
Group Communication Specifications: A Comprehensive Study

GREGORY V. CHOCKLER

The Hebrew University of Jerusalem Computer Science Institute

IDIT KEIDAR

MIT Laboratory for Computer Science

AND

ROMAN VITENBERG

The Technion Department of Computer Science

View-oriented group communication is an important and widely used building block for
many distributed applications. Much current research has been dedicated to specifying
the semantics and services of view-oriented group communication systems (GCSs).
However, the guarantees of different GCSs are formulated using varying terminologies
and modeling techniques, and the specifications vary in their rigor. This makes it
difficult to analyze and compare the different systems. This survey provides a
comprehensive set of clear and rigorous specifications, which may be combined to
represent the guarantees of most existing GCSs. In the light of these specifications, over
30 published GCS specifications are surveyed. Thus, the specifications serve as a
unifying framework for the classification, analysis, and comparison of group
communication systems. The survey also discusses over a dozen different applications
of group communication systems, shedding light on the usefulness of the presented
specifications. This survey is aimed at both system builders and theoretical researchers.
The specification framework presented in this article will help builders of group
communication systems understand and specify their service semantics; the extensive

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems; D.4.7 [Operating Systems]: Organization and Design—
distributed systems; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—specification techniques; C.2.1
[Computer-Communication Networks]: Network Architecture and Design—
network communications

General Terms: Algorithms, Reliability, Standardization

Additional Key Words and Phrases: Group communication systems, partitionable group
membership, process group membership, specifications of group communication
systems, view synchrony, virtual synchrony

This work is supported by Air Force Aerospace Research (OSR) grant F49620-00-1-0097, Nippon Telegraph
and Telephone (NTT) grant MIT9904-12, and by NSF grants ACI-9876931, CCR-9909114, and EIA-9901592.

Authors’ addresses: G. V. Chockler, Givat Ram, Jerusalem, 91904 Israel; email: grishac@cs.huji.ac.il;
I. Keidar, 545 Technology Square, Cambridge, MA, 02139; email: idish@theory.lcs.mit.edu; R. Vitenberg,
Technion City, Haifa 32000, Israel; email: romanv@cs.technion.ac.il.

Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists,
requires prior specific permission and/or a fee.
c©2001 ACM 0360-0300/01/1200–0427 $5.00

ACM Computing Surveys, Vol. 33, No. 4, December 2001, pp. 427–469.

428 G.V. Chockler et al.

survey will allow them to compare their service to others. Application builders will find
a guide here to the services provided by a large variety of GCSs, which could help them
choose the GCS appropriate for their needs. The formal framework may provide a basis
for interesting theoretical work, for example, analyzing relative strengths of different
properties and the costs of implementing them.

CONTENTS
1. INTRODUCTION

1.1 Unifying the GCS Properties
1.2 The Specification Style
1.3 The Difficulties of Formally

Specifying GCSs
1.4 Roadmap to this Survey

SAFETY PROPERTIES OF GROUP
COMMUNICATION SERVICES

2. THE MODEL AND PRESENTATION
FORMALISM
2.1 The Specification Framework
2.2 The External Signature of the GCS

Service
2.3 The Mathematical Model
2.4 Notation
2.5 Assumptions About the Environment

3. SAFETY PROPERTIES OF
THE MEMBERSHIP SERVICE
3.1 Basic Properties
3.2 Partitionable Versus Primary

Component Membership Services
4. SAFETY PROPERTIES OF THE

MULTICAST SERVICE
4.1 Basic Properties
4.2 Sending View Delivery and Weaker

Alternatives
4.3 The Virtual Synchrony Property

5. SAFE MESSAGES
6. ORDERING AND RELIABILITY

PROPERTIES
6.1 FIFO Multicast
6.2 Casual Multicast
6.3 Totally Ordered Multicast
6.4 Order Constraints for Messages of

Different Types
6.5 Order Constraints for Multiple

Groups
LIVENESS PROPERTIES OF GROUP
COMMUNICATION SERVICES

7. INTRODUCTION
8. REFINING THE MODEL TO REASON

ABOUT LIVENESS
8.1 Extending the GCS External

Signature
8.2 Assumption: Live Network

8.3 Stable Components
8.4 Eventually Perfect Failure Detectors

9. PRECISE MEMBERSHIP IS AS STRONG
AS ¦P

10. LIVENESS PROPERTIES
10.1 Liveness Properties for Stable Runs
10.2 Additional Liveness Properties
10.3 Related Work

CONCLUSIONS
11. SUMMARY
APPENDIX A: PROVING A RELATIONSHIP
BETWEEN DIFFERENT PROPERTIES
REFERENCES

1. INTRODUCTION

Group communication is a means for pro-
viding multipoint to multipoint communi-
cation, by organizing processes in groups.
A group is a set of processes that are mem-
bers of the group. For example, a group can
consist of users playing an online game
with each other. Another group can con-
sist of participants in a multimedia con-
ference. Each group is associated with a
logical name. Processes communicate with
group members by sending a message to
the group name; the group communication
service delivers the message to the group
members.

In this survey, we focus on view-oriented
group communication systems (GCSs).
Such systems provide membership and
reliable multicast services. The task of
a membership service is to maintain a
list of the currently active and connected
processes in a group. The output of the
membership service is called a view. The
reliable multicast services deliver mes-
sages to the current view members. The
first and best known GCS was devel-
oped as part of the Isis toolkit [Birman
1986]; it was followed by over a dozen
others.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 429

GCSs are powerful building blocks
that facilitate the development of
fault-tolerant distributed systems. Clas-
sical GCS applications include replication
using a variant of the state machine/active
replication approach [Lamport 1978;
Schneider 1990] (e.g., Keidar and Dolev
[1996], Amir et al. [1994] Fekete et al.
[1997], Friedman and Vaysburg [1997],
and Montresor et al. [2000]); primary-
backup replication (e.g., Guerraoui and
Schiper [1997b]); support for distributed
and clustered operating systems (e.g.,
Kaashoek and Tanenbaum [1996], Goft
and Yeger Lotem [1999], IBM [1996],
and Cheriton and Zwaenepoel [1985]);
distributed transactions and database
replication (see Schiper and Raynal
[1996], Guerraoui and Schiper [1995],
Kemme and Alonso [1998], and Keidar
[1994]); resource allocation (see Sussman
and Marzulllo [1998] and Babaoğlu et al.
[1998a]); load balancing (see Khazan et al.
[1998] and Dolev et al. [1999]); system
management (see Amir et al. [1996]) and
monitoring (see Al-Shaer et al. [1999]);
and highly available servers, for example,
Mishra and Pang [1999] and Fekete and
Keidar [2001] and the video-on-demand
servers of Anker et al. [1999] and Vogels
and van Renesse [1994].

More recently, GCSs have been ex-
ploited for collaborative computing (see
Chockler et al. [1996], Rhee et al. [1997],
Birman et al. [1998], and Anker et al.
[1997]), for example, distance learning
(see Al-Shaer et al. [1997]), drawing on
a shared whiteboard (see Shamir [1996]),
video and audio conferences (see Chodrow
et al. [1997] and Valenci [1998]), appli-
cation sharing (see Krantz et al. [1998,
1997]), and even distributed musical “jam
sessions” over a network [Gang et al.
1997].

Currently, real-time GCSs such as RT-
CAST [Abdelzaher et al. 1996] are being
developed and are being exploited for
real-time applications, for example, radar
tracking; see Johnson et al. [2000]. An-
other emerging research direction focuses
on the provision of object group ser-
vices within the Common Object Request
Broker Architecture (CORBA) framework;

for examples, see Electra [Landis and
Maffeis 1997], Orbix+Isis [IONA 1994],
Eternal [Moser et al. 1998], and the
Object Group Service [Felber et al. 1998].
Furthermore, GCS has been recently
identified as a key tool for supporting
fault tolerance in CORBA: the new
fault-tolerant CORBA specification [OMG
2000] recommends that view-oriented
GCSs be used to support active object
replication in CORBA.

Traditionally, GCS developers con-
centrated primarily on performance, in
order to make their systems useful for
real-world distributed applications. In the
past few years, the challenging task of
specifying the semantics and services of
GCSs has become an active research area
(see Moser et al.[1994], Friedman and van
Renesse [1995], Babaoğlu et al. [1998b],
Fekete et al. [1997], De Prisco et al.
[1998], Hickey et al. [1999], Keidar and
Khazan [2000], Galleni and Powell [1996],
and Lin and Hadzilacos [1999]). However,
no comprehensive set of specifications
covering the whole spectrum of useful
GCS features has yet been established.

The task of defining a meaningful
GCS is complicated by the fact that
group communication services strive to
have processes reach agreement about
membership views, delivered messages,
and the like, whereas many agreement
problems are known to be unsolvable
in failure-prone asynchronous environ-
ments. Many of the suggested specifi-
cations fail to capture the nontriviality
of existing GCSs. In particular, many
specifications are solvable by trivial al-
gorithms (as shown in Anceaume et al.
[1995]). Others are too strong to im-
plement (as proven in Chandra et al.
[1996]).

The main objective of this article is to
present a comprehensive set of rigorously
defined properties of GCSs that reflect the
usefulness and nontriviality of numerous
existing GCS implementations. We do not
define new properties; rather, we rigor-
ously formalize in a unified framework
properties that have previously appeared
in numerous sources in the literature in
different forms.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

430 G.V. Chockler et al.

1.1. Unifying the GCS Properties

The guarantees of different GCSs are
stated using different terminologies and
modeling techniques, and the specifica-
tions vary greatly in their rigor. Moreover,
many suggested specifications are com-
plicated and difficult to understand, and
some were shown to be ambiguous in
Anceaume et al. [1995]. This makes it dif-
ficult to analyze and compare the different
systems. Furthermore, it is often unclear
whether a given specification is necessary
or sufficient for a certain application.

We formulate a comprehensive set of
specification “building blocks” which may
be combined to represent the guarantees
of most existing GCSs. In light of our
properties, we survey and analyze over 30
published specifications that cover over
a dozen leading GCSs (including Consul
[Mishra et al. 1993; Cristian and Schmuck
1995], the configurable service of Hiltunen
and Schlichting [1998], Ensemble
[Hayden and van Renesse 1996], Horus
[van Renesse et al. 1996], Isis [Birman and
van Renesse 1994], Newtop [Ezhilchelvan
et al. 1995], Phoenix [Malloth et al.
1995], Relacs [Babaoğlu et al. 1998b],
RMP [Whetten et al. 1995], Spread [Amir
and Stanton 1998], Timewheel [Mishra
et al. 1998], Totem [Amir et al. 1995],
Transis [Dolev and Malkhi 1996; Amir
et al. 1992b], and xAMp [Rodrigues
and Verissimo 1992]). We correlate the
terminology used in different papers with
our terminology. This yields a semantic
comparison of the guarantees of existing
systems.

Another important benefit of our ap-
proach is that it allows reasoning about
the properties of applications that exploit
group communication. We present here a
set of specifications carefully compiled to
satisfy the common requirements of many
fault-tolerant distributed applications. We
justify these specifications with examples
of applications that benefit from them
and of services constructed to effectively
exploit them (some examples are Fekete
et al. [1997], Keidar and Dolev [1996],
Friedman and Vaysburg [1997], Amir et al.
[1996, 1994, 1997], Anker et al. [1999],

Vogels and van Renesse [1994], Sussman
and Marzullo [1998], and Khazan et al.
[1998]). We choose not to consider prop-
erties that are not exploited by applica-
tions, even if these properties are satisfied
by many GCSs.

Nonetheless, not all the specifications
are useful for all the applications. Experi-
ence with group communication systems
and reliable distributed applications has
shown that there is no “right” system se-
mantics for all applications (see Birman
[1996, Chapter 18]): Different GCSs are
tailored to different applications that re-
quire different semantics and different
qualities of service (QoS). Modern GCSs
(e.g., Ensemble, Horus, and the config-
urable service of Hiltunen and Schlichting
[1998]) are designed in a flexible fashion,
which allows them to support a variety of
semantics and QoS options. Such modular
GCSs easily adapt to diverse application
needs. When specifying GCSs, it is impor-
tant to preserve this flexibility.

In order to account for the diverse re-
quirements of different applications, we
divide our specifications into indepen-
dent properties that may be used as
building blocks for the construction of a
large variety of actual specifications. In-
dividual specification properties may be
matched by specific protocol layers or
micro-protocols in existing GCSs. This
makes it possible to separately reason
about the guarantees of each layer and
the correctness of its implementation (see
Hickey et al. [1999]). Furthermore, the
modularity of our specifications provides
the flexibility to describe systems that in-
corporate a variety of QoS options with dif-
ferent semantics.

1.2. The Specification Style

We specify clear and rigorous properties
formalized as trace properties of an I/O au-
tomaton [Lynch and Tuttle 1989]. We use
logic formulae for stating the properties, to
avoid ambiguity. Arbitrary combinations
of properties may be derived as conjunc-
tions of formulae that specify different
properties. This provides system builders
with the flexibility to construct modular

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 431

systems in which different properties are
fulfilled by different modules.

Vitenberg [1998] presents a multi-
sorted algebra of which the model herein
is a possible interpretation. The axioms
presented in this article also conform
with Vitenberg’s formalism. The benefit
of using multisorted algebras is that ax-
ioms stated using this formalism can be
checked with automated theorem prov-
ing tools, for example, the Larch Prover
[Guttag et al. 1993].

1.3. The Difficulties of Formally
Specifying GCSs

Defining meaningful group communica-
tion services is not a simple task; such sys-
tems typically run in asynchronous envi-
ronments in which agreement problems
that resemble the services provided by a
GCS are not solvable.

Practical systems cannot do the impos-
sible; they can only make their “best-
effort.” For example, group membership
algorithms usually use time-out-based
failure detection in order to track the net-
work situation. If a message from some
process q to another process p is delayed
longer than a certain time-out, then p will
exclude q from its membership view. The-
oretically, an adversary that knows the
time-out and fully controls the commu-
nication can delay messages longer than
this time-out, causing p to exclude q al-
though q is correct. In general, an adver-
sary can force every deterministic mem-
bership algorithm to either constantly
change its mind or to reach inconsistent
decisions that do not correctly reflect the
network situation.1 However, in practical
networks, communication tends to be sta-
ble and timely during long periods. Exist-
ing group communication systems make
a “best-effort” attempt to reflect the net-
work situation as much as possible, and
indeed succeed most of the time. Note
that the group communication systems we
are concerned with are not intended for
critical (real-time) applications; they run

1 Impossibility results to this effect may be found in
Section 9 of this article and in Chandra et al. [1996].

in environments in which such applica-
tions cannot be realized. The usefulness
of these systems stems from the fact that
real networks rarely behave as vicious ad-
versaries.

Many formal specifications of group
communication systems do not capture
this notion of “best-effort.” This results
in specifications that can be implemented
by trivial algorithms (as demonstrated in
Anceaume et al. [1995]). Other specifica-
tions turn out to be too strong to imple-
ment (see Chandra et al. [1996]). However,
since the “best-effort” principle is an im-
portant consideration of system builders,
actual systems provide more than their
specifications require.

In this survey, we address the nontriv-
iality issues using external failure detec-
tors and by reasoning about liveness guar-
antees at stable periods.

1.4. Roadmap to this Survey

This survey presents specifications for
view-oriented group communication
systems. Such systems typically pro-
vide membership and multicast services
within multicast groups. For simplicity’s
sake, we restrict our attention to the
services provided within the context of a
single group. This discussion can be easily
generalized to multiple groups as long as
the services are provided independently
for each group. In Section 6.5 we discuss
issues that arise when ordering seman-
tics needs to be preserved across groups
(i.e., for messages multicast in separate
groups).

Throughout the article we make a dis-
tinction between basic properties and op-
tional ones. Basic properties are satisfied
by most group communication systems. In
addition, many of the properties presented
in this survey are meaningless unless cer-
tain basic properties hold.

The rest of this article is divided
into two main parts: safety properties
of group communication systems, and
liveness properties. In order to state the
liveness properties, we use the failure de-
tector abstraction. Whereas safety prop-
erties are preserved in all runs, liveness

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

432 G.V. Chockler et al.

properties are conditional, that is, are re-
quired to be satisfied only if certain as-
sumptions on the failure detector and the
underlying network hold. In Section 9 we
prove that this is inevitable: without such
assumptions, the desired liveness guaran-
tees are not attainable.

Each of the parts begins with a model
section: Section 2 presents the model for
all the properties presented in this article;
Section 8 refines the model of Section 2,
adding the failure detector abstraction
and assumptions required to state the
liveness properties.

The safety properties are divided into
four sections: Section 3 presents prop-
erties of the group membership service;
Section 4 presents the properties of the
reliable multicast service; properties of
safe (stable) message indications appear
in Section 5; and ordering and reliabil-
ity properties of certain multicast ser-
vice types are presented in Section 6.
The liveness properties are presented in
Section 10.

Finally, Section 11 concludes the sur-
vey; it contains tables that summarize all
the properties presented here. In these ta-
bles, we also distinguish between basic
and optional properties. In the Appendix,
we prove a lemma which implies that a cer-
tain combination of properties of a reliable
totally ordered and FIFO ordered multicast
service implies that the service also pre-
serves the reliable causal order. We have
included the lemma in this article as it can
be proven by logical analysis of the proper-
ties themselves without considering GCS
implementations.

SAFETY PROPERTIES OF GROUP
COMMUNICATION SERVICES

2. THE MODEL AND PRESENTATION
FORMALISM

The system we consider contains a set
P of processes that communicate via
message passing. The underlying com-
munication network provides unreliable
datagram message delivery. There is no
known bound on message transmission
time, hence the system is asynchronous.

The system model allows for the follow-
ing changes: sites may crash and recover
messages may be lost, failures may parti-
tion the network into disjoint components,
and previously disjoint components may
merge.

In this article, we assume that no
Byzantine failures occur; that is, processes
do not behave in a malicious manner.
Most of the work on group communica-
tion does not address Byzantine failures.
However, such failures are addressed in
the Rampart system [Reiter 1996] and in
Malkhi et al. [1997] and Malkhi and Reiter
[1997].

2.1. The Specification Framework

We now overview the formal framework
used to specify the group communication
service. A system is modeled as a collec-
tion of components. The division into com-
ponents is oriented towards the service
model rather than describing an actual
implementation: each component provides
a service to other components. In practice,
a single component can be implemented by
a combination of hardware devices, pro-
grams, library modules, and so on. Fur-
thermore, components are not necessarily
local and can be distributed over a set of
machines.

