
Secure Sampling of Public Parameters
for Succinct Zero Knowledge Proofs

Eli Ben-Sasson§, Alessandro Chiesa∗, Matthew Green†, Eran Tromer¶, Madars Virza‡
∗ETH Zürich, alessandro.chiesa@inf.ethz.ch

†Johns Hopkins University, mgreen@cs.jhu.edu
‡MIT, madars@mit.edu

§Technion, eli@cs.technion.ac.il
¶Tel Aviv University, tromer@cs.tau.ac.il

Abstract—Non-interactive zero-knowledge proofs
(NIZKs) are a powerful cryptographic tool, with
numerous potential applications. However, succinct
NIZKs (e.g., zk-SNARK schemes) necessitate a trusted
party to generate and publish some public parameters, to
be used by all provers and verifiers. This party is trusted
to correctly run a probabilistic algorithm (specified by
the the proof system) that outputs the public parameters,
and publish them, without leaking any other information
(such as the internal randomness used by the algorithm);
violating either requirement may allow malicious parties
to produce convincing “proofs” of false statements. This
trust requirement poses a serious impediment to deploying
NIZKs in many applications, because a party that is
trusted by all users of the envisioned system may simply
not exist.

In this work, we show how public parameters for a class
of NIZKs can be generated by a multi-party protocol, such
that if at least one of the parties is honest, then the result
is secure (in both aforementioned senses) and can be subse-
quently used for generating and verifying numerous proofs
without any further trust. We design and implement such a
protocol, tailored to efficiently support the state-of-the-art
NIZK constructions with short and easy-to-verify proofs
(Parno et al. IEEE S&P ’13; Ben-Sasson et al. USENIX
Sec ’14; Danezis et al. ASIACRYPT ’14). Applications
of our system include generating public parameters for
systems such as Zerocash (Ben-Sasson et al. IEEE S&P ’13)
and the scalable zero-knowledge proof system of (Ben-
Sasson et al. CRYPTO ’14).

I. INTRODUCTION

In recent years individuals and enterprises have begun

to migrate large quantities of internal data to outside

providers. This trend raises concerns about the integrity

and confidentiality of computations conducted on this

data. Consider, for example, the following simple illus-

trative scenario. A server owns a private database x,

and a client wishes to learn y := F (x) for a public

function F ; a commitment cm to x is known publicly.

For example, x may be a database containing genetic

data, and F may be a machine-learning algorithm that

uses the genetic data to compute a classifier y. On the

one hand, the client seeks integrity of computation: he

wants to ensure that the server reports the correct output

y (e.g., because the classifier y will be used for critical

medical decisions). On the other hand, the server seeks

confidentiality of his own input: he is willing to disclose

y to the client, but no additional information about x
beyond y (e.g., because the genetic data x may contain

sensitive personal information).

Zero-knowledge proofs. Achieving the combination

of the above security requirements seems paradoxical:

the client does not have the input x, and the server

is not willing to share it. Yet, cryptography offers a

powerful tool that is able to do just that: zero-knowledge
proofs [1], [2]. The server, acting as the prover, attempts

to convince the client, acting as the verifier, that the

following NP statement is true: “there is x̃ such that

y = F (x̃) and x̃ is a decommitment of cm”. Indeed:

(a) the proof system’s soundness property addresses the

client’s integrity concern, because it guarantees that, if

the NP statement is false, the prover cannot convince

the verifier (with high probability);1 and (b) the proof

system’s zero-knowledge property addresses the server’s

confidentiality concern, because it guarantees that, if the

NP statement is true, the prover can convince the verifier

without leaking any information about x (beyond what

is leaked by y).

Non-interactivity. While zero-knowledge proofs can

address the above simple scenario, they also apply more

broadly, including to scenarios that involve many parties

who do not trust each other or are not all simultaneously

online. In such cases, it is desirable to use non-interactive
zero-knowledge proofs (NIZKs), where the proof consists

of a single message π that can be verified by anyone.

For example, such a proof π can be stored for later use,

or it can be verified by multiple parties