06 304.4 360.4 418.6 -1.64 34.74 9.52 45.48
KD 367.22 12.90 0.04 335.5 369.5 403.7 2.21 30.01 8.22 40.62
CKO 365.12 18.09 0.05 306.3 365.4 416.9 0.21 32.94 9.03 44.01
CKS 363.13 15.89 0.04 315.0 362.6 398.3 -1.74 29.54 8.10 39.30
CKU 365.12 18.09 0.05 306.3 365.4 416.9 0.21 32.94 9.03 44.01
CKD 363.68 13.10 0.04 331.2 362.3 396.7 -1.26 29.64 8.12 39.72

Relative humidity (%); N = 643

Measured 56.70 6.36 0.11 40.2 56.3 77.0

IDW 56.90 4.02 0.07 47.3 56.4 75.1 0.20 4.52 7.97 5.76
GPI 56.72 3.64 0.06 47.8 56.7 81.3 0.02 5.24 9.24 6.65
LPI 57.00 4.17 0.07 45.4 56.9 73.0 0.30 4.41 7.78 5.58
CRS 56.69 3.85 0.07 47.1 56.4 69.4 -0.01 4.37 7.71 5.58
KO 56.68 3.34 0.06 48.2 56.6 68.0 -0.02 4.47 7.88 5.73
KS 56.80 3.16 0.06 46.5 57.0 72.1 0.10 4.30 7.58 5.42
KU 56.69 3.34 0.06 48.2 56.6 68.0 -0.01 4.46 7.87 5.73
KD 56.72 2.96 0.05 48.7 56.9 67.2 0.02 4.29 7.57 5.39
CKO 56.55 3.17 0.06 48.4 56.6 69.5 -0.14 4.57 8.06 5.85
CKS 56.92 3.47 0.06 46.5 57.1 70.0 0.21 4.24 7.48 5.31
CKU 56.55 3.17 0.06 48.4 56.6 69.5 -0.14 4.57 8.06 5.85

CKD 56.75 2.98 0.05 49.0 57.1 65.4 0.05 4.24 7.48 5.35
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Table 3. (continued)
Mean SD Cv Min. Median Max. ME MAE MRE RMSE
Wind speed (m s!); N = 462
Measured 1.78 0.79 0.45 0.1 1.6 6.9
IDW 1.75 0.39 0.22 0.9 1.7 3.2 -0.03 0.65 36.52 0.86
GPI 1.71 0.25 0.15 1.0 1.7 3.3 -0.07 0.64 35.96 0.85
LPI 1.72 0.37 0.22 0.6 1.7 4.1 -0.06 0.64 35.96 0.85
CRS 1.73 0.37 0.22 0.8 1.7 4.1 -0.05 0.62 34.83 0.84
KO 1.70 0.39 0.23 0.6 1.7 4.2 -0.09 0.63 35.39 0.84
KS 1.71 0.21 0.12 0.9 1.7 3.4 -0.07 0.56 31.46 0.77
KU 1.70 0.39 0.23 0.6 1.7 4.2 -0.09 0.63 35.39 0.84
KD 1.67 0.17 0.10 1.0 1.6 2.4 -0.11 0.56 31.46 0.78
CKO 1.70 0.22 0.13 1.1 1.7 2.7 -0.08 0.61 34.27 0.84
CKS 1.71 0.18 0.11 1.2 1.7 2.9 -0.08 0.56 31.46 0.77
CKU 1.70 0.22 0.13 1.1 1.7 2.7 -0.08 0.61 34.27 0.84
CKD 1.66 0.16 0.10 1.1 1.7 2.4 -0.12 0.56 31.46 0.78
Rainfall (mm); N = 1414
Measured 635.55 265.96 0.42 104.7 600.9 1899.0
IDW 659.16 188.77 0.29 281.5 642.6 1684.7 23.61 153.45 24.14 199.83
GPI 635.60 167.89 0.26 150.2 634.3 1079.9 0.05 170.56 26.84 221.61
LPI 640.98 197.06 0.31 85.7 627.5 1316.8 5.43 151.10 23.77 200.54
CRS 645.69 200.97 0.31 237.2 633.8 1608.5 10.14 141.33 22.24 185.94
KO 639.97 177.34 0.28 244.6 627.2 1230.8 4.42 151.03 23.76 198.19
KS 648.49 173.87 0.27 253.9 629.9 1543.8 12.93 151.89 23.90 195.15
KU 639.97 177.34 0.28 244.6 627.2 1230.8 4.42 151.03 23.76 198.19
KD 641.84 165.59 0.26 232.4 627.5 1312.3 6.28 151.17 23.79 195.73
CKO 633.48 170.14 0.27 219.0 623.3 1263.0 -2.07 151.31 23.81 198.29
CKS 655.60 165.63 0.25 285.1 643.0 1210.4 20.05 152.91 24.06 195.65
CKU 633.48 170.14 0.27 219.0 623.3 1263.0 -2.07 151.31 23.81 198.29
CKD 653.77 159.82 0.24 243.5 644.3 1116.9 18.28 154.59 24.32 199.29

5.8. Eiffect of variance and range on climate
interpolation. MRE increased with increasing coeffi-
cient of variation (CV) and range of values. Wind
speed had the highest MRE, and CV and range
(Table 3, ‘Measured'). Similarly, among variables the
rank of CV values was the same as the rank of MRE
(sunshine duration had the lowest, and wind speed the
highest).

6. CONCLUSIONS

This study aimed to determine the best method
(lowest cross validation error) for interpolating the
spatial distribution of 6 different climate parameters
(solar radiation, sunshine duration, temperature, rela-
tive humidity, wind speed and rainfall) in the GAP
region of Turkey for 1971 to 1999. Based on the MAE
and RMSE values of the predictions, CKD or CRS
interpolation should be used when DEM data are not
available. CRS was especially successful for rainfall
interpolation. When DEM data are available, then
CKS should be used for interpolation of temperature,
solar radiation, relative humidity, and wind speed.

Interpolation of temperature and solar radiation with
consideration of elevation data brought about better
results.

The agricultural and environmental importance of
the GAP region of Turkey will increase with the cur-
rent regional development effort. Interpolation tech-
niques make it possible to predict climate-dependent
parameters for watershed management, crop growth
modeling, and soil-plant—-water interaction studies,
although temporal and spatial measurements of mete-
orological parameters are not yet adequate in the
region.
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