We model both the system and individ-
ual components as untimed I/O automata
(see Lynch and Tuttle [1989] and Lynch
[1996, Chapter 8]). In this model, each
component has an internal state, invisi-
ble to other components. Components in-
teract using shared actions that can affect
the state of individual components. Specif-
ically, an automaton interacts with its en-
vironment by two sets of external actions:
input and output. These two sets of actions
comprise the external signature of the au-
tomaton. A trace of an I/O automaton is the
sequence of external actions it takes in an
execution. Executions are assumed to be
sequential; that is, actions are atomic, and
no two actions can occur simultaneously.
Roughly speaking, a fair trace is a trace
of an execution in which enabled actions
eventually become executed. For formal
definitions, see Lynch [1996, Chapter 8].

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 433

In this survey, we only present service
specifications; we do not discuss a specific
implementation of the service and do not
provide any proof of correctness. There-
fore we are not concerned with the inter-
nal state of components but only with their
external behavior, as reflected in their ex-
ternal signature and in their fair traces. A
service specification is modeled as a set of
acceptable fair traces. A system satisfies a
service specification if the set of possible
fair traces of the system is a subset of the
set of acceptable fair traces defined by the
specification. This is in contrast to speci-
fications based on equality and bisimula-
tion, which define the exact set of possible
traces of a system rather than restricting
this set.

We present the GCS service specifica-
tion by defining its external signature in
Section 2.2, and a collection of trace prop-
erties throughout the rest of this article.
Each trace property is presented as an
axiom in the set-theoretic mathematical
model described in Section 2.3. A speci-
fication consists of an external signature
and a set of such axioms. We say that an
I/O automaton satisfies the specification if
all of its fair traces satisfy the axioms that
comprise the specification.

2.2. The External Signature of the
GCS Service

The GCS specification models the behav-
ior of the entire system. In the specifica-
tion, we use the types:

P—the set of processes;
M—the set of messages sent by the appli-

cation; and
VID—the set of view identifiers, partially

ordered by the < operator.

Each action of the GCS is parameterized
by a unique process p ∈ P at which this
action occurs. The GCS interacts with the
application as depicted in Figure 1. The
external signature of the GCS consists of
the following actions.

Interaction with the application. The appli-
cation uses the GCS to send and receive
messages, and also receives view change

Fig. 1 . External actions of the
GCS.

notifications and possibly safe prefix indi-
cations (cf. Section 5) from the GCS. Note:
We include safe prefix indications in the
signature, although not every interesting
GCS will actually provide them.

—input send(p, m), p ∈ P, m ∈M.
—output recv(p, m), p ∈ P, m ∈M.

Note: The receive action does not con-
tain the sender as an explicit parame-
ter. In specific implementations of the
automaton, the receiver may learn of
the sender’s identity by including the
sender’s identifier in the message text.

—output view chng(p, 〈id , members〉,
T), p∈P, id ∈VID , members ∈ 2P , T ∈
2P . id is the view identifier, members is
the set of members in the new view, and
T is the transitional set of the extended
virtual synchrony (EVS) [Moser et al.
1994] model (cf. Section 4.3.1).

—output safe prefix(p, m), p∈P, m∈M.

Interaction with the environment. The fol-
lowing actions model events that may oc-
cur in the environment and affect the GCS.

—input crash(p), p ∈ P.
—input recover(p), p ∈ P.

2.3. The Mathematical Model

We now present the mathematical model
for stating trace properties of a GCS with
the signature described in Section 2.2. We
use set theory notation to state our axioms;
we define the sets:

P,M, VID—Basic sets as described
above.

V—The set of views delivered in view
chng actions is VID× 2P . Thus a view

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

434 G.V. Chockler et al.

V ∈ V is a pair. We refer to the elements
in the pair as V .id and V .members.

Events—Occurrences of actions.2 The set
of events is:
{send(p, m) | p ∈ P, m ∈ M} ∪
{recv(p, m) | p ∈ P, m ∈M} ∪
{view chng(p, V , T) | p∈P, V ∈V, T ∈
2P} ∪
{safe prefix(p, m) | p ∈ P, m ∈M} ∪
{crash(p) | p ∈ P} ∪ {recover(p) | p ∈
P}.

Traces—Finite or infinite sequences of
events.

The first parameter in each event is a
process in P. Thus, we can define the func-
tion: pid : Events → P which returns the
process at which an event occurs.

Since all of our axioms classify traces,
they all take a trace as a parameter. For
clarity of the presentation, we make the
trace parameter implicit: we fix a (finite
or infinite) trace, t1, t2, . . . , and all the ax-
ioms are stated with respect to this trace.
In our axioms, we omit universal quanti-
fiers: when a variable is unbound it is un-
derstood to be universally quantified for
the scope of the entire formula.

2.4. Notation

With a view-oriented group communica-
tion service, events occur at processes
within the context of views. The func-
tion viewof : Events → V ∪ {⊥} returns
the view in the context of which an event
occurred at a specific process. Note that
for a view chng event, it is not the new
view introduced, but rather the process’
previous view. At startup time and fol-
lowing a crash, a process is not consid-
ered to be in any view (modeled by ⊥).
Some specifications (e.g., those of Fekete
et al. [1997], De Prisco et al. [1998], and
Chockler et al. [1998]) assume knowledge
of a default view in which the process is
considered to be at startup time. However,
their specifications do not address the is-
sue of recovery from crash and therefore

2 We use the term “events” in the context of specifi-
cations while using the term “actions” to define the
automaton signatures.

do not specify a process’ view following re-
covery. Actual GCSs, on the other hand, do
not typically assume knowledge of default
views. Therefore, we chose not to include
default views in our specifications.

Definition 2.1. (viewof). The view of
an event ti occurring at process p is the
view delivered to p in a view chng event
t j , which precedes ti and such that no
view chng or crash events occur at p be-
tween t j and ti; the view is ⊥ if there is no
such t j . Formally:

viewof (ti)
def=

V if ∃ j∃T (t j = view chng(pid(ti),
V , T) ∧ j < i ∧ 6∃k(j < k < i ∧
(tk = crash(pid(ti)) ∨ ∃T ′∃V ′

tk = view chng(pid(ti), V ′, T ′))))

⊥ otherwise.

We define some general shorthand pred-
icates in Table I. In all these predicates as
well as throughout the rest of this survey,
variables named V and V ′ are members
of V (not ⊥), variables named p and q are
taken from P, variables named m and m′
are members ofM, variables named T , T ′,
and S are in 2P , and variables i, j , and k
are integers.

2.5. Assumptions About the Environment

We assume that no events occur at a pro-
cess between crash and recovery.

ASSUMPTION 2.1 (Execution Integrity).
The next event that occurs at a process
after a crash is recovery, and the event
before a recovery is a crash. Formally:

(next event(i, j , p) ∧ t j = crash(p) ⇒
ti = recover(p)) ∧ (t j = recover(p) ⇒
∃i (prev event(i, j , p) ∧ ti = crash(p))).

In order to distinguish between the mes-
sages sent in different send events, we as-
sume that each message sent by the ap-
plication is tagged with a unique message
identifier, which may consist, for example,
of the sender identifier and a sequence
number or a timestamp. Thus we can
require that every message is sent at
most once in the system. This assumption

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 435

Table I. General Shorthand Predicate Definitions

Process p receives message m:

receives(p, m)
def= ∃i ti = recv(p, m)

Process p receives message m in view V :

receives in(p, m, V)
def= ∃i (ti = recv(p, m) ∧ viewof(ti) = V)

Process p sends message m:

sends(p, m)
def= ∃i ti = send(p, m)

Process p sends message m in view V :

sends in(p, m, V)
def= ∃i (ti = send(p, m) ∧ viewof(ti) = V)

Process p installs view V :

installs(p, V)
def= ∃i∃T ti = view chng(p, V , T)

Process p installs view V in view V ′:
installs in(p, V , V ′) def= ∃i∃T (ti = view chng(p, V , T) ∧ viewof(ti) = V ′)

Process p crashes in view V :

delivers in(p, V)
def= ∃i (ti = crash(p) ∧ viewof(ti) = V)

Event ti is the next event after t j at process p:

next event(i, j , p)
def= j < i ∧ pid(ti) = pid(t j) = p ∧ 6 ∃k (pid(tk) = p∧ j < k < i)

Event ti is the previous event before t j at process p:

prev event(i, j , p)
def= j > i ∧ pid(ti) = pid(t j) = p ∧ 6 ∃k (pid(tk) = p∧ j > k > i)

is not essential because a GCS can pro-
vide the same guarantees without it by
adding a sequence number to distinguish
between different instances of application
messages. It does, however, simplify the
presentation and the definitions of further
requirements.

ASSUMPTION 2.2 (Message Uniqueness).
There are no two different send events
with the same content. Formally:

ti = send(p, m)∧ t j = send(q, m)⇒ i= j .

3. SAFETY PROPERTIES OF THE
MEMBERSHIP SERVICE

A membership service is a vital part of a
view-oriented group communication sys-
tem. The task of a membership service
is to maintain a list of the currently ac-
tive and connected processes. This list can
change with new members joining and old
ones departing or failing. When this list
changes, the membership service reports
the change to the members by installing a
new view. The membership service strives
to install the same view at mutually con-
nected members.

In this section we describe typical prop-
erties of membership services. We begin,

in Section 3.1, with some basic safety prop-
erties fulfilled by most group communica-
tion systems. In Section 3.1.2 we compare
two approaches to group membership: par-
titionable and primary component.

3.1. Basic Properties

Our first safety property requires that a
process always be a member of its view.

PROPERTY 3.1 (Self Inclusion). If pro-
cess p installs view V , then p is a member
of V . Formally:

installs(p, V)⇒ p ∈ V .members.

Since a membership of a view re-
flects the ability to communicate with
the process and a process is always
able to communicate with itself, this
property holds in all group communi-
cation systems and specifications. It
is explicitly specified in Dolev et al.
[1995], Friedman and van Renesse [1995],
Ezhilchelvan et al. [1995], Babaoğlu et al.
[1998b], Fekete et al. [1997], Keidar and
Khazan [2000], and Galleni and Powell
[1996].

3.1.1 View Identifier Order. Our next basic
property requires that the view identifiers

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

436 G.V. Chockler et al.

of the views that each process installs are
monotonically increasing.

PROPERTY 3.2 (Local Monotonicity). If a
process p installs view V after installing
view V ′ then the identifier of V is greater
than that of V ′. Formally:

ti = view chng(p, V , T) ∧
t j = view chng(p, V ′, T ′) ∧ i > j
⇒ V .id > V ′.id .

Property 3.2 has two important conse-
quences: it guarantees that a process does
not install the same view more than once
and that if two processes both install the
same two views, they install these views
in the same order.

As long as there are no recoveries from
crashes, local monotonicity is satisfied by
virtually all group membership systems
(examples include: Ricciardi and Birman
[1991], Dolev et al. [1995], Amir et al.
[1995], Ezhilchelvan et al. [1995], Malloth
and Schiper [1995], and Keidar et al.
[2000]); it is also required in all the group
membership specifications (e.g., Neiger
[1996], Fekete et al. [1997], and De Prisco
et al. [1998]). Babaoğlu et al. [1998b]
states an equivalent property: the order in
which processes install views ensures that
the successor relation is a partial order.
This is equivalent to the property herein,
since the partial order derived by succes-
sors coincides with the partial order de-
fined on the VID set.

However, some group communication
systems may violate local monotonicity in
case a process crashes and recovers with
the same identity: when the process recov-
ers, it installs its initial view, whose iden-
tifier is smaller than the last view it in-
stalled before crashing. Such violation of
local monotonicity may cause an old mes-
sage that has been traveling in the net-
work since before the crash to be mistaken
for a new one.

There are several ways to remedy this
shortcoming. In Isis [Ricciardi and Birman
1991] a process recovering after a crash
is assigned a different identifier (using a
new incarnation number). It is also pos-

sible to overcome this problem by saving
information on a disk before each view in-
stallation. RMP guarantees uniqueness of
views (although not monotonicity) even in
the face of crashes by initializing a local
counter to be the real clock value when a
computer recovers from a crash.

There are different ways to generate
view identifiers. In Transis [Dolev et al.
1995] the view identifier is a positive inte-
ger. This integer is computed based on the
values of local counters, maintained by all
processes. This local counter is increased
by a process upon each installation. The
view identifiers in the specifications of
Fekete et al. [1997] and Neiger [1996] are
taken from an ordered set. Hence, an in-
teger counter is again a possible imple-
mentation. In Horus [Friedman and van
Renesse 1995] and Cristian and Schmuck
[1995], a view identifier is a pair 〈p, c〉
where p is the process that created the
view and c is a value of a local counter on
p. In Totem, a view identifier is a triple
of integers, ordered lexicographically. In
Keidar et al. [2000] the view identifier is
a pair consisting of a vector that maps
view members to integer counters and
an integer, where the integer part of the
view identifier is monotonically increas-
ing. Newtop uses a logical timestamp to
sign all messages. At the moment of the
new view creation the maximum value
among the timestamps of all view mem-
bers satisfies all the properties of a view
identifier.

The importance of view ordering prop-
erties is noted and emphasized in sev-
eral works, for example, in Hiltunen and
Schlichting [1995], and Friedman and
Vaysburg [1997]. The protocol of Chockler
et al. [1998] uses local monotonicity (Prop-
erty 3.2) in order to implement a totally
ordered multicast service. Other examples
of applications that exploit view ordering
can be found in Keidar and Dolev [1996,
2000], Amir et al. [1994], and Friedman
and Vaysburg [1997].

3.1.2 Initial View Event. We have already
seen that with a view-oriented group com-
munication system, events occur in the

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 437

context of views. However, as per our
definitions, this is not the case for all
events: events that occur before the first
view event are not considered to be occur-
ring in any view. GCSs typically install an
initial view at startup time and upon re-
covery from a crash (unless they crash be-
fore doing so), and thus every send, recv,
and safe prefix event in these GCSs oc-
curs in some view. This requirement is
stated in Property 3.3.

PROPERTY 3.3 (Initial View Event). Ev-
ery send, recv, and safe prefix event oc-
curs within some view. Formally:

ti = send(p, m) ∨ ti = recv(p, m) ∨ ti

= safe prefix(p, m)⇒ viewof(ti) 6= ⊥.

Note: In order to enforce this property,
one has to restrict the behavior of the ap-
plication, so that no send events occur be-
fore the first view chng event.

The initial view can be determined in
one of two ways.

—At startup, processes use the member-
ship service to agree upon the view, as
they do for any other view. Thus, no
predefined knowledge about processes
in the system is required. Most GCSs
adopt this option, for example, Isis and
Ensemble.

—Each process unilaterally decides upon
its initial view without communication
with other processes. This approach is
equivalent to having default views, but
with an explicit initial view installation
event. Transis [Dolev et al. 1995] and
Consul [Mishra et al. 1993] take this
approach.
The initial view may be singleton
or may consist of all possible pro-
cesses in the system. In Hiltunen and
Schlichting [1995] these two possibili-
ties are called individual startup and
collective startup, respectively. Transis
is an example of a GCS that uses indi-
vidual startup, and collective startup is
deployed, for example, in Consul. Note
that in order to install anything dif-
ferent from a singleton view, a process
must possess a priori knowledge about

other processes in the system. Such
knowledge is assumed, for example, in
Fekete et al. [1997] and Mishra et al.
[1993].

We do not provide a formal specification
for each of these possibilities in this paper;
Property 3.3 (Initial View Event) accounts
for installing initial views in the most gen-
eral way.

3.2. Partitionable Versus Primary Component
Membership Services

A membership service may either be pri-
mary component3 or partitionable. In a
primary component membership service,
views installed by all the processes in the
system are totally ordered. In a partition-
able one, views are only partially ordered
(i.e., multiple disjoint views may exist con-
currently). A GCS is partitionable if its
membership service is partitionable; oth-
erwise it is primary component.

All the safety properties presented
above concern partitionable membership
services as well as primary component
ones. Since the properties above do not
enforce a total order on views, the spec-
ification presented thus far is partition-
able. In order to specify a primary com-
ponent membership service, we add a
safety property that imposes a total order
on views. Property 3.4 (Primary Compo-
nent Membership) requires that the set of
views installed in a trace form a sequence
such that every two consecutive views (in
this sequence) intersect. The sequence is
modeled as a function from the set of
views installed in the trace to the natural
numbers.

PROPERTY 3.4 (Primary Component Mem-
bership). There is a one-to-one function f
from the set of views installed in the trace
to the natural numbers, such that f sat-
isfies the following property.
For every view V with f (V) > 1 there ex-
ist a view V ′, such that f (V) = f (V ′)+ 1,
and a member p of V that installs V in V ′

3 A primary component was originally called a pri-
mary partition.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

438 G.V. Chockler et al.

(i.e., V is the successor of V ′ at process p).
Formally:

∃ f : {V | ∃p : installs(p, V)}→N such that :
(f (V) = f (V ′)⇒ V = V ′) ∧
∀V (f (V)> 1⇒∃V ′ (f (V) = f (V ′)+ 1 ∧
∃p ∈ V .members : installs in(p, V , V ′))).

This property implies that for every pair
of consecutive views, there is a process
that survives from the first view to the
second (i.e., does not crash between the
installations of these two views). Such a
surviving process may convey information
about message exchange in the first view
to the members of the second. Similar
properties appear in Malloth and Schiper
[1995], Ricciardi and Birman [1991], Yeger
Lotem et al. [1997], and De Prisco et al.
[1998].

The first and best known group mem-
bership service is the primary component
membership service of Isis [Birman and
van Renesse 1994]. It was followed by
many other primary component mem-
bership services, for example, those of
Phoenix [Malloth and Schiper 1995],
Consul, and xAMp. Primary component
membership services are also specified
in Chandra et al. [1996], Neiger [1996],
Cristian [1991], Mishra et al. [1991], De
Prisco et al. [1998], Lin and Hadzilacos
[1999]. Consul, xAMp, and Cristian [1991]
guarantee membership service properties
only as long as no network partitions
occur. In contrast, Isis [Ricciardi and
Birman 1991] and Phoenix do assume
the possibility of network partitions,
but allow execution of the application to
proceed only in a single component. In
Isis detached processes “commit suicide,”
whereas in Phoenix they are blocked until
the link is mended.

The first partitionable membership
service was introduced as part of Transis
[Amir et al. 1992a]. Since then, numerous
new GCSs featuring a partitionable mem-
bership service have emerged, for exam-
ple, those of Totem, Horus, RMP, Newtop,
and Relacs. Partitionable membership
services are discussed in the specifica-
tions of Moser et al. [1994], Fekete et al.

[1997], Babaoğlu et al. [1996], Christian
and Schmuck [1995], Jahanian et al.
[1993], and Keidar and Khazan [2000].
Hiltunen and Schlichting [1995] present
a specification of a primary component
membership service and show how to ex-
tend it to a specification of a partitionable
one.

Partitionable membership services have
been used for a variety of applications,
for example, resource allocation [Sussman
and Marzullo 1998; Babaoğlu et al. 1998a],
system management [Amir et al. 1996],
monitoring [Al-Shaer et al. 1999], load bal-
ancing [Dolev et al. 1999], highly available
servers [Mishra and Pang 1999; Anker
et al. 1999; Fekete and Keidar 2001],
and collaborative computing applications
such as drawing on a shared whiteboard
[Shamir 1996], video and audio confer-
ences [Chodrow et al. 1997; Valenci 1998],
application sharing [Krantz et al.1998,
1997], and even distributed musical “jam
sessions” over a network [Gang et al.
1997].

In contrast, applications that main-
tain globally consistent shared state (e.g.,
Friedman and Vaysburg [1997], Keider
and Dolev [1996, 2000], Amir et al. [1994],
Fekete et al. [1997], Khazan et al. [1998],
Schiper and Raynal [1996], Guerraoui and
Schiper [1995, 1997b], Kemme and Alonso
[1998], and Keidar [1994]), usually avoid
inconsistencies by allowing only members
of one view (the primary one) to update the
shared state at a given time (see discus-
sion in Hiltunen and Schlichting [1995]).
For the benefit of such applications, some
partitionable membership services (e.g.,
Friedman and van Renesse [1995] and
Hiltunen and Schlichting [1995]) notify
processes whether they are in a primary
view, such that the primary views sat-
isfy Property 3.4 (Primary Component
Membership) above. The dynamic voting-
based algorithm of Yeger Lotem et al.
[1997] runs atop a partitionable member-
ship service and provides such notifica-
tions. The benefit of using a partitionable
membership service for such applica-
tions is that members of nonprimary
views may access the data for reading
purposes.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 439

4. SAFETY PROPERTIES OF THE
MULTICAST SERVICE

We now discuss the multicast service, and
its relationship with the group member-
ship service.

GCSs typically provide various types
of multicast services. Traditionally, GCSs
provide reliable multicast services with
different delivery ordering guarantees.
Several modern group communication
systems have incorporated a multicast
paradigm that provides the QoS of the
underlying communication, allowing a
single application to exploit multiple QoS
options. For example, in RMP, the unreli-
able QoS level provides the guarantees of
the underlying communication. Similarly,
the MMTS [Chockler et al. 1996] extends
Transis by providing a framework for syn-
chronization of messages with different
QoS properties; Maestro [Birman et al.
1998] extends Ensemble by coordinating
several protocol stacks with different
QoS guarantees, and the collaborative
computing transport layer (CCTL) [Rhee
et al. 1997] implements similar concepts,
geared towards distributed collaborative
multimedia applications.

Most of the multicast properties we for-
mulate below are typically fulfilled only
by reliable multicast paradigms, and not
by multicast services that directly provide
the QoS of the underlying communication
layer.

4.1. Basic Properties

Our first property requires that messages
never be spontaneously generated by the
group communication service.

PROPERTY 4.1 (Delivery Integrity). For
every recv event there is a preceding send
event of the same message:

ti = receive(p, m) ⇒ ∃q∃ j (j < i ∧ t j =
send(q, m)).

This property is trivially implemented,
and all GCSs support it; it is explicitly
specified in Babaoğlu et al. [1998b],
Rodrigues and Verissimo [1992], Fekete
et al. [1997], De Prisco et al. [1998], and
Keidar and Khazan [2000].

The following property states that mes-
sages are not duplicated by the GCS; that
is, every message is received at most once
by each process.

PROPERTY 4.2 (No Duplication). Two
different recv events with the same con-
tent cannot occur at the same process. For-
mally:

ti = recv(p, m) ∧ t j = recv(p, m)⇒ i= j .

Most GCSs eliminate duplication (some
examples are: Babaoğlu et al. [1998b],
Ezhilchelvan et al. [1995], Amir et al.
[1992b], and Keidar and Khazan [2000]).
However, when a GCS directly provides
the same QoS as the underlying communi-
cation layer, duplication is not eliminated,
for example, in the unreliable and un-
ordered QoS levels of RMP.

4.2. Sending View Delivery
and Weaker Alternatives

With a view-oriented group communica-
tion service, send and receive events occur
within the context of views.4 Several GCS
specifications require that a message be
delivered in the context of the same view
as the one in which it was sent; other spec-
ifications weaken this requirement in a
variety of ways. In this section we dis-
cuss this property and some of its weaker
alternatives.

4.2.1. Sending View Delivery. Many GCSs
guarantee that a message be delivered in
the context of the view in which it was
sent, as specified in the following property.

PROPERTY 4.3 (Sending View Delivery).
If a process p receives message m in view
V , and some process q (possibly p = q)
sends m in view V ′, then V = V ′. For-
mally:

receives in(p, m, V)∧ sends in(q, m, V ′)
⇒ V = V ′.

4 Note that if there is no initial view event, messages
may be sent and received in the context of no view.
The properties below only apply to those send and
receive events that do occur in the context of some
view.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

440 G.V. Chockler et al.

Among the group communication sys-
tems that support Sending View Delivery
are Isis and Totem. In contrast, Newtop
and RMP do not guarantee Property 4.3.
Horus allows the user to choose whether
this property should be satisfied; the
programming model in which it is sat-
isfied is called strong virtual synchrony
(SVS) [Friedman and van Renesse 1995].
Property 4.3 also appears in various GCS
specifications (examples include Moser
et al. [1994], Fekete et al. [1997], Hiltunen
and Schichting [1995], De Prisco et al.
[1998], and Keidar and Khazan [2000]).

Sending View Delivery is exploited by
applications to minimize the amount of
context information that needs to be sent
with each message, and the amount of
computation time needed to process mes-
sages. For example, there are cases in
which applications are only interested
in processing messages that arrive in
the view in which they were sent. This
is usually the case with state trans-
fer messages sent when new views are
installed (examples of applications that
send state transfer messages include Amir
et al. [1997], Sussman and Marzullo
[1998], Hiltunen and Schlichting [1995],
Friedman and Vaysburg [1997], Amir et al.
[1997, 1993], Keidar and Dolev [1996,
2000], and Khazan et al. [1998]). Using
Sending View Delivery, such applications
do not need to tag each state transfer mes-
sage with the view in which it was sent.
Sending View Delivery is also useful for
applications that send vectors of data cor-
responding to view members. Such an ap-
plication can send the vector without an-
notations, relying on the fact that the ith
entry in the vector corresponds to the ith
member in the current view (as explained
in Friedman and van Renesse [1995]). Ap-
plications that exploit Sending View De-
livery are called view-aware.

Unfortunately, in order to satisfy Send-
ing View Delivery without discarding
messages from live and connected pro-
cesses, processes must block sending of
messages for a certain time period before
a new view is installed. In fact, Fried-
man and van Renesse [1995] prove that
without such blocking, satisfying Sending

View Delivery entails violating other
useful properties such as Property 4.5
(Virtual Synchrony) and Property 10.1.3
(Self-Delivery) below. Therefore, in order
to fulfill Sending View Delivery, group
communication systems block sending of
messages while a view change is taking
place. In order to notify the application
that it needs to stop sending messages,
the GCS sends a block request to the ap-
plication. The application responds with a
flush message which follows all the mes-
sages sent by the application in the old
view. The application then refrains from
sending messages until the new view is
delivered.

An alternative way to satisfy Prop-
erty 4.3 is by discarding certain messages
that arrive in the course of a membership
change or in later views, and thus violat-
ing at least one of Self-Delivery and Vir-
tual Synchrony, as well as the “best-effort”
principle. We are not aware of any GCS
that takes this approach.

4.2.2. Same View Delivery. In order to
avoid blocking the application, some GCSs
weaken the Sending View Delivery prop-
erty and require only that a message be
delivered at the same view at every pro-
cess that delivers it. This is specified in the
Same View Delivery property as follows.

PROPERTY 4.4 (Same View Delivery). If
processes p and q both receive message m,
they receive m in the same view. Formally:

receives in(p, m, V) ∧ receives in(q, m, V ′)
⇒ V = V ′.

Same View Delivery is a basic prop-
erty. It holds in all the group communica-
tion systems and specifications surveyed
herein, for example, in Transis, Relacs,
and the GCSs that support Property 4.3
above. (Same View Delivery is called
Uniqueness in Babaoğlu et al. [1998b]).

Same View Delivery is strictly weaker
than Sending View Delivery. However, it
is sufficient for applications that are not
interested in knowing in which view mes-
sages are multicast; some examples are:
Chockler et al. [1998], Keider and Dolev

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 441

[1996, 2000], Amir et al. [1996], and Anker
et al. [1999].

Sussman and Marzullo [1998] compare
the relative strengths of Same View Deliv-
ery and Sending View Delivery for solving
a simple resource allocation problem in a
partitionable environment. They define
a metric specific to this application that
captures the effects of the uncertainty of
the global state caused by partitioning;
this uncertainty is measured in terms of
the quantity of resources that cannot be
allocated. They show that when using to-
tally ordered multicast (cf. Section 6.3),
algorithms that use Same View Deliv-
ery and Sending View Delivery perform
equally in terms of this metric, whereas
if FIFO multicast is used (cf. Section 6.1),
algorithms that use Sending View Deliv-
ery are superior with respect to this met-
ric to those that use Same View Delivery.
This identifies a tradeoff between the costs
of totally ordered multicast and Sending
View Delivery.

There are two kinds of systems that
provide Same View Delivery without
Sending View Delivery: systems that pro-
vide stronger semantics than Same View
Delivery (yet weaker than Sending View
Delivery), as described in Section 4.2.3
below, and systems that are built around
a small number of servers that provide
group communication services to numer-
ous application clients (e.g., Transis and
Spread). In the latter kind of systems,
client membership is implemented as a
“light-weight” layer that communicates
with a “heavy-weight” Sending View
Delivery layer asynchronously using a
FIFO buffer, as illustrated in Figure 2.
The asynchrony may cause messages to
arrive in later views than the ones in
which they were sent. However, since the
asynchronous buffer preserves the order
of recv and view chng events, messages
are delivered in the same view at all des-
tinations. Thus, at the client level, only
Same View Delivery is supported. The
benefit of using such a design is that the
group membership service can proceed to
agree upon the new view without waiting
for flush messages indicating that all the
clients are blocked.

Fig. 2 . Implementing Same
View Delivery over Sending
View Delivery.

4.2.3. The Weak Virtual Synchrony and Op-
timistic Virtual Synchrony models. The weak
virtual synchrony (WVS) programming
model [Friedman and van Renesse 1995]
eliminates the need for blocking, and yet
provides support for a certain type of
view-aware applications. In WVS, every
installation of a view V is preceded by
at least one suggested view event. The
membership of the suggested view is
an ordered superset of V . Property 4.3
(Sending View Delivery) is replaced by
the requirement that every message sent
in the suggested view be delivered in the
next regular view. This allows processes
to send messages while the membership
change is taking place. The processes
that use WVS maintain translation tables
that map process ranks in the suggested
view to process ranks in the new view.
Thus, although messages are no longer
guaranteed to be delivered in the view in
which they were sent, an application may
still send vectors of data corresponding to
processes without annotations.

One shortcoming of the WVS model is
that once a suggested view is delivered,
it does not allow new processes to join
the next regular view. If a new process
joins while a view change is taking place,
a protocol implementing WVS is forced
to install an obsolete view, and then im-
mediately start a new view change to
add the joiner. This behavior violates the

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

442 G.V. Chockler et al.

“best-effort” principle. A second shortcom-
ing of WVS is that it is useful only for
view-aware applications that are satisfied
with knowledge of a superset of the actual
view, and does not suffice for certain view-
aware applications (e.g., Yeger Lotem et al.
[1997]) that require messages to be deliv-
ered in a view identical to the one in which
they are sent.

These shortcomings are remedied by
the optimistic virtual synchrony (OVS)
model, recently introduced in Sussman
et al. [2000]. In OVS, each view instal-
lation is preceded by an optimistic view
event, which provides the application with
a “guess” what the next view will be. Af-
ter this event, applications may optimisti-
cally send messages assuming that they
will be delivered in a view identical to the
optimistic view (note that this will be the
case unless further changes in the system
connectivity occur during the membership
change). If the next view is not identical to
the optimistic view, the application may
still choose to use the messages (e.g., if
the new view is a subset of the optimistic
view and WVS semantics are required) or
roll back the optimistic messages.

The WVS and OVS models both pose
weaker alternatives to Sending View
Delivery, and both imply Property 4.4
(Same View Delivery). Furthermore, ac-
cording to the metric of Sussman and
Marzullo [1998], algorithms that exploit
WVS or OVS perform the same as those
that exploit Property 4.3 (Sending View
Delivery).

4.3. The Virtual Synchrony Property

We now present an important property
of virtually synchronous communication
that is often referred to as “virtual syn-
chrony.” This property requires two pro-
cesses that participate in the same two
consecutive views to deliver the same set
of messages in the former.

PROPERTY 4.5 (Virtual Synchrony). If
processes p and q install the same new
view V in the same previous view V ′, then
any message received by p in V ′ is also re-

ceived by q in V ′. Formally:

installs in(p, V , V ′) ∧ installs in(q, V , V ′)
∧ receives in(p, m, V ′)
⇒ receives in(q, m, V ′).

Virtual synchrony is perhaps the best
known property of GCSs, to the extent
that it engendered the whole virtual
synchrony model.5 This property was first
introduced in the Isis literature [Birman
and Joseph 1987] in the context of a pri-
mary component membership service and
later extended to a partitionable member-
ship service [Friedman and van Renesse
1995; Dolev et al. 1995; Ezhilchelvan
et al. 1995; Moser et al. 1994; Babaoğlu
et al. 1998b]. In Moser et al. [1994] and
Friedman and Vaysburg [1997] it is called
“failure atomicity,” and in Babaoğlu et al.
[1998b] it is called “message agreement.”
Virtual synchrony is supported by nearly
all group communication systems, either
for all multicast services (e.g., in Ensem-
ble, Horus, Isis, Newtop, Phoenix, Relacs,
Totem, and Transis) or only for some
multicast services, such as the totally
ordered multicast of RMP. It also appears
in specifications, for example, Hiltunen
and Schlichting [1995], Hickey et al.
[1999], Keidar and Khazan [2000], and
Galleni and Powell [1996]. An exception
is set by the specifications of Fekete et al.
[1997] and De Prisco et al. [1998] which
do not include this property.

Virtual synchrony is especially use-
ful for applications that implement data
replication using the state machine ap-
proach [Lamport 1978; Schneider 1990]
(examples include Keidar and Dolev
[1996, 2000], Amir et al. [1994, 1997,
1993], Friedman and Vaysburg [1997],
Khazan et al. [1998], and Sussman
and Marzullo [1998]). Such applications
change their state when they receive ap-
plication messages. In order to keep the
replica in a consistent state, application

5 The virtual synchrony property should not be con-
fused with the strong, weak, optimistic and extended
virtual synchrony models, although all of these mod-
els include this property.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 443

Fig. 3 . A possible scenario with a par-
titionable GCS.

messages are disseminated using totally
ordered multicast.

Whenever the network partitions, the
disconnected replica may diverge and
reach different states. When previously
disconnected replica reconnect, they per-
form a state transfer, that is, exchange
special state messages in order to reach
a common state. A group communication
system that supports virtual synchrony
allows processes to avoid state transfer
among processes that “continue together”
from one view to another, as explained in
Amir et al. [1997]: whenever the member-
ship service installs a new view V (with
the membership V .members) at a pro-
cess p, p should first determine the set
T of processes in V .members that were
also in p’s previous view V ′, and have
proceeded directly from V ′ to V (i.e., in-
stalled view V ′ and did not install any
view after V ′ and before V). If, for exam-
ple, T = V .members, then according to the
virtual synchrony property, each replica in
V .members has received the same set of
messages in V ′ and therefore has the same
state upon installing view V . Hence, no
state transfer is required.

Note that T (as defined above) is not nec-
essarily the intersection of the members
sets of the new view and the previous
one, as demonstrated in Figure 3. In this
example, p and q are initially in the
same connected component (both install
〈1, {p, q}〉). Later, p partitions from q. q de-
tects this partition first and delivers the
view 〈2, {q}〉. When the slower process p

also detects the fluctuation in the network
connectivity and activates the member-
ship protocol, the network reconnects and
both processes deliver 〈3, {p, q}〉. From p’s
point of view, the intersection of 〈3, {p, q}〉
and the preceding view is {p, q}, although
virtual synchrony does not guarantee that
they deliver the same set of messages in
view 〈1, {p, q}〉.

Thus, virtual synchrony is an “exter-
nal observer” property. If the membership
service at p does not provide information
about views installed at other processes in
V , p cannot deduce T (as defined above)
solely from V and V ′, and cannot always
know whether the hypothesis of virtual
synchrony holds. Additional information
is required to allow processes to locally
deduce when state transfer is indeed not
needed. In the sections below, we present
two possible solutions to this shortcoming.

4.3.1. Exploiting Virtual Synchrony Using the
Transitional Set. The transitional set con-
tains information that allows processes to
locally determine whether the hypothe-
sis of virtual synchrony applies or a state
transfer is required. Different transitional
sets may be delivered with the same view
at different processes.

The following property specifies the re-
quirements from the transitional set.

PROPERTY 4.6 (Transitional Set).

1. If process p installs a view V in (previ-
ous) view V ′, then the transitional set
for view V at process p is a subset of
the intersection between the member
sets of V and V ′. Formally:

ti = view chng(p, V , T)∧ viewof(ti) =
V ′ ⇒ T ⊆ V .members∩V ′.members.

2. If two processes p and q install the
same view, then q is included in p’s
transitional set for this view if and only
if p’s previous view was also identical
to q’s previous view. Formally:

ti = view chng(p, V , T)∧ viewof(ti) =
V ′ ∧ installs in(q, V , V ′′) ⇒ (q ∈ T ⇔
V ′ = V ′′).

Consider the example of Figure 3 above;
there, p’s transitional set is {p}.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

444 G.V. Chockler et al.

Note: The transitional set is not
uniquely defined by Property 4.6. If a pro-
cess p in V .members ∩ V ′.members does
not install V ′, Property 4.6 does not spec-
ify whether p is included in transitional
sets of other processes.

When used in conjunction with vir-
tual synchrony, the transitional set de-
livered at a process p reflects the set of
processes whose states are identical to
p’s state. Thus, applications can exploit
this information in order to determine
whether state transfer is needed as ex-
plained above (see Amir et al. [1997] for
more details).

The transitional set is easily com-
puted without additional communication
over what is normally used for installing
views. Since every membership protocol
exchanges messages while agreeing on a
new view, each process can piggyback its
previous view on a membership protocol
message. The transitional set is easily de-
duced from this information.

The transitional set was first introduced
as part of the transitional view in the ex-
tended virtual synchrony model [Moser
et al. 1994]. This model is implemented in
Transis and Totem. Later, Babaoğlu et al.
[1996] [Babaoğlu et al. 1996] introduced
the notion of an enriched view, which,
among other things, conveys information
regarding the previous view of each of its
members. Likewise, the views delivered by
the membership service of Cristian and
Schmuck [1995] also convey the previous
view of every view member. The transi-
tional set can be deduced from these views.
The transitional set is also specified in
Amir et al. [1997] and Keidar and Khazan
[2000].

4.3.2. Exploiting Virtual Synchrony with
Agreement on Successors. The following
property provides an alternative to
transitional sets.

PROPERTY 4.7 (Agreement on Succes-
sors). If a process p installs view V in
view V ′, and if some process q also installs
V and q is a member of V ′ then q also

installs V in V ′. Formally:

installs in(p, V , V ′) ∧ installs(q, V)
∧q ∈ V ′.members⇒ installs in(q, V , V ′).

Property 4.7 (Agreement on Successors)
holds in Horus [Friedman and Vaysburg
1997], Ensemble [Hickey et al. 1999], and
Relacs [Babaoğlu et al. 1998b].6 It guaran-
tees that every member in the intersection
of p’s current view and p’s previous view is
also coming from the same previous view.
Therefore, the hypothesis of virtual syn-
chrony applies for all the members of this
intersection.

Unfortunately, this property may re-
quire processes to deliver extra views that
exclude live and connected processes. Con-
sider the example in Figure 3 above: p
does not suspect q, but in order to satisfy
the Agreement on Successors property, p
would have to install a view without q be-
fore installing the correct view with q.

5. SAFE MESSAGES

Distributed applications often require “all
or nothing” semantics; that is, either all
the processes deliver a message or none
of them do so. Unfortunately, “all or noth-
ing” semantics is impossible to achieve
in distributed systems in which messages
may be lost. As an approximation to “all
or nothing” semantics, the EVS model
[Moser et al. 1994] introduced the concept
of safe messages. A safe message m is re-
ceived by the application at process p only
when p’s GCS knows that the message
is stable; that is, all members of the cur-
rent view have received this message from
the network. In this case, each member of
this view will deliver the message unless
it crashes, even if the network partitions
at that point. This “approximated” seman-
tics is called Safe Delivery in Moser et al.
[1994] and Total Resiliency in Whetten
et al. [1995].

6 In Hickey et al. [1999] and Babaoğlu et al. [1998b],
a stronger property is stated: when two processes in-
stall the same view, their previous views are either
identical or disjoint. The stronger property implies
that Agreement on Successors holds.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 445

Table II. Predicate Definitions for Safe Messages

Process p receives message m before message m′:
recv before(p, m, m′) def= ∃i∃ j (ti = recv(p, m) ∧ t j = recv(p, m′) ∧ i < j)

Process p receives message m before message m′, both of them in view V :

recv before in(p, m, m′, V)
def= ∃i∃ j (ti = recv(p, m) ∧ t j = recv(p, m′) ∧
viewof(ti) = viewof(t j) = V ∧ i < j)

A message m received in a view V is indicated as safe at process p:

indicated safe(p, m, V)
def= receives in(p, m, V) ∧ ∃i (ti = safe prefix(p, m) ∨
∃m′ (ti = safe prefix(p, m′) ∧ recv before in(p, m, m′, V)))

Message m is stable in view V :

stable(m, V)
def= ∀p ∈ V .members(receives(p, m))

In this article we follow the approach of
Fekete et al. [1997] which decouples noti-
fication of message stability from its de-
livery. Thus, instead of deferring delivery
until the message becomes stable, mes-
sages are delivered without additional de-
lay. This delivery is augmented with a
later delivery of safe indications. This ap-
proach also changes the semantics of safe
indications to refer to application-level
stability as opposed to network level. In
other words, a message is stable when all
members of the current view have deliv-
ered this message to the application (and
not just received it from the network).

In our formalization, safe indications
are conveyed using safe prefix events
which indicate that a prefix of the se-
quence of messages received in a certain
view is stable. A safe prefix(p, m) event
indicates to p that message m is stable,
as well as all the messages that p re-
ceived before m in the same view as m. We
define three new shorthand predicates in
Table II.

The next property requires that a mes-
sage is indicated as safe only if it is stable,
that is, delivered to all the members of the
current view.

PROPERTY 5.1 (Safe Indication Prefix). If
a message is indicated as safe, then it is
stable in the view in which it was received.
Formally:

indicated safe(p, m, V)⇒ stable(m, V).

Note that Property 5.1 does not require
that a message be stable before it is in-
dicated as safe. However, since processes

may crash at any point in the execution,
there is no way for a system to guaran-
tee that a message be delivered at all the
members of the current view unless it was
already delivered to them. Thus, any ac-
tual system that provides safe indications
will be forced to wait until a message m is
stable before indicating m to be safe.

Consistent replication applications (e.g.,
Keidar and Dolev [1996] and Amir et al.
[1994]) often use safe indications in con-
junction with a totally ordered multicast
service that delivers messages in the same
order at all the processes that deliver them
(cf. Property 6.5 in Section 6.3). It is useful
for such applications to receive safe indica-
tions that guarantee that all the members
of a view V receive the same prefix of mes-
sages in V up to the indicated message.
We state this requirement in Property 5.2
(Safe Indication Reliable Prefix).

PROPERTY 5.2 (Safe Indication Reliable
Prefix). If message m is indicated as safe
at some process p and m is also delivered
by process q in view V , then every mes-
sage delivered at q before m in V is also
stable in V . Formally:

indicated safe(p, m, V) ∧ recv before in(q,
m′, m, V)⇒ stable(m′, V).

This property is illustrated in Figure 4.
In conjunction with totally ordered deliv-
ery it guarantees that all the members of
V receive the same sequence of messages
in V up to m.

Safe indications are closely related to
garbage collection: if a message is stable,
then a GCS will no longer need to keep

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

446 G.V. Chockler et al.

Fig. 4 . The Safe Indication Reliable
Prefix property.

it in its internal buffer. Since all GCSs
attempt to recover from message losses
and all GCSs perform garbage collection,
they all internally keep track of message
stability. However, some systems provide
applications with safe indications or safe
messages and some do not. Examples of
systems that do provide this service in-
clude the Safe messages of Totem [Amir
et al. 1995; Moser et al. 1994] and Tran-
sis, the Totally Resilient QoS level of RMP,
the atomic, tight, and delta QoS levels
of xAMp, and the Uniform multicast of
Phoenix [Malloth et al. 1995]. Safe deliv-
ery is also guaranteed by Horus if one uses
the ORDER layer above the STABLE layer.

Some applications require a weaker de-
gree of atomicity. For example, in quorum-
based systems it could be enough to defer
delivery until the majority of the processes
have the message. This is guaranteed by
Majority Resilient QoS level of RMP. The
N resilient QoS level of RMP and atLeastN
QoS level of xAMp guarantee that if a pro-
cess receives a message, then at least N
processes will also receive this message
unless they crash. Here N is a service
parameter.

A process knows that a message is
stable as soon as it learns that all other
members of the view have acknowledged
its reception. Usually such acknowl-
edgments are given by the GCS level.
However, in Horus it is the responsibility
of the application to acknowledge message

reception. This approach may require ex-
tra communication and may be more
complex, but it may yield more flexible
and powerful semantics. Horus does not
deliver safe prefix notifications. Instead,
the Horus STABLE layer maintains a more
general stability matrix at each process.
The (i, j) entry of the matrix stores the
number of messages sent by i that have
been acknowledged by j . This matrix is ac-
cessible by the application, which then can
deduce the information provided by safe
prefix indications. The application can
also learn about k-stability, that is, when
k members have received the message.

6. ORDERING AND RELIABILITY
PROPERTIES

Group communication systems typically
provide different group multicast services
with a variety of ordering and reliabil-
ity guarantees. Here we describe the ser-
vice types most commonly provided by
GCSs: FIFO, causal, and (several variants
of) totally ordered7 multicast. These ser-
vice types involve two kinds of guaran-
tees: ordering and reliability. The order-
ing properties restrict the order in which
messages are delivered, and the reliabil-
ity properties extend the corresponding or-
dering properties by prohibiting gaps or
“holes” in the corresponding order within
views.

We note that the reliability properties
do not imply the corresponding order prop-
erties. This is because the former proper-
ties apply only to messages that are sent
within the same view, and the latter ap-
ply to all messages. For example, FIFO de-
livery requires that all messages sent by
a single source be delivered in the or-
der in which they were sent, whereas re-
liable FIFO prohibits gaps in the FIFO or-
der only within a single view. Prohibiting
gaps across views would require the GCS
to log messages and retransmit them to
new processes at view changes. GCSs gen-
erally do not log messages. Instead, ser-
vices that provide gap-free communication

7 Totally ordered multicast is sometimes called
atomic or agreed multicast.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 447

across views are often implemented atop
GCSs (e.g., in Keidar and Dolev [1996] and
Amir et al. [1994]).

Since reliability guarantees restrict
message loss within a view, they are use-
ful only when provided in conjunction with
certain properties that synchronize view
delivery with message delivery, for exam-
ple, Property 4.3 (Sending View Delivery).
Similar reliable ordering properties may
be stated for the OVS and WVS models
(cf. Section 4.2.3). Systems that provide
only Same View Delivery without Sending
View Delivery, OVS, or WVS (e.g., Transis)
typically implement a “heavy-weight” ser-
vice that provides Sending View Delivery
and the corresponding reliability property,
and compose this service with an asyn-
chronous FIFO buffer as demonstrated in
Figure 2 in Section 4.2.2, thus yielding
weaker semantics (satisfying only Same
View Delivery).

Some GCSs (e.g., Isis) provide differ-
ent primitives for sending messages of dif-
ferent service types; others (e.g., Transis)
provide one send primitive and allow the
application to tag the message sent with
the requested service type; whereas in
other systems (e.g., Horus and Ensemble),
a different protocol stack is constructed for
each service type, and a communication
endpoint (associated with one such stack)
provides exactly one service type.

In this section, we state all of the proper-
ties in terms of the send primitive. These
properties are satisfied only for messages
sent with some service types and not for
other service types provided by the same
GCS. In Sections 6.1 through 6.3 we dis-
cuss the case that all the messages are
sent with the same service type: FIFO in
Section 6.1, causal in Section 6.2, and to-
tally ordered in Section 6.3. In Section 6.4
we discuss the case that different mes-
sages are sent with different service types.
In Section 6.5 we discuss issues that arise
when ordering semantics need to be pre-
served across multicast groups.

6.1. FIFO Multicast

The FIFO service type guarantees that mes-
sages from the same sender arrive in

the order in which they were sent (Prop-
erty 6.1), and that there are no gaps in the
FIFO order within views (Property 6.2).

PROPERTY 6.1 (FIFO Delivery). If a pro-
cess p sends two messages, then these
messages are received in the order in
which they were sent at every process that
receives both. Formally:

ti = send(p, m) ∧ t j = send(p, m′) ∧
i < j ∧ tk = recv(q, m) ∧ tl = recv(q, m′)
⇒ k < l .

PROPERTY 6.2 (Reliable FIFO). If process
p sends message m before message m′ in
the same view V , then any process q that
receives m′ receives m before m′. Formally:

ti = send(p, m) ∧ t j = send(p, m′)
∧ i < j ∧ viewof(ti) = viewof(t j)
∧ receives(q, m′)⇒ recv before(q, m, m′).

Several group communication systems
(e.g., Ensemble, Horus, and RMP) pro-
vide a reliable FIFO service type that sat-
isfies Property 6.2 and does not impose
additional ordering constraints. xAMp
provides several service levels that satisfy
Property 6.1 but vary by their reliability
guarantees.

This service type is a basic building
block; it is useful for constructing higher
level services, for example, totally ordered
multicast protocols [Ezhilchelvan et al.
1995; Chockler et al. 1998] are often con-
structed over a reliable FIFO service.

6.2. Causal Multicast

The causal order (first defined in Lamport
[1978]) extends the FIFO order by requir-
ing that a response m′ to a message m is
always delivered after the delivery of m.
The causal order of events is formally de-
fined in Table III.

The causal service type guarantees that
messages arrive in causal order (Prop-
erty 6.3), and that there are no “causal
holes” within each view (Property 6.4).

PROPERTY 6.3 (Causal Delivery). If two
messages m and m′ are sent so that m

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

448 G.V. Chockler et al.

Table III. Causal Order, Recursive Definition

ti → t j
def= (pid(ti) = pid(t j) ∧ j ≥ i) ∨ (ti = send(p, m) ∧ t j = recv(q, m)) ∨
∃k (ti → tk ∧ tk → t j)

Table IV. Timestamp (TS) Function Definition

A timestamp (TS) function is a one-to-one function fromM to the set of natural numbers:

TS function(f)
def= f :M→ N ∧ f (m) = f (m′)⇒ m = m′

causally precedes m′, then every process
that receives both these messages, re-
ceives m before m′. Formally:

ti = send(p, m) ∧ t j = send(p′, m′)
∧ ti → t j ∧ tk = recv(q, m)
∧ tl = recv(q, m′)⇒ k < l .

PROPERTY 6.4 (Reliable Causal). If mes-
sage m causally precedes a message m′,
and both are sent in the same view, then
any process q that receives m′ receives m
before m′. Formally:

ti = send(p, m) ∧ t j = send(p′, m′)
∧ ti → t j ∧ viewof(ti) = viewof(t j)
∧ receives(q, m′)⇒ recv before(q, m, m′).

The CBCAST (causal broadcast) primitive
of Isis [Birman and Joseph 1987] was per-
haps the first implementation of (reliable)
causal multicast (satisfying Properties 6.3
and 6.4). Other GCSs that provide this
service level include: Transis, Ensemble,
Horus, Newtop, and xAMp.

6.3. Totally Ordered Multicast

Group communication systems usually
provide a totally ordered (atomic, agreed)
service type that extends the causal
service type. However, GCSs vary in the
semantics that their totally ordered mul-
ticast service provides. In Section 6.3.1
below, we discuss two possible ordering se-
mantics: Strong Total Order (Property 6.5)
and Weak Total Order (Property 6.6). For
a comprehensive survey of totally ordered
multicast protocols and specifications, see
Défago et al. [2000].

In addition to the ordering semantics,
totally ordered multicast provides a reli-
ability guarantee. In practically all exist-
ing GCSs (examples include: Transis, Ho-
rus, Newtop, xAMp, Totem, Phoenix, and
RMP), the reliability guarantee for totally
ordered multicast is Property 6.4 (Reli-
able Causal). In Section 6.3.2 we discuss
a stronger alternative (Reliable Total Or-
der).

In Table IV we define a timestamp
(TS) function to be a one-to-one function
from M to the natural numbers. We use
such functions to define a total order of
messages.

6.3.1. Strong and Weak Total Order. Wil-
helm and Schiper [1995] introduce a clas-
sification of totally ordered multicast. In
particular, they define strong and weak to-
tal order in the context of a primary com-
ponent membership service. Here we ex-
tend these definitions to a partitionable
environment.

Strong Total Order guarantees that
messages are delivered in the same order
at all the process that deliver them:

PROPERTY 6.5 (Strong Total Order).
There is a TS function f such that mes-
sages are received at all the processes in
an order consistent with f . Formally:

∃ f (TS function(f) ∧ ∀p∀m∀m′
(recv before(p, m, m′)⇒ f (m) < f (m′))).

Note that the TS function merely ex-
ists: we do not require that the timestamp
values be conveyed to the application.
Some applications (e.g., the replication
algorithm of Keidar and Dolev [1996]),

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 449

do require that message timestamps be
available to them. The ATOP algorithm
[Chockler et al. 1998] which implements
totally ordered multicast in Transis con-
veys timestamps to its application. These
timestamps are unique and taken from a
totally ordered set, but are not integers,
and thus do not correspond to the times-
tamps given by f .

Many group communication systems
implement a weaker form of totally or-
dered multicast that allows processes to
disagree upon the order of messages in
case they disconnect from each other.
Weak Total Order guarantees that pro-
cesses that remain connected receive mes-
sages in the same order. The property
has two parts: it specifies that processes
that move together from a view V ′ to an-
other view V receive messages in V ′ in
the same order, and it specifies that pro-
cesses that remain in the same view V
forever, (i.e., V is their last view) receive
the messages in this view in the same or-
der. Like Strong Total Order, Weak Total
Order is defined using timestamp func-
tions. However, unlike Strong Total Order,
there is no requirement for one univer-
sal timestamp function. Rather, there can
be different timestamp functions for each
pair of views V ′ and V , and for each last
view V .

We use the following auxiliary short-
hand definition.

Definition 6.1 (Last View). V is the last
view installed at process p if p installs
view V and does not install any views after
V . Formally:

last view(p, V) def= ∃i∃T
(ti = view chng(p, V , T)
∧ 6∃ j > i ∃T ′∃V ′ t j =
view chng(p, V ′, T ′)).

We now define Weak Total Order.

PROPERTY 6.6 (Weak Total Order).

1. For every pair of views V and V ′ there
is a TS function f so that every process
that installs V in V ′ receives messages
in V ′ in an order consistent with f .

Formally:

∀V∀V ′∃ f (TS function(f) ∧ ∀p∀m∀m′
(installs in(p, V , V ′) ∧ recv before in
(p, m, m′, V ′)⇒ f (m) < f (m′)).

2. For every view V there is a TS function
f so that every process that has V as
its last view receives messages in V in
an order consistent with f . Formally:

∀V ∃ f (TS function(f) ∧ ∀p∀m∀m′
(last view(p, V) ∧ recv before in
(p, m, m′, V)⇒ f (m) < f (m′)).

Applications that exploit GCSs for con-
sistent replication require that processes
agree upon the order of messages even if
they disconnect from each other [Keidar
and Dolev 1996; Amir et al. 1994; Fekete
et al. 1997]; otherwise, updates may be ap-
plied in a different order in replica that
disconnect from each other, violating con-
sistency. This feature is guaranteed only
by Strong Total Order (Property 6.5) and
not by Weak Total Order. For applications
that do allow copies of the shared state
to diverge while there are partitions, for
example, Amir et al. [1997], Anker et al.
[1999], and Fekete and Keidar [2001],
Weak Total Order suffices.

Strong Total Order is provided by Totem
and by some of the implementations of
totally ordered multicast in Transis, En-
semble, Phoenix, RMP, and Horus. Many
GCSs provide a weak totally ordered mul-
ticast service, for example, the ABCAST

(atomic broadcast) primitive of Isis, simi-
lar primitives in Amoeba [Kaashoek and
Tanenbaum 1996], Newtop, and xAMp,
and certain implementations of totally
ordered multicast in Transis, Ensemble,
Phoenix, RMP, and Horus.

The totally ordered multicast services,
strong or weak, in all of the GCSs listed
above guarantee that messages arrive in
causal order (Property 6.3), and that there
are no “causal holes” within each view
(Property 6.4).

6.3.2. Reliable Total Order. The Reliable
Total Order property extends the Strong
Total Order property to require processes

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

450 G.V. Chockler et al.

to deliver a prefix of a common sequence
of messages within each view.

PROPERTY 6.7 (Reliable Total Order).
There exists a timestamp function f such
that if a process q receives a message m′,
messages m and m′ were sent in the same
view, and f (m) < f (m′), then q receives m
before m′. Formally:

∃ f (TS function(f) ∧ ∀V∀m∀m′∀p∀p′∀q
(sends in(p, m, V) ∧ sends in(p ′, m ′, V)
∧ receives(q, m′) ∧ f (m) < f (m′)
⇒ recv before(q, m, m′))).

In the Appendix, we prove Lemma A.1
which states that Property 6.7 (Reliable
Total Order) along with Property 4.3
(Sending View Delivery) and the ba-
sic Property 4.1 (Delivery Integrity) im-
ply Property 6.5 (Strong Total Order)
for messages received in the same view.
We also prove Lemma A.2 which as-
serts that Properties 6.7 (Reliable To-
tal Order) and 6.2 (Reliable FIFO) along
with Property 4.3 (Sending View Delivery)
and the basic Properties 4.1 (Delivery In-
tegrity), 3.2 (Local Monotonicity), and 3.3
(Initial View Event) imply Property 6.4
(Reliable Causal).

Unfortunately, implementing Reliable
Total Order imposes a performance
penalty: in order to support Reliable Total
Order, existing total order algorithms
would be forced to deliberately discard
messages from live and connected pro-
cesses. Therefore, no GCS we are aware
of guarantees Property 6.7. The only
specifications that require Reliable Total
Order are those of Fekete et al. [1997].

The Reliable Total Order property is
exploited by the replication application
in Fekete et al. [1997]; it guarantees
that operations will be applied to the
database in a consistent order without
gaps. However, the application in Fekete
et al. [1997] could have been satisfied
with a weaker property: In Keidar and
Dolev [1996, 2000] and Amir et al. [1994]
a similar application exploits Property 5.2
(Safe Indication Reliable Prefix) which
uses safe prefix indications (presented in

Section 5) to denote the end of the prefix in
which there are no gaps in the total order.
This property is weaker, since it does not
preclude delivery of totally ordered mes-
sages with gaps, as long as these message
will never become safe (or stable). Since
in all of the aforementioned applications
[Keidar and Dolev 1996, 2000; Fekete
et al. 1997; Amir et al. 1994] updates are
not applied to the database before they
are safe (stable), the weaker property is
sufficient to guarantee consistency.

A similar approach was taken in
Friedman and Vaysburg [1997], which
uses explicit Reliable Totally Ordered Pre-
fix Indications to denote the end of the pre-
fix in which there are no gaps in the total
order.

6.4. Order Constraints for Messages
of Different Types

Systems that provide more than one or-
dering type need to specify the delivery
semantics (order constraints) of messages
with different types. For example, should
causal messages be totally ordered with
respect to totally ordered messages?

Wilhelm and Schiper [1995] discuss
three possible semantics in the context
of weak and strong total order. However,
these semantics can be generalized for the
case of two messages m1 and m2 with any
two different ordering semantics O1 and
O2 such that O2 implies O1:

—unordered: there no ordering con-
straints on delivery of m1 and m2,

—weak incorporated: m1 and m2 deliver-
ies should satisfy O1, and

—strong incorporated: m1 and m2 are de-
livered according to O2.

For example, RMP supports weak in-
corporated semantics between any two
messages of different service levels. Isis
provides weak incorporated semantics be-
tween messages sent by ABCAST and CB-
CAST multicast primitives. However, this
system has another total order multicast
primitive, GBCAST (global broadcast), so
that messages sent by GBCAST and CBCAST

primitives are ordered according to strong
incorporated semantics. Isis’ successors,

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 451

Horus and Ensemble, do not allow mes-
sages of different types to be sent in the
same group, hence they provide unordered
semantics for messages of different types.

Transis may be configured to use one of
several protocols providing totally ordered
multicast. The more efficient ATOP proto-
col [Chockler et al. 1998] guarantees only
weak incorporated semantics between a
reliable causal message and a strong to-
tally ordered message. A protocol based on
Lamport’s [1978] logical timestamps guar-
antees strong incorporated semantics be-
tween messages of these two types, but it
incurs longer delivery latency. Highways
[Ahuja 1993] defines different types of “in-
corporated” semantics for causal delivery
and shows how they can be efficiently com-
bined in a GCS.

6.5. Order Constraints for Multiple Groups

Group communication systems generally
allow processes to join multiple groups.
When a message is sent, the sender indi-
cates to which group (or groups) the mes-
sage is being sent. Messages sent in a
given group are received only by the mem-
bers of that group. Views are also associ-
ated with groups: a view reflects the set of
processes that are currently members of a
given group. The discussion above focuses
on ordering semantics within a single
multicast group. When multicast groups
overlap, one has to determine the order-
ing semantics of messages that are sent in
different groups.

Atomic multicast [Guerraoui and
Schiper 2000] requires messages sent
in different groups to be delivered in
the same order at all their destinations.
For example, assume that processes p
and q are both members of two different
multicast groups g1, g2. Assume also
that message m1 is sent in group g1,
message m2 is sent in group g2, and
that p delivers m1 before m2. Atomic
multicast requires that q also deliver m1
before m2. Guerraoui and Schiper [2000]
prove that fault-tolerant atomic multicast
is costly: unless additional assumptions
(such as reliable failure detection or reli-
able groups) are imposed on the model,

solving atomic multicast requires sending
messages to additional processes that
are not members of the group to which
the message is being sent. Protocols that
solve atomic multicast without involving
additional members other than those a
message is being sent to (e.g., Fritzke
et al. [1998] and Guerraoui and Schiper
[2000]) do impose such additional as-
sumptions and generally do not work in a
partitionable environment.

The Isis system does not provide atomic
multicast: totally ordered messages sent
to different groups may be delivered in
different orders at different recipients.
Other GCSs (for example, Transis and
Totem) provide atomic multicast by using
a lightweight groups approach, in which
all the messages are sent to a set of dae-
mons which totally order messages of all
the groups. The daemons forward each
message to the members of the lightweight
group in which the message was sent.

Horus provides users with the flexibility
to choose whether atomic multicast will be
provided by constructing different proto-
col stacks: If atomic multicast is desired, a
lightweight group layer is used above the
total order layer in the stack. Thus, mes-
sages are first sent to the members of the
heavyweight group where they are totally
ordered and then they are multiplexed to
the different groups. If atomic multicast
is not desired, the lightweight group layer
is stacked below the total order layer, and
messages are totally ordered in their des-
tination groups.

GCSs that use a lightweight group
structure typically allow users to send a
message to multiple lightweight groups.
This service is implemented by send-
ing messages to the heavy-weight (or
daemon) group, and then multiplexing
messages to the appropriate lightweight
group. Johnson et al. [1999] suggest a dif-
ferent approach to sending a message to
multiple groups. In their approach, mes-
sages are pipelined through a sequence
of groups. Such pipelining preserves the
order semantics across groups as long as
groups do not overlap.

Virtually all group communication sys-
tems provide causally ordered multicast

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

452 G.V. Chockler et al.

(see Kshemkalyani and Singhal [1998]),
that is, preserve the causality of messages
sent in different groups. However, re-
cently, Kalantar and Birman [1999] have
shown that causally ordered multicast is
also costly. They show that such multicast
leads to bursty behavior and to latencies
three times longer than the latency for
delivering messages without such order
constraints.

LIVENESS PROPERTIES OF GROUP
COMMUNICATION SERVICES

7. INTRODUCTION

In this part of the survey we specify GCS
liveness properties. Liveness is an im-
portant complement to safety, since with-
out requiring liveness, safety properties
can be satisfied by trivial implementations
that do nothing. However, it is challenging
to specify GCS liveness properties that are
sufficiently weak to be implementable and
yet are strong enough to be useful.

In order to specify meaningful liveness
properties, we envision an ideal GCS, and
try to capture its ideal behavior. Ideally,
one would like a membership service to
be precise, that is, to deliver a view that
correctly reflects the network situation to
all the live processes; likewise, one would
want a multicast service to deliver all the
messages sent in this “correct” view to all
the view members. However, how can one
argue about the “correct” network situa-
tion if this situation is constantly chang-
ing? We observe that the liveness of a GCS
is bound to depend on the behavior of the
underlying network. Therefore, unless we
strengthen the model, it is not feasible to
require that the GCS be “correct” in every
execution. The only way to specify useful
liveness properties without strengthening
the communication model is to make these
properties conditional on the underlying
network behavior.8

In Section 10, we present two types of
liveness properties. The first kind of prop-

8 Conditional liveness specifications of GCSs also ap-
pear in Fekete et al. [1997], Cristian and Schmuck
[1995], Keidar et al. [2000], Keidar and Khazan
[2000], and Babaoǧlu et al. [1998b].

erties requires that the GCS behave as
the ideal GCS envisioned above, but only
in executions in which the network even-
tually stabilizes. Intuitively, we say that
the network eventually stabilizes if from
some point onward no processes crash or
recover, communication is symmetric and
transitive, and no changes occur in the
network connectivity. (This definition is
made formal in Section 8.) The second
type of liveness properties complements
the former by requiring a weaker form of
liveness in unstable runs.

In executions in which the network does
eventually stabilize, we would like the
membership service to be precise (i.e.,
to deliver a view that correctly reflects
the network situation to all the live pro-
cesses). Unfortunately, it is impossible to
implement such a precise membership ser-
vice in purely asynchronous environments
prone to failures. In Section 9 we prove
Lemma 9.1 which asserts that a precise
membership service is as strong as an
eventually perfect failure detector (¦P)
(formally defined in Section 8.4), which
is known to be nonimplementable in our
environment. Our impossibility result is
not surprising. In fact, Chandra et al.
[1996] prove that even a very weak defini-
tion of group membership is impossible to
implement in asynchronous failure-prone
environments.

In order to circumvent this impossibility
result, we assume that the GCS uses an
external failure detector and require the
liveness properties to hold only in execu-
tions in which the failure detector behaves
as an eventually perfect one. Similar as-
sumptions were also proposed in Malloth
and Schiper [1995] and Babaoğlu et al.
[1998b]; see the detailed discussion in
Section 10.

It is important to note that although
conditional liveness properties are guar-
anteed to hold only in certain executions,
the conditions on these executions are ex-
ternal to the GCS implementation. Thus,
in order to satisfy such properties, a group
membership implementation has to at-
tempt to be precise in every execution as
it can never know whether there is a sta-
ble component and whether the failure

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 453

detector behaves as an eventually perfect
one. Moreover, conditional liveness prop-
erties are composable: they allow one to
reason about application liveness under
the same external conditions that the GCS
is live.

8. REFINING THE MODEL TO REASON
ABOUT LIVENESS

In this section we extend the model de-
scribed in Section 2. Since the liveness of
a GCS depends on the network conditions
and failure detector output, we extend the
external signature presented in Section 2
by adding actions that represent the GCS’
interaction with the network and failure
detector. We model the network and the
failure detector together, as a single au-
tomaton. Although in reality these could
be implemented as separate components,
from the point of view of the GCS both
comprise the environment, so it is conve-
nient to reason about the composition of
the two. Several GCSs are built atop lay-
ers that provide both network and fail-
ure detector functionalities, for example,
the Multi-Send Layer of Babaoğlu et al.
[1998b] and the MUTS layer of Horus.
We discuss failure detector implementa-
tion issues in Section 8.4.1.

An automaton with the external sig-
nature presented in Section 2 satisfying
the GCS safety properties may be seen as
a composition of two automata: a GCS-
liveness automaton with the extended sig-
nature presented in this section, and a net-
work and failure detector automaton. This
composition is depicted in Figure 5.

The network is modeled as a set of uni-
directional channels that connect every or-
dered pair of processes in the system. A
channel between two processes represents
the collection of all network paths between
the processes. We assume that the under-
lying network provides an asynchronous
datagram service. Messages may be deliv-
ered out of order, and may be duplicated;
there is no bound on message transmis-
sion time. Furthermore, the communica-
tion channels can go down, in which case
messages can be be lost. Channels can go
up and down any number of times. How-

Fig. 5 . Extending the external signature of the
GCS to specify liveness.

ever, if a channel is up and remains up
from some point in an execution onward,
then every message sent on this chan-
nel after this point eventually reaches its
destination. We state this assumption for-
mally below.

In Section 8.1 we present the exten-
sion to the GCS signature and some
auxiliary definitions. In Section 8.2 we
specify our assumptions on the network
behavior. We then formally define the pre-
requisites for the liveness properties: in
Section 8.3 we define stable components,
and in Section 8.4, eventually perfect fail-
ure detectors.

8.1. Extending the GCS External Signature

Interaction with the environment. We aug-
ment the GCS’s interaction with the envi-
ronment by adding communication chan-
nel up and down actions that model
changes in the connectivity from every
process p to every process q:

—input channel down(p, q), p, q ∈ P
—input channel up(p, q), p, q ∈ P.

Interaction with the network and failure de-
tector. The GCS sends and receives mes-
sages via the underlying communication

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

454 G.V. Chockler et al.

Table V. Predicates Describing the Network Situation

Process p is alive after the ith event in the trace:

alive after(p, i)
def= 6∃ j (t j = crash(p)) ∨ ∃ j ≤ i (t j = recover(p)∧ 6∃k > j (tk = crash(p)))

Process p is crashed after the ith event in the trace:

crashed after(p, i)
def= ∃ j ≤ i (t j = crash(p)∧ 6∃k > j (tk = recover(p)))

The channel from p to q is up after the ith event in the trace:

up after(p, q, i)
def= 6∃ j (t j = channel down(p, q)) ∨

∃ j ≤ i (t j = channel up(p, q) ∧ 6∃k > j (tk = channel down(p, q)))
The channel from p to q is down after the ith event in the trace:

down after(p, q, i)
def= ∃ j ≤ i (t j = channel down(p, q)∧ 6∃k > j (tk = channel up(p, q)))

network, and also receives failure detec-
tion information from the failure detector:

—output net send(p, m), p ∈ P, m ∈M
—input net recv(p, m), p ∈ P, m ∈M
—input net reachable set(p, S), p∈P,

S ∈ 2P .

This action denotes that the failure de-
tector at p believes that the set of pro-
cesses in S (and only these processes) are
currently connected to p. Until the first
net reachable set occurs at p, the set of
processes p believes to be connected to it
is undefined.

The mathematical model described in
Section 2.3 is extended by adding the fol-
lowing to the Events set.

{channel down(p, q) | p, q ∈P} ∪
{channel up(p, q) | p, q ∈P} ∪
{net send(p, m) | p∈P, m ∈M} ∪
{net recv(p, m) | p∈P, m∈M} ∪
{net reachable set(p, S) | p∈P, S ∈ 2P}.

Notation. We define some shorthand
predicates that describe the network sit-
uation in Table V. Note that according to
these definitions, processes are initially
alive and channels are initially up.

8.2. Assumption: Live Network

We now state a liveness assumption on the
network.

ASSUMPTION 8.1 (Live Network). If there
is a point in the execution after which two
processes p and q are alive and the chan-
nel from p to q is up, then from this point
onward, every message sent by p eventu-

ally arrives at q. Formally:

alive after(p, i) ∧ alive after(q, i)
∧ up after(p, q, i) ∧ ti = net send(p, m)
⇒ ∃ j t j = net receive(q, m).

8.3. Stable Components

As explained above, our liveness proper-
ties require “ideal” behavior from the GCS
only if a stable component eventually ex-
ists and the failure detector behaves as an
eventually perfect one. We now formally
define a stable component.

Definition 8.1 (Stable Component). A
stable component is a set of processes that
are eventually alive and connected to each
other and for which all the channels to
them from all other processes (that are not
in the stable component) are down. For-
mally, stable component(S), S ∈ 2P is de-
fined as

stable component(S) def= ∃i∀p ∈ S
(alive after(p, i)∧∀q ∈ S up after(p, q, i)
∧∀ q ∈ P \ S (down after(q, p, i)
∨ crashed after(q, i))).

Note that the existence of a stable com-
ponent implies that within the stable com-
ponent communication is eventually sym-
metric and transitive. We do not assume
that the communication is always sym-
metric and transitive as part of the model.
This is only a precondition for the live-
ness properties and for the failure detec-
tor’s completeness and eventual accuracy
properties stated in the next section. If the
communication over the channels is not

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 455

eventually stable, symmetric, and transi-
tive, the GCS is not required to be live and
Definition 1 below imposes no restrictions
on the failure detector’s behavior.

It is common to assume transitivity, al-
though it is not necessary. For example,
Phoenix [Malloth and Schiper 1995] does
not assume transitivity, but instead, it en-
sures eventual transitivity of communi-
cation by relaying messages. It is more
common to assume that communication
is symmetric. Although in wide area net-
works lack of symmetry may occasionally
occur, all the specifications that we are
aware of do not require membership to be
precise in such cases.

8.4. Eventually Perfect Failure Detectors

An eventually perfect failure detector is
a failure detector that eventually stops
making mistakes; that is, there is a time
after which it correctly reflects the net-
work situation. We now classify traces in
which the failure detector behaves as an
eventually perfect one. For the sake of
specifying such traces, we examine the
composition of the failure detector with
the network, and classify traces in which
the reachable set reported by the failure
detector eventually corresponds to the net-
work situation.

Definition 8.2 (Eventually perfectlike
trace). The failure detector behaves as
¦P in a given trace if for every stable
component S, and for every process p ∈ S,
the reachable set reported to p by the
failure detector is eventually S. Formally:

¦P − like def= ∀S (stable component(S)⇒
∀p∈ S ∃i (ti = net reachable set(p, S)
∧¬(∃S′ 6= S ∃ j > i t j

= net reachable set(p, S′)))).

Note that if no stable component exists,
Definition 8.2 imposes no restrictions on
the failure detector’s behavior.

We now define an eventually perfect fail-
ure detector to be a composition of a failure
detector and a network, so that in all the
traces of this composition, the failure de-

tector behaves as ¦P , with respect to the
network situation.

Definition 8.3 (Eventually perfect fail-
ure detector). An eventually perfect failure
detector is a network and failure detector
automaton that behaves as ¦P in every
trace.

Chandra and Toueg [1996] define sev-
eral classes of unreliable failure detectors
for the crash-failure model. It is easy to
see that, when restricted to the crash-
failure model, our definition of ¦P coin-
cides with the one in Chandra and Toueg
[1996], since in every execution in that
model all the correct processes form a sta-
ble component (once the last faulty process
fails).

The definition of eventually perfect fail-
ure detectors is extended to partitionable
environments in Dolev et al. [1997] and
Babaoğlu et al. [1998b], and the defini-
tions presented herein are very similar
to those. The main difference is in the
modeling formalism, more specifically, in
the definition of when a channel is con-
sidered to be up. Our definition of stable
components is stated explicitly in terms of
channel down and channel up events,
whereas the models in Dolev et al. [1997]
and Babaoğlu et al. [1998b] do not include
such events, and connectivity (reachabil-
ity) is defined in terms of whether the
last message sent on a channel reaches its
destination.

Another difference is that the definition
of Babaoğlu et al. [1998b] requires the
failure detector to eventually precisely de-
tect pairwise reachability among two pro-
cesses even if a stable component does not
exist. It is easy to see that this definition is
stronger than ours: an eventually perfect
failure detector as defined by Babaoğlu
et al. [1998b] is also an eventually perfect
failure detector according to our defini-
tion. The stronger notion of failure detec-
tor as defined in Babaoğlu et al. [1998b] is
required for implementing Property 10.2
(View Accuracy), which does not depend on
stable components. For space limitations,
we do not include this definition here.

The classical approach to failure detec-
tors [Chandra and Toueg 1996] requires

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

456 G.V. Chockler et al.

an oracle failure detector (e.g., an even-
tually perfect one) to exist as part of the
system model. In contrast, we do not re-
quire an eventually perfect failure detec-
tor to exist. Rather, we assume an arbi-
trary failure detector and condition our
liveness specification on the failure detec-
tor’s behavior in a given trace. Note that
the difference between the two approaches
is small. Clearly, any algorithm that meets
the specification in an environment where
a failure detector of class ¦P exists, also
meets our conditional specification. Thus
our conditional specification is not weaker
than a classical one.

8.4.1. On Implementing a Failure Detector.
In general, since it is impossible to imple-
ment ¦P in an asynchronous model with
process failures, it is also impossible to im-
plement eventually perfect failure detec-
tors as defined above in the asynchronous
model of this article. However, in practi-
cal networks, communication tends to be
stable and timely during long periods. Par-
tial synchrony models [Dwork et al. 1988]
capture such network behavior. In such
models, processes can measure time, and
a bound on communication latency even-
tually exits.

Eventually perfect failure detectors are
easily implemented in these partial syn-
chrony models, over a network that sat-
isfies Assumption 8.1. Failure detector
implementations use the network in or-
der to send and receive messages,9 and
they generate net reachable set events
whenever they change their mind about
network connectivity. A network and fail-
ure detector automaton can be obtained
as a composition of such a failure detec-
tor module with the underlying network,
by hiding actions related to messages of
the failure detector.

Chandra and Toueg [1996] present an
algorithm implementing an eventually
perfect failure detector in the crash-failure
partial synchrony model where eventually
there is a bound on message transmission
time, but this bound is not known to the

9 Obviously, the failure detector implementation can-
not see channel up and channel down events.

processes. Babaoğlu et al. [1998b] present
a variant on this algorithm, adapted to the
link failure model. It works roughly as fol-
lows.

ALGORITHM 8.1. Each process has an ap-
proximated bound on round-trip latency
1p. Every process p periodically multi-
casts a pingp message to all other pro-
cesses. Every process q responds to such a
message by sending an ackq message to
p. If p does not receive an ackq message
within 1p time of sending pingp, p sus-
pects q (i.e., if q is in p’s reachable set, p
removes q from its reachable set). Once p
receives such a response, if q is not in p’s
reachable set, then p adds q to the reach-
able set and increases 1p by one second.

It is easy to see that if a stable com-
ponent eventually exists and a bound on
message latency eventually holds, then1p
can increase only a finite number of times,
and p’s reachable set eventually contains
exactly the set of processes in p’s con-
nected component. Hence, the algorithm
implements an eventually perfect failure
detector.

This algorithm is not used in prac-
tice, however; failure detector implemen-
tations generally use smaller timeouts, at
the risk of occasionally having false sus-
picions. Practical systems often do have
an expected bound on latency, which holds
at “stable” times. During “unstable” peri-
ods, messages can be delayed longer than
this bound. This system behavior is cap-
tured by the timed asynchronous system
model of Cristian and Fetzer [1999]. In
this model, it is possible to build failure
detectors that behave as eventually per-
fect ones during stable periods.

Note also that the network and failure
detector automaton has certain func-
tionalities: (1) an eventually reliable
communication protocol that ensures
Assumption 8.1, that is, that messages
sent on channels that are up eventually
reach their destinations; and (2) a failure
detector. These functionalities can be
implemented separately, as explained
above. However, they are often imple-
mented jointly by the same service, over
an unreliable network. Examples of such

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 457

services include the MUTS layer of Horus,
the Multi-Send Layer of Babaoğlu et al.
[1998b], and the Core layer of Xpand
[Anker et al. 2000]. TCP implements a
similar service over the unreliable IP
protocol: TCP uses retransmissions in
order to guarantee that messages reach
their destination while the channel is
up. If the channel goes down, the TCP
connection goes down, thus reporting the
failure to the application. If a channel is
up but slow, TCP can mistakenly report a
failure where there is none.

9. PRECISE MEMBERSHIP IS AS STRONG
AS eeP

We now justify the use of eventually per-
fect failure detectors as a prerequisite for
liveness. We focus on liveness of the mem-
bership service, since live membership is
the basis for a live GCS. We show that a
precise membership service is as strong
as an eventually perfect failure detector.
First, we have to define a precise member-
ship service. We define a membership ser-
vice to be precise if it delivers the same
last view to all the members of a sta-
ble component. Note that this definition
is suitable only for partitionable member-
ship services as it requires members of all
stable components to install views.

Definition 9.1 (Precise Membership). A
membership service is precise if it satis-
fies the following requirement. For every
stable component S, there exists a view V
with the member set S such that V is the
last view of every process p in S. Formally:

stable component(S)⇒ ∃V (V .members
= S ∧ ∀p ∈ S last view(p, V)).

LEMMA 9.1. Precise Membership is as
strong as an eventually perfect failure de-
tector.

PROOF. We provide a constructive proof
of how an eventually perfect failure
detector can be implemented using a
precise membership service. We begin
with a group membership service im-
plemented atop a network and fail-
ure detector automaton. We hide the

net reachable set events, so that they
will not appear in traces. Then, for
each process p, we construct an au-
tomaton MEMBtoFDp (see Figure 6).
MEMBtoFDp receives view chng events
from the group membership and gener-
ates net reachable set events as follows.
Whenever a view chng(p, V , T) occurs,
net reachable set(p, V .members) is gen-
erated. We compose the MEMBtoFD au-
tomata of all the processes with the group
membership service.

We now show that if the membership
service is precise, every generated trace
of this composition is ¦P -like. Let p be
a process. If p is not a member of a
stable component, there are no restric-
tions on the failure detector’s behavior.
Assume that there exists a stable com-
ponent S such that p∈ S; then by Pre-
cise Membership, p installs a last view V
with V .members = S. Thus p generates
net reachable set(p, S) and does not
generate any net reachable set events
afterwards, and thus satisfies the require-
ment for a ¦P -like trace.

Note that the same result applies to the
process failure model. In that model, the
set of correct processes forms a stable com-
ponent in every execution. Thus, a pre-
cise membership service in that model is
required to deliver to all the correct pro-
cesses a last view consisting of exactly the
correct processes.

Note that it is possible to implement
a precise membership service using
an eventually perfect failure detector:
Section 10.3 surveys many examples
of group communication systems that
provide precise membership services
when the failure detector they employ
behaves as an eventually perfect one. GCS
liveness is also specified using external
failure detectors in Schiper and Rocciardi
[1993], Malloth and Schiper [1995],
Babaoğlu et al. [1998b], and Hiltunen and
Schlichting [1995].

10. LIVENESS PROPERTIES

We now specify liveness properties for par-
titionable GCSs (cf. Section 3.1.2). These

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

458 G.V. Chockler et al.

Fig. 6 . Reducing precise membership to an eventually perfect failure detector.

properties are not suitable for primary
component GCSs, as they require pro-
cesses to install views in some situations
even if they are not in a primary compo-
nent. We do not specify liveness properties
for a primary component GCS, since the
liveness of such a service is dependent on
the specific implementation and the policy
it employs to guarantee Property 3.4 (Pri-
mary Component Membership). Note that
primary component membership services
block if they cannot form a primary view.
For example, a primary component mem-
bership can block if the network partitions
into three minority components or if all the
members of the latest view10 crash.

We define two kinds of liveness prop-
erties. In Section 10.1 we define liveness
properties that are conditional on the ex-
istence of a stable component. In Section
10.2 we define complementary liveness
properties in order to account for situa-

10 Recall that in a primary component membership
service views are totally ordered.

tions in which no stable component exists.
In Section 10.3 we survey related work.

10.1. Liveness Properties for Stable Runs

In this section, we state four liveness prop-
erties: Membership Precision, Multicast
Liveness, Self Delivery, and Safe Indica-
tion Liveness. Obviously, Safe Indication
Liveness is only required if the system pro-
vides safe notifications (cf. Section 5). All
of these properties are conditional; they
are required to hold in runs in which there
exists a stable component S and the fail-
ure detector behaves as ¦P .

PROPERTY 10.1 (Liveness). If the failure
detector behaves as ¦P , then for every sta-
ble component S, there exists a view V
with the members set S such that the fol-
lowing four properties hold for every pro-
cess p in S. Formally:

¦P− like ∧ stable component(S)
⇒ ∃V (V .members = S ∧ ∀p ∈ S

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 459

1. Membership Precision: p installs view
V as its last view. Formally:
last view(p, V).

2. Multicast Liveness: Every message p
sends in V is received by every process
in S. Formally:

sends in(p, m, V)⇒
∀q ∈ S receives(q, m).

3. Self Delivery: p delivers every message
it sent in any view unless it crashed
after sending it. Formally:

ti = send(p, m)∧ 6 ∃ j > i t j = crash(p)
⇒ receives(p, m).

4. Safe Indication Liveness: Every mes-
sage p sends in V is indicated as safe
by every process in S. Formally:

sends in(p, m, V)⇒ ∀q ∈ S
indicated safe(q, m, V)).

Formally, stability of the connected com-
ponent is required to last forever. Nev-
ertheless, in practice, it only has to hold
“long enough” for the membership proto-
col to execute and for the failure detector
module to stabilize, as explained in Dwork
et al. [1988] and Guerraoui and Schiper
[1997a] However, we cannot explicitly
bound this time period in an asynchronous
model, because its duration depends on ex-
ternal conditions such as message latency,
process scheduling, and processing time.

10.2. Additional Liveness Properties

10.2.1. Membership Accuracy. Property
10.1.1 (Membership Precision) guaran-
tees that if a stable component eventually
exists, the membership service installs a
precise view at all the members in this
component. When a stable component
does not exist, most group communication
systems still strive to provide meaningful
views, even if these views may keep
changing. This desirable behavior is cap-
tured by the following property, originally
formulated in Babaoğlu et al. [1998b].

PROPERTY 10.2 (Membership Accuracy).
If there is a time after which processes
p and q are alive and the channel from
q to p is up, then p eventually installs
a view that includes q, and every view
that p installs afterwards also includes q.
Formally:

up after(q, p, i) ∧ alive after(p, i)
∧ alive after(q, i) ⇒ ∃ j ∃V ∃T
(t j = view chng(p, V , T)
∧ q ∈ V .members ∧ ∀k > j
∀V ′ ∀T ′(tk = view chng(p, V ′, T ′)
⇒ q ∈ V ′.members)).

Implementing this property requires a
failure detector that eventually provides
precise information about pairwise reach-
ability between two processes, even when
a stable component does not exist. Such
a failure detector is defined in Babaoğlu
et al. [1998b]. For space limitations, we do
not repeat this definition here.

Membership Accuracy does not require
processes to eventually stop installing
views. Hence, it does not imply Prop-
erty 10.1.1 (Membership Precision). More-
over, while no stable component exists,
Membership Accuracy does not require
processes that are connected to each other
to install the same view or to deliver each
other’s messages. This diminishes the use-
fulness of this property for applications.
Membership Accuracy is provided by most
GCSs. However, it is not provided by mem-
bership services that do not install views
while a stable component does not exist
(e.g., Keidar et al. [2000]).

10.2.2. Termination of Delivery. The follow-
ing alternative to Property 10.1.2 (Multi-
cast Liveness) was suggested in Friedman
and van Renesse [1995], Dolev et al.
[1995], and Babaoğlu et al. [1998b].

PROPERTY 10.3 (Termination of Deli-
very). If a process p sends a message m
in a view V , then for each member q of V ,
either q delivers m, or p installs a next
view V ′ in V . Formally:

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

460 G.V. Chockler et al.

sends in(p, m, V) ∧ q ∈ V .members
⇒ delivers(q, m) ∨ delivers in(p, V)
∨ ∃V ′ installs in(p, V ′, V).

Membership Precision and Termina-
tion of Delivery together imply Multicast
Liveness (Property 10.1.2). In addition,
Property 10.3 (Termination of Delivery)
requires that the membership service not
block even when the network is unstable.
We believe that this property is not par-
ticularly useful for applications: when the
network is unstable, a membership service
satisfying this property will continuously
install views without any guarantee to
deliver messages in these views. Contin-
uously installing new views at unstable
times may increase the load and lengthen
the unstable period. Furthermore, any
membership service that satisfies Prop-
erty 10.3 is forced to install obsolete
views, that is, views that are known to
be changing soon. However, most existing
membership algorithms do satisfy Prop-
erty 10.3 (Termination of Delivery). An
exception is the membership service of
Keidar et al. [2000] which does not install
a view if it knows that this view is already
obsolete.

10.3. Related Work

10.3.1. Membership Precision and Accuracy.
Precision is one of the most fundamen-
tal properties of a membership service. A
group communication system is useless if
its membership service is not precise at
least to some extent.

GCSs typically exploit some failure
detection mechanism based on timeouts
or other methods (e.g., Vogels [1996]) in
order to detect conditions under which the
membership protocol should be invoked.
The failure detector also provides an ini-
tial approximation of the view upon which
the membership service would agree. If
this approximation is precise, so is the
output of the membership service. Thus
practically all of the existing GCSs satisfy
Property 10.1.1 (Membership Precision),
even if it does not explicitly appear in
their specifications.

Property 10.1.1 (Membership Preci-
sion) is explicitly specified in Anker et al.
[1998]. The specification of Keidar et al.
[2000] summarizes the two preconditions
for precision—stable component and
eventually perfect failure detection—into
a single one. It requires that if a connected
set S of processes exists, such that the
net reachable set at every member of
S remains S forever, then all members of
S eventually install the same last view.
This latter precondition is weaker than
the original two preconditions, since the
actual connected component may contain
additional members that are not included
in S.

The specifications of Friedman and van
Renesse [1995] and Lin and Hadzilacos
[1999] are also conditional on the failure
detector output. For example, they require
that a process q be excluded from a view
only if the failure detector module at some
view member suspects q. The specifica-
tions of Lin and Hadzilacos [1999] also re-
quire that if all active processes almost
always suspect (do not suspect) q, then
their views almost always do not include
(resp., do include) q. This property is dif-
ferent from Membership Accuracy in that
it only applies when all processes agree on
the inclusion of some member, not when-
ever pairwise reachability is established
between two processes. Like Membership
Accuracy and unlike Membership Preci-
sion, this property does not require pro-
cesses to eventually stop installing views.
Also unlike Membership Precision, it re-
quires liveness whenever processes agree
on the inclusion of some member, even if
there is no agreement upon the entire con-
nected component.

Phoenix [Malloth and Schiper 1995]
exploits a failure detector that is weaker
than an eventually perfect one. Given
the weaker failure detector, Phoenix
guarantees progress but not precision: it
guarantees that each invocation of the
membership protocol will terminate, but
correct processes may be removed from
the membership and forced to rejoin in-
finitely many times. We observe, however,
that in executions in which the network
eventually stabilizes and the underlying

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 461

failure detector used by Phoenix behaves
as an eventually perfect one, Phoenix also
satisfies Membership Precision.

The specifications of Fekete et al. [1997],
Cristian and Schmuck [1995], and Mishra
et al. [1998] guarantee precision of the
membership service at periods during
which the underlying network is stable
and timely. These specifications are for-
mulated in the timed asynchronous sys-
tem model; they guarantee the timeliness
of the service and not just eventual ter-
mination. Of course, such guarantees can
only be made when network message de-
livery and process scheduling are timely.
The specifications are parameterized by
timeouts suited for the underlying net-
work and by constants that depend on the
protocol implementation. Since in this sur-
vey we do not focus on a specific protocol,
we cannot provide such an analysis.

10.3.2. Multicast and Safe Indication
Liveness. Like Membership Precision,
Property 10.1.2 (Multicast Liveness)
is satisfied by all the existing GCSs,
although it does not always explicitly ap-
pear in their specifications. This property
eliminates trivial GCS implementations
that capriciously discard messages with-
out delivering them. Similar properties
appear in Fekete et al. [1997] and Keidar
and Khazan [2000].

In primary component GCSs, message
stability may be formulated as follows. If
a process delivers a message in view V ,
then all nonfaulty members of V eventu-
ally deliver this message. This is called
Uniformity in the Isis literature and in
Schiper and Sandoz [1993] and Unanimity
in Rodrigues and Verissimo [1992].

Property 10.1.3 (Self Delivery) requires
that if the network eventually stabilizes,
processes deliver all of their own messages
unless they crash after sending them. Self
Delivery complements Multicast Liveness
by requiring delivery of messages sent in
any view, not just those sent in the last
view.

All the GCSs that we are aware of sat-
isfy Self Delivery; some examples are: Isis,
Transis, Totem, Horus, and Newtop. In
RMP, Self Delivery holds for all multi-

cast services except for the Unreliable one.
However, this property does not hold in the
specifications of Fekete et al. [1997].

Some specifications that include Send-
ing View Delivery (e.g., Moser et al. [1994]
and Keidar and Khazan [2000]) define
self-delivery as a safety property that
holds between each pair of consecutive
views installed by a process. Since a pro-
cess cannot know whether there will even-
tually be a stable component, in both cases
a process must deliver the messages it
sent in the current view before it installs
the next view. Other specifications (e.g.,
Babaoğlu et al. [1998b]) require a process
to deliver its own messages in all execu-
tions, not just stable ones. Again, since
the GCS cannot deduce whether stability
holds in a certain execution, these two for-
mulations of Self Delivery are essentially
equivalent.

Property 10.1.4 (Safe Indication Live-
ness) appears only in the specification of
Fekete et al. [1997] as this is the only work
that explicitly introduces safe indications.

CONCLUSIONS

11. SUMMARY

We have presented a comprehensive set
of specifications that may be combined to
represent the guarantees of most existing
GCSs. We have specified clear and rigor-
ous properties formalized as trace proper-
ties of I/O automata. In light of these spec-
ifications, we have surveyed and analyzed
over 30 published specifications that cover
a dozen leading GCSs. We have correlated
the terminology used in different papers
with our terminology.

We have seen that the main components
of a GCS are the membership and multi-
cast services. In Table VI, we summarize
the safety properties of the membership
and multicast services, distinguishing be-
tween basic properties and optional ones.

In order to account for the diverse re-
quirements of different applications, we
followed a modular paradigm in this sur-
vey: our specifications are divided into in-
dependent properties that may be used as
building blocks for the construction of a

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

462 G.V. Chockler et al.

Table VI. Summary of Safety Properties of the Membership
and Multicast Services

Basic Properties Optional Properties
Self Inclusion Primary Component Membership
Local Monotonicity Sending View Delivery
Initial View Event Virtual Synchrony
Delivery Integrity Transitional Set
No Duplication Agreement on Successors
Same View Delivery

Table VII. Properties of Different Ordered Multicast Services and
of Safe Message Indications

FIFO Multicast Causal Multicast
FIFO Delivery Causal Delivery
Reliable FIFO Reliable Causal
Totally Ordered Multicast Safe Indications
Strong Total Order Safe Indication Prefix
Weak Total Order Safe Indication Reliable Prefix
Reliable Total Order

Table VIII. Summary of Liveness Properties

Basic Properties Optional Properties
Membership Precision Safe Indication Liveness
Multicast Liveness Termination of Delivery
Self Delivery Membership Accuracy

large variety of actual specifications. Indi-
vidual specification requirements may be
matched by specific protocol layers in mod-
ular GCSs. This makes it possible to sepa-
rately reason about the guarantees of each
layer and the correctness of its implemen-
tation. Furthermore, the modularity of our
specifications provides the flexibility to de-
scribe systems that incorporate a variety
of QoS options with different semantics.
Table VII summarizes the properties of
different ordering and reliability services
(FIFO, causal, and totally ordered) we have
described in this article, as well as safe
message indications. In the future, our
framework may be used for specifying ad-
ditional qualities of service and semantics.

We have presented specifications of
GCSs running in asynchronous failure-
prone environments in which agreement
problems that resemble group communi-
cation services are not solvable. We ad-
dressed the nontriviality issues and sug-
gested ways to circumvent impossibility
results by specifying conditional liveness
guarantees and by using external failure

detectors. We have argued that our speci-
fications are nontrivial and feasible to im-
plement. In Table VIII we summarize the
liveness properties.

The set of specifications presented here
has been carefully assembled to satisfy
the common requirements of numerous
fault-tolerant distributed applications.
Throughout the article, the specifications
are justified with examples of applications
that benefit from them.

We hope that the specifications frame-
work presented in this article will help
builders of group communication systems
understand and specify their service se-
mantics, and that the extensive survey
will allow them to compare their service
to others. Application builders will find
here a guide to the services provided by
a large variety of GCSs, which would help
them choose the GCS appropriate for their
needs. Moreover, we hope that the formal
framework will provide a basis for inter-
esting theoretical work, analyzing relative
strengths of different properties, and the
costs of implementing them.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 463

In the Appendix we present Lemma A.2,
which states that a certain combination
of properties of a reliable totally ordered
and FIFO ordered multicast service im-
plies that the service also preserves the
reliable causal order. We have included
the lemma in this article, as it can be
proven by logical analysis of the properties
themselves without considering GCS im-
plementations. By reasoning about imple-
mentations, using arguments about when
one execution of an algorithm “looks like”
another execution to a certain instance
of the algorithm, one can prove many
other links between properties. For exam-
ple, one can prove a “dual” assertion to
Lemma A.2, showing that a nonreliable
totally ordered and FIFO ordered multicast
service is also causally ordered. An inter-
esting research direction would be to ex-
plore additional relationships and trade-
offs between different properties.

APPENDIX

A. PROVING A RELATIONSHIP BETWEEN
DIFFERENT PROPERTIES

First, we prove that Property 6.7 (Reliable
Total Order) implies Property 6.5 (Strong
Total Order) for messages received in the
same view.

LEMMA A.1 Property 6.7. (Reliable Total
Order) along with Property 4.3 (Sending
View Delivery) and the basic Property 4.1
(Delivery Integrity) imply Property 6.5
(Strong Total Order) for messages received
in the same view.

PROOF. Let ts be the timestamp
function f whose existence is given in
Property 6.7 (Reliable Total Order). We
now prove that ∀p∀m∀m′(recv before in
(p, m, m′, V) ⇒ ts(m) < ts(m′)), which
will imply Property 6.5 (Strong Total
Order).

First, m 6= m′; otherwise the same mes-
sage is received twice which is a contradic-
tion to Delivery Integrity (Property 4.1).
Therefore ts(m) 6= ts(m′). Now assume
by contradiction that ts(m) > ts(m′).
Then, by Delivery Integrity (Property 4.1)
there are send(q, m) and send(q′, m′),

and by Sending View Delivery (Prop-
erty 4.3) viewof (send(q, m)) = viewof
(send(q′, m′)). Hence, we can apply
Reliable Total Order (Property 6.7)
and conclude that recv before(p, m′, m).
This contradicts the assumption that
recv before in(p, m, m′, V).

Similar proofs can be given to re-
late Property 6.2 (Reliable FIFO) with
Property 6.1 (FIFO Delivery) and Prop-
erty 6.4 (Reliable Causal) with Prop-
erty 6.3 (Causal). We do not present these
proofs here because they are trivial.

Now, we prove that a certain combina-
tion of properties of a reliable totally or-
dered and FIFO ordered multicast service
implies that the service also preserves the
reliable causal order.

LEMMA A.2. Properties 6.7 (Reliable To-
tal Order) and 6.2 (Reliable FIFO) along
with Property 4.3 (Sending View Delivery)
and the basic Properties 4.1 (Delivery
Integrity), 3.2 (Local Monotonicity), and
3.3 (Initial View Event) imply Property 6.4
(Reliable Causal).

PROOF. First, let us prove the following
claims.

CLAIM A.2.1. If ti = recv(p, m), tk = send
(p, m′), i < k and viewof(ti) = viewof(tk),
then ts(m) < ts(m′).

PROOF. First, m 6= m′, by Delivery In-
tegrity (Property 4.1) since every mes-
sage can be sent only once (by Message
Uniqueness, Assumption 2.2). Since m 6=
m′, ts(m) 6= ts(m′). Now, assume the
contrary; that is, ts(m) > ts(m′). Then,
by Reliable Total Order (Property 6.7),
since there is recv(p, m), there is also
recv(p, m′) before recv(p, m). This means
that p receives its own message m′ be-
fore sending it. Since every message can
be sent only once, this is a contradiction to
the basic Delivery Integrity property 4.1.
Thus ts(m) < ts(m′).

CLAIM A.2.2. If ti and tk are two events of
types send or recv that occur at the same
process p, such that i < k, then either
viewof(ti) = viewof(tk) or viewof(ti).vid <
viewof(tk).vid.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

464 G.V. Chockler et al.

PROOF. Immediate from Initial View
Event and Strong Local Monotonicity.

CLAIM A.2.3. If send(p, m)→ send(p′, m′),
then there is a sequence of events ei-
ther S1= send(p1= p, m1=m)→ send
(p1, m′1)→ recv(p2, m′1)→ send(p2, m2)→
recv(p3, m2)→ send(p3, m3)→· · ·→ recv
(pn = p′, mn−1)→ send(pn = p′, mn = m′)
or S2 = send(p1 = p, m1 = m)→
recv(p2, m1) → send(p2, m2)→· · ·→
recv(pn = p′, mn−1)→ send(pn = p′,
mn=m′).

PROOF. By the recursive definition of
causal order (in Table III), there is
a sequence S of events starting with
send(p, m) and ending with send(p′, m′).
Each pair ti and tk of consecutive events in
this sequence is either sending and receiv-
ing the same message, or pid(ti) = pid(tk)
and i < k. Let us fix a process q such
that some event in S occurred at q, and
look at the first and the last event in S
that occurred at q. The last event is al-
ways a send event. The first event is a
send event for q = p, and a recv event
for q 6= p. Therefore, if for each process q,
we leave only the first and the last event
in S that occurred at q and remove all the
intermediate events from S, we obtain the
required sequence.

We now proceed to the proof of the
lemma. Let us assume that ti = send
(p, m) → tk = send(p′, m′), viewof (ti) =
viewof(tk) and there exists recv(q, m′). We
should prove that there is also recv(q, m),
and recv(q, m) precedes recv(q, m′). By
Claim A.2.3, there is a a sequence S1 of
events send(p1 = p, m′1 = m) → send
(p1, m1)→ recv(p2, m1)→ send(p2, m2)→
· · · → recv(pn = p′, mn−1) → send(pn =
p′, mn=m′).11

First let us prove that all events in
this sequence occur in the same view.
Assume the contrary. Then there is a
pair of consecutive events t j and tl in
S such that viewof(t j) 6= viewof(tl). If t j
and tl are send and recv of the same
message, then viewof(t j)= viewof(tl), by

11 We do not give a separate proof for S2 since it is a
special case of S1.

Sending View Delivery. Therefore, t j
and tl occurred at the same process, and
j < l . Using Claim A.2.2, we conclude
that viewof(t j).vid< viewof(tl).vid. Hence,
viewof(send(p1, m′1)).vid ≤ viewof (send
(p1, m1)).vid= viewof (recv(p2, m1)).vid≤
viewof(send(p2, m2)).vid = · · · = viewof
(t j).vid < viewof (tl).vid = · · · = viewof
(recv(pn, mn−1)).vid ≤ viewof (send(pn,
mn)).vid. Summarizing, viewof(ti).vid <
viewof(tk).vid. This is a contradiction
to the lemma condition that viewof
(ti) = viewof (tk).

Since there are send(p1, m′1), and later
send(p1, m1) and recv(p2, m1) in the
same view, there is also recv(p2, m′1) pre-
ceding recv(p2, m1), by Property 6.2 (Re-
liable FIFO). By Lemma A.1 we can ap-
ply Property 6.5 (Strong Total Order)
and conclude that ts(m′1) < ts(m1). Ap-
plying Claim A.2.1 to recv(pi, mi−1) and
send(pi, mi) for 2 ≤ i ≤ n, we conclude
that ts(mi−1) < ts(mi). Thus ts(m′1=m) <
ts(mn = m′). Since there is recv(q, m′),
then, by Property 6.7 (Reliable Total Or-
der), there is also recv(q, m) preceding
recv(q, m′). h

ACKNOWLEDGMENTS

We are grateful to Uri Abraham, Aviva Dayan,
Roberto De Prisco, Danny Dolev, Alan Fekete,
Shmuel Katz, Roger Khazan, Nancy Lynch, Alberto
Montresor, Sharon Or, Michel Raynal, Ohad Rodeh,
Andre Schiper, Roberto Segala, Jeremy Sussman,
and the anonymous referees for many comments and
helpful suggestions that helped us improve the qual-
ity of the presentation. We thank Ken Birman and
Robbert van Renesse for inspiring us to undertake
the project of writing this article.

REFERENCES

ABDELZAHER, T., SHAIKH, A., JAHANIAN, F., AND SHIN, K.
1996. RTCAST: Lightweight multicast for real-
time process groups. In IEEE Real-Time Tech-
nology and Applications Symposium (RTAS)
(June).

AHUJA, M. 1993. Assertions about past and future
in highways: Global flush broadcast and flush-
vector-time. Information Processing Letters 48, 1
(October), 21–28.

AL-SHAER, E., YOUSSEF, A., ABDEL-WAHAB, H., MALY, K.,
AND OVERSTREET, C. M. 1997. Reliability, scal-
ability and robustness issues in IRI. In IEEE
Sixth Workshops on Enabling Technologies:

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 465

Infrastructure for Collaborative Enterprises
(WETICE’97) (June).

AL-SHAER, E. S., ABDEL-WAHAB, H., AND MALY, K.
1999. HiFi: A new monitoring architecture for
distributed system management. In 19th Inter-
national Conference on Distributed Computing
Systems (ICDCS) (June), pp. 171–178.

AMIR, O., AMIR, Y., AND DOLEV, D. 1993. A highly
available application in the Transis environ-
ment. In Proceedings of the Hardware and Soft-
ware Architectures for Fault Tolerance Workshop,
at Le Mont Saint-Michel, France (June). LNCS
774.

AMIR, Y. AND STANTON, J. 1998. The spread
wide area group communication system. TR
CNDS-98-4, The Center for Networking and
Distributed Systems, The Johns Hopkins
University.

AMIR, Y., BREITGAND, D., CHOCKLER, G., AND DOLEV, D.
1996. Group communication as an infrastruc-
ture for distributed system management. In The
Third International Workshop on Services in
Distributed and Networked Environment
(SDNE) (June), pp. 84–91.

AMIR, Y., CHOCKLER, G. V., DOLEV, D., AND

VITENBERG, R. 1997. Efficient state trans-
fer in partitionable environments. In Second
European Research Seminar on Advances in
Distributed Systems (ERSADS’97) (March),
pp. 183–192. BROADCAST (ESPRIT WG
22455): Operating Systems Laboratory, Swiss
Federal Institute of Technology, Lausanne.
Full version: Tech. Rep. CS98-12, Institute of
Computer Science, The Hebrew University,
Jerusalem, Israel.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992a.
Membership algorithms for multicast commu-
nication groups. In Six International Workshop
on Distributed Algorithms (WDAG) (November),
pp. 292–312. Springer Verlag.

AMIR, Y., DOLEV, D., KRAMER, S., AND MALKI, D. 1992b.
Transis: A communication sub-system for high
availability. In 22nd IEEE Fault-Tolerant Com-
puting Symposium (FTCS) (July).

AMIR, Y., DOLEV, D., MELLIAR-SMITH, P. M., AND MOSER,
L. E. 1994. Robust and efficient replication
using group communication. Tech. Rep. CS94-
20, Institute of Computer Science, Hebrew Uni-
versity, Jerusalem, Israel.

AMIR, Y., MOSER, L. E., MELLIAR-SMITH, P. M.,
AGARWAL, D. A., AND CIARFELLA, P. 1995. The
Totem single-ring ordering and membership
protocol. ACM Transactions on Computer Sys-
tems 13, 4 (November).

ANCEAUME, E., CHARRON-BOST, B., MINET, P., AND TOUEG,
S. 1995. On the formal specification of group
membership services. TR 95-1534 (August),
Dept. of Computer Science, Cornell University.

ANKER, T., CHOCKLER, G., DOLEV, D., AND KEIDAR,
I. 1998. Scalable group membership services
for novel applications. In M. Mavronicolas, M.
Merritt, and N. Shavit, Eds., Networks in

Distributed Computing (DIMACS Workshop),
vol. 45 of DIMACS, pp. 23–42. American Math-
ematical Society.

ANKER, T., CHOCKLER, G., SHNAIDERMAN, I., AND

DOLEV, D. 2000. The design of Xpand: A group
communication system for wide area networks.
Tech. Rep. 2000-31 (July), Institute of Computer
Science, Hebrew University, Jerusalem, Israel.

ANKER, T., CHOCKLER, G. V., DOLEV, D., AND KEIDAR, I.
1997. The Caelum toolkit for CSCW: The sky
is the limit. In The Third International Work-
shop on Next Generation Information Technolo-
gies and Systems (NGITS 97) (June), pp. 69–76.

ANKER, T., DOLEV, D., AND KEIDAR, I. 1999. Fault tol-
erant video-on-demand services. In 19th Inter-
national Conference on Distributed Computing
Systems (ICDCS) (June), pp. 244–252.

BABAOĞLU, Ö., BARTOLI, A., AND DINI, G. 1996. On
programming with view synchrony. In 16th In-
ternational Conference on Distributed Comput-
ing Systems (ICDCS) (May), pp. 3–10. Also Tech.
Rep. UBLCS95-15, Department of Computer
Science, University of Bologna, 1995.

BABAOĞLU, Ö., DAVOLI, A., MONTRESOR, A., AND SEGALA,
R. 1998a. System support for partition-aware
network applications. In 18th International
Conference on Distributed Computing Systems
(ICDCS) (May), pp. 184–191.

BABAOĞLU, Ö., DAVOLI, R., AND MONTRESOR, A. 1998b.
Group communication in partitionable systems:
Specification and algorithms. TR UBLCS98-1
(April), Department of Computer Science, Uni-
versity of Bologna. In IEEE Transactions on
Software Engineering, 27, 4 (April 2001), 308–
336.

BIRMAN, K. 1996. Building Secure and Reliable
Network Applications. Manning.

BIRMAN, K. AND JOSEPH, T. 1987. Exploiting vir-
tual synchrony in distributed systems. In 11th
ACM SIGOPS Symposium on Operating Sys-
tems Principles (SOSP) (November), pp. 123–
138. ACM.

BIRMAN, K. AND VAN RENESSE, R. 1994. Reliable Dis-
tributed Computing with the Isis Toolkit. IEEE
Computer Society Press.

BIRMAN, K., FRIEDMAN, R., HAYDEN, M., AND RHEE, I.
1998. Middleware support for distributed mul-
timedia and collaborative computing. In Multi-
media Computing and Networking (MMCN98).

BIRMAN, K. P. 1986. ISIS: A system for fault-
tolerant distributed computing. Tech. Rep.
TR86-744 (April), Cornell University, Depart-
ment of Computer Science.

CHANDRA, T., HADZILACOS, V., TOUEG, S., AND

CHARRON-BOST, B. 1996. On the impossibility
of group membership. In 15th ACM Symposium
on Principles of Distributed Computing (PODC)
(May), pp. 322–330.

CHANDRA, T. D. AND TOUEG, S. 1996. Unreliable fail-
ure detectors for reliable distributed systems.
Journal of the ACM 43, 2 (March), 225–267.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

466 G.V. Chockler et al.

CHERITON, D. AND ZWAENEPOEL, W. 1985. Dis-
tributed process groups in the V kernel. ACM
Transactions on Computer Systems 3, 2, 77–
107.

CHOCKLER, G., HULEIHEL, N., AND DOLEV, D. 1998.
An adaptive totally ordered multicast protocol
that tolerates partitions. In 17th ACM Sympo-
sium on Principles of Distributed Computing
(PODC) (June), pp. 237–246.

CHOCKLER, G., HULEIHEL, N., KEIDAR, I., AND DOLEV, D.
1996. Multimedia multicast transport service
for groupware. In TINA Conference on the Con-
vergence of Telecommunications and Distributed
Computing Technologies (September).

CHODROW, S., HIRCSH, M., RHEE, I., AND CHEUNG, S. Y.
1997. Design and implementation of a multi-
cast audio conferencing tool for a collaborative
computing framework. In JCIS (March).

CRISTIAN, F. 1991. Reaching agreement on pro-
cessor group membership in synchronous dis-
tributed systems. Distributed Computing 4, 4
(April), 175–187.

CRISTIAN, F. AND FETZER, C. 1999. The timed
asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Sys-
tems, 642–657.

CRISTIAN, F. AND SCHMUCK, F. 1995. Agreeing on
process group membership in asynchronous dis-
tributed systems. Tech. Rep. CSE95-428, De-
partment of Computer Science and Engineering,
University of California, San Diego.

DE PRISCO, R., FEKETE, A., LYNCH, N., AND SHVARTSMAN,
A. 1998. A dynamic view-oriented group com-
munication service. In 17th ACM Symposium
on Principles of Distributed Computing (PODC)
(June), pp. 227–236.

DÉFAGO, X., SCHIPER, A., AND URBÁN, P. 2000. To-
tally ordered broadcast and multicast algo-
rithms: A comprehensive survey. Tech. Rep.
DSC/2000/036 (September), Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland.

DOLEV, D. AND MALKHI, D. 1996. The Transis ap-
proach to high availability cluster communica-
tion. Communications of the ACM 39, 4 (April),
64–70.

DOLEV, D., FRIEDMAN, R., KEIDAR, I., AND MALKI, D.
1997. Failure detectors in omission failure en-
vironments. In 16th ACM Symposium on Princi-
ples of Distributed Computing (PODC) (August),
pp. 286. Brief announcement. Full version: Tech.
Rep. 96-1608, Department of Computer Science,
Cornell University.

DOLEV, D., MALKI, D., AND STRONG, H. R. 1995. A
framework for partitionable membership ser-
vice. TR 95-4 (March), Institute of Computer Sci-
ence, Hebrew University.

DOLEV, S., SEGALA, R., AND SHVARTSMAN, A. 1999. Dy-
namic load balancing with group communica-
tion. In Six International Colloquium on Struc-
tural Information and Communication Complex-
ity (SIROCCO’99), pp. 111–125.

DWORK, C., LYNCH, N., AND STOCKMEYER, L. 1988.
Consensus in the presence of partial synchrony.
Journal of the ACM 35, 2 (April), 288–323.

EZHILCHELVAN, P. D., MACEDO, A., AND SHRIVASTAVA, S. K.
1995. Newtop: A fault tolerant group commu-
nication protocol. In 15th International Confer-
ence on Distributed Computing Systems (ICDCS)
(June).

FEKETE, A. AND KEIDAR, I. 2001. A framework for
highly available services based on group commu-
nication. In IEEE 21st International Conference
on Distributed Computing Systems Workshops
(ICDCS-21W 2001); the International Work-
shop on Applied Reliable Group Communication
(WARGC) (April), 57–62.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. 1997.
Specifying and using a partitionable group com-
munication service. In 16th ACM Symposium
on Principles of Distributed Computing (PODC)
(August), pp. 53–62. Full version to appear in
ACM Transactions on Computer Systems 19, 2
(May 2001), 171–216.

FELBER, P., GUERRAOUI, R., AND SCHIPER, A. 1998.
The implementation of a CORBA object group
service. Theory and Practice of Object Sys-
tems 4, 2, 93–105.

FRIEDMAN, R. AND VAN RENESSE, R. 1995. Strong and
weak virtual synchrony in Horus. TR 95-1537
(August), Dept. of Computer Science, Cornell
University.

FRIEDMAN, R. AND VAYSBURG, A. 1997. Fast repli-
cated state machines over partitionable net-
works. In 16th IEEE International Sympo-
sium on Reliable Distributed Systems (SRDS)
(October).

FRITZKE, U. J., INGELS, P., MOSTEFAOUI, A., AND RAYNAL,
M. 1998. Fault-tolerant total order multicast
to asynchronous groups. In 17th IEEE Interna-
tional Symposium on Reliable Distributed Sys-
tems (SRDS) (October), pp. 228–234.

GALLENI, A. AND POWELL, D. 1996. Consensus and
membership in synchronous and asynchronous
distributed systems. Tech. Rep. 96104 (April),
LAAS-CNRS. Revised January 1997.

GANG, D., CHOCKLER, G., ANKER, T., KREMER, A.,
AND WINKLER, T. 1997. Conducting Midi ses-
sions over the network using the Tran-
sis group communication system. In Interna-
tional Computer Music Conference (ICMC 97)
(September).

GOFT, G. AND YEGER LOTEM, E. 1999. The AS/400
cluster engine: A case study. In IGCC 1999, in
conjunction with ICPP 1999.

GUERRAOUI, R. AND SCHIPER, A. 1995. Transaction
model vs. virtual synchrony model: Bridging
the gap. In Theory and Practice in Distributed
Systems, LNCS 938 (September), pp. 121–132.
Springer-Verlag.

GUERRAOUI, R. AND SCHIPER, A. 1997a. Consensus:
The big misunderstanding. In Proceedings of
the Six IEEE Computer Society Workshop on

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 467

Future Trends in Distributed Computing Sys-
tems (FTDCS-6) (Tunis, Tunisia, October),
pp. 183–188. IEEE Computer Society Press.

GUERRAOUI, R. AND SCHIPER, A. 1997b. Software-
based replication for fault tolerance. IEEE Com-
puter 30, 4 (April), 68–74.

GUERRAOUI, R. AND SCHIPER, A. 2000. Genuine
atomic multicast in asynchronous distributed
systems. Theoretical Computer Science 254, 1–2
(March 2001), 297–316. Also Tech. Rep. 98/273,
Swiss Federal Institute of Technology.

GUTTAG, J. V., HORNING, J. J., GARLAND, S. J., JONES,
K. D., MODET, A., AND WING, J. M. 1993. Larch:
Languages and Tools for Formal Specification.
Texts and Monographs in Computer Science.
Springer-Verlag.

HAYDEN, M. AND VAN RENESSE, R. 1996. optimiz-
ing layered communication protocols. Tech. Rep.
TR96-1613 (November), Dept. of Computer Sci-
ence, Cornell University, Ithaca, NY.

HICKEY, J., LYNCH, N., AND VAN RENESSE, R. 1999.
Specifications and proofs for ensemble layers.
In Fifth International Conference on Tools and
Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS (March). Springer-
Verlag.

HILTUNEN, M. AND SCHLICHTING, R. 1995. Properties
of membership services. In Second International
Symposium on Autonomous Decentralized Sys-
tems, pp. 200–207.

HILTUNEN, M. A. AND SCHLICHTING, R. D. 1998. A
configurable membership service. IEEE Trans-
actions on Computers 47, 5 (May), 573–
586.

IBM 1996. RS/6000 SP High Availability Infras-
tructure. IBM. SG24-4838, available online at:
http://www.redbooks.ibm.com/abstracts/sg2448-
38.html.

IONA 1994. IONA and Isis. An Introduction to
Orbix+ISIS. IONA Technologies and Isis Dis-
tributed Systems.

JAHANIAN, F., FAKHOURI, S., AND RAJKUMAR, R. 1993.
Processor group membership protocols: Speci-
fication, design and implementation. In 12th
IEEE International Symposium on Reliable Dis-
tributed Systems (SRDS) (October), pp. 2–11.
IEEE.

JOHNSON, S., JAHANIAN, F., GHOSH, S., VANVOORST,
B., AND WEININGER, N. 2000. Experiences with
group communication middleware. In The In-
ternational Conference on Dependable Systems
and Networks (DSN). Practical Experience
Report.

JOHNSON, S., JAHANIAN, F., AND SHAH, J. 1999. The
inter-group router approach to scalable group
composition. In 19th International Conference on
Distributed Computing Systems (ICDCS) (June),
pp. 4–14.

KAASHOEK, M. F. AND TANENBAUM, A. S. 1996. An
evaluation of the Amoeba group communica-
tion system. In 16th International Conference on

Distributed Computing Systems (ICDCS) (May),
pp. 436–447.

KALANTAR, M. AND BIRMAN, K. 1999. Causally or-
dered multicast: The conservative approach.
In 19th International Conference on Dis-
tributed Computing Systems (ICDCS) (June),
pp. 36–44.

KEIDAR, I. 1994. A highly available paradigm
for consistent object replication. Master’s
thesis, Institute of Computer Science, He-
brew University, Jerusalem, Israel. Also
Institute of Computer Science, Hebrew Uni-
versity Tech. Rep. CS95-5, and available from:
http://www.cs.huji.ac.il/∼transis/publications.
html.

KEIDAR, I. AND DOLEV, D. 1996. Efficient message
ordering in dynamic networks. In 15th ACM
Symposium on Principles of Distributed Com-
puting (PODC) (May), pp. 68–76.

KEIDAR, I. AND DOLEV, D. 2000. Totally ordered
broadcast in the face of network partitions. Ex-
ploiting group communication for replication
in partitionable networks. In D. Avresky, Ed.,
Chapter 3 of Dependable Network Computing,
pp. 51–75. Kluwer Academic.

KEIDAR, I. AND KHAZAN, R. 2000. A client-server ap-
proach to virtually synchronous group multicast:
Specifications and algorithms. In 20th Interna-
tional Conference on Distributed Computing Sys-
tems (ICDCS) (April), pp. 344–355. Full version:
MIT Tech. Rep. MIT-LCS-TR-794.

KEIDAR, I., SUSSMAN, J., MARZULLO, K., AND DOLEV,
D. 2000. A client-server oriented algorithm
for virtually synchronous group membership in
WANs. In 20th International Conference on Dis-
tributed Computing Systems (ICDCS) (April),
pp. 356–365. Full version: MIT Technical Memo-
randum MIT-LCS-TM-593a, June 1999, revised
September 2000.

KEMME, B. AND ALONSO, G. 1998. A suite of
database replication protocols based on group
communication primitives. In 18th International
Conference on Distributed Computing Systems
(ICDCS) (May).

KHAZAN, R., FEKETE, A., AND LYNCH, N. 1998. Multi-
cast group communication as a base for a load-
balancing replicated data service. In 12th Inter-
national Symposium on DIStributed Computing
(DISC) (Andros, Greece, September), pp. 258–
272.

KRANTZ, A., CHODROW, S., AND HIRCSH, M. 1998. De-
sign and implementation of a distributed x mul-
tiplexor. In 18th International Conference on Dis-
tributed Computing Systems (ICDCS) (May).

KRANTZ, A., RHEE, I., BREUKER, C., CHODROW, S., AND

SUNDERAM, V. 1997. Supporting input multi-
plexing in a heterogenous environment. In JCIS
(March).

KSHEMKALYANI, A. D. AND SINGHAL, M. 1998. Nec-
essary and sufficient conditions on information
for causal message ordering and their optimal

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

468 G.V. Chockler et al.

implementation. Distributed Computing 11, 2
(April), 91–111.

LAMPORT, L. 1978. Time, clocks, and the ordering of
events in a distributed system. Communications
of the ACM 21, 7 (July), 558–565.

LANDIS, S. AND MAFFEIS, S. 1997. Building reliable
distributed systems with CORBA. Theory and
Practice of Object Systems 3, 1.

LIN, K. AND HADZILACOS, V. 1999. Asynchronous
group membership with oracles. In 13th Inter-
national Symposium on DIStributed Computing
(DISC) (Bratislava, Slovak Republic), pp. 79–93.

LYNCH, N. 1996. Distributed Algorithms. Morgan
Kaufmann.

LYNCH, N. AND TUTTLE, M. 1989. An introduction to
input/output automata. CWI Quarterly 2, 3, 219–
246.

MALKHI, D. AND REITER, M. 1997. A high-
throughput secure reliable multicast protocol.
Journal of Computer Security 5, 113–127.

MALKHI, D., MERRITT, M., AND RODEH, O. 1997. Se-
cure multicast in a WAN. In 17th International
Conference on Distributed Computing Systems
(ICDCS) (May), pp. 87–94.

MALLOTH, C. AND SCHIPER, A. 1995. View syn-
chronous communication in large scale net-
works. In Second Open Workshop of the ES-
PRIT project BROADCAST (Number 6360)
(July).

MALLOTH, C. P., FELBER, P., SCHIPER, A., AND WILHELM,
U. 1995. Phoenix: A toolkit for building fault-
tolerant, distributed applications in large scale.
In Workshop on Parallel and Distributed Plat-
forms in Industrial Products (October).

MISHRA, S. AND PANG, G. 1999. Design and imple-
mentation of an availability management ser-
vice. In 19th International Conference on Dis-
tributed Computing Systems (ICDCS) Workshop
on Middleware (June), pp. 128–133.

MISHRA, S., FETZER, C., AND CRISTIAN, F. 1998. The
Timewheel group membership protocol. In Third
IEEE Workshop on Fault-tolerant Parallel and
Distributed Systems (FTPDS) (April).

MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. D.
1991. A membership protocol based on partial
order. In International Working Conference on
Dependable Computing for Critical Applications
(February).

MISHRA, S., PETERSON, L. L., AND SCHLICHTING, R. L.
1993. Consul: A communication substrate for
fault-tolerant distributed programs. Distributed
Systems Engineering Journal 1, 2 (Dec.), 87–103.

MONTRESOR, A., DAVOLI, R., AND BABAOGLU, O. 2000.
Middleware for dependable network services
in partitionable distributed systems. In PODC
Middleware Symposium (July). Also Tech. Rep.
UBLCS 99-19, October 1999 (Revised April
2000).

MOSER, L. E., AMIR, Y., MELLIAR-SMITH, P. M., AND

AGARWAL, D. A. 1994. Extended virtual syn-
chrony. In 14th International Conference on Dis-

tributed Computing Systems (ICDCS) (June),
pp. 56–65.

MOSER, L. E., MELLIAR-SMITH, P. M., AND

NARASIMHAN, P. 1998. Consistent object
replication in the Eternal system. Theory and
Practice of Object Systems 4, 2, 81–92.

NEIGER, G. 1996. A new look at membership ser-
vices. In 15th ACM Symposium on Principles
of Distributed Computing (PODC), pp. 331–340.
ACM.

OMG. 2000. Fault Tolerant CORBA Specification.
OMG (Object Management Group) Document
ptc/2000-04-04.

REITER, M. K. 1996. A secure group membership
protocol. IEEE Transactions on Software Engi-
neering 22, 1 (January), 31–42.

RHEE, I., CHEUNG, S., HUTTO, P., AND SUNDERAM, V.
1997. Group communication support for dis-
tributed multimedia and CSCW systems. In 17th
International Conference on Distributed Com-
puting Systems (ICDCS).

RICCIARDI, A. M. AND BIRMAN, K. P. 1991. Using
process groups to implement failure detection
in asynchronous environments. In ACM Sym-
posium on Principles of Distributed Computing
(PODC) (August), pp. 341–352.

RODRIGUES, L. AND VERISSIMO, P. 1992. xAMp, a pro-
tocol suite for group communication. RT /43-92
(January), INESC.

SCHIPER, A. AND RAYNAL, M. 1996. From group com-
munication to transactions in distributed sys-
tems. Communications of the ACM 39, 4 (April),
84–87.

SCHIPER, A. AND RICCIARDI, A. 1993. Virtually syn-
chronous communication based on a weak fail-
ure suspector. In 23rd IEEE Fault-Tolerant
Computing Symposium (FTCS) (June), pp. 534–
543.

SCHIPER, A. AND SANDOZ, A. 1993. Uniform reli-
able multicast in a virtually synchronous en-
vironment. In 13th International Conference on
Distributed Computing Systems (ICDCS) (May),
pp. 561–568.

SCHNEIDER, F. B. 1990. Implementing fault toler-
ant services using the state machine approach:
A tutorial. ACM Computing Surveys 22, 4 (Dec.),
299–319.

SHAMIR, G. 1996. Shared whiteboard: A Java
application in the Transis environment. Lab
project, High Availability lab, The Hebrew Uni-
versity of Jerusalem, Jerusalem, Israel. Avail-
able from: http://www.cs.huji.ac.il/∼transis/
publications.html.

SUSSMAN, J. AND MARZULLO, K. 1998. The Banco-
mat problem: An example of resource alloca-
tion in a partitionable asynchronous system. In
12th International Symposium on DIStributed
Computing (DISC) (September). Full version:
Tech. Rep. 98-570 University of California, San
Diego Department of Computer Science and
Engineering.

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

Group Communication Specifications 469

SUSSMAN, J., KEIDAR, I., AND MARZULLO, K. 2000. Op-
timistic virtual synchrony. In 19th IEEE In-
ternational Symposium on Reliable Distributed
Systems (SRDS) (October), pp. 42–51.

VALENCI, M. 1998. Audio conferencing us-
ing Transis. Lab project, High Avail-
ability lab, The Hebrew University of
Jerusalem, Jerusalem, Israel. Available from:
http://www.cs.huji.ac.il/∼transis/publications.
html.

VAN RENESSE, R., BIRMAN, K. P., AND MAFFEIS, S. 1996.
Horus: A flexible group communication system.
Communications of the ACM 39, 4 (April), 76–83.

VITENBERG, R. 1998. Properties of distributed
group communication and their utilization.
Master’s thesis, Institute of Computer Science,
Hebrew University, Jerusalem, Israel.

VOGELS, W. 1996. World wide failures. In ACM
SIGOPS 1996 European Workshop (September).

VOGELS, W. AND VAN RENESSE, R. 1994. Support

for complex multi-media applications using
the Horus system. Ithaca, NY, Dept. of Com-
puter Science, Cornell University. On-line
html document: http://www.cs.cornell.edu/Info/
People/rvr/papers/rt/novsdav.html.

WHETTEN, B., MONTGOMERY, T., AND KAPLAN, S. 1995.
A high performance totally ordered multi-
cast protocol. In K. P. Birman, F. Mattern,
and A. Schiper, Eds., Theory and Practice in
Distributed Systems: International Workshop,
pp. 33–57. Springer Verlag. LNCS 938.

WILHELM, U. G. AND SCHIPER, A. 1995. A hierarchy
of totally ordered multicasts. In 14th IEEE In-
ternational Symposium on Reliable Distributed
Systems (SRDS) (September).

YEGER LOTEM, E., KEIDAR, I., AND DOLEV, D. 1997.
Dynamic voting for consistent primary com-
ponents. In 16th ACM Symposium on Princi-
ples of Distributed Computing (PODC) (August),
pp. 63–71.

Received December 1999; revised March 2001; accepted March 2001

ACM Computing Surveys, Vol. 33, No. 4, December 2001.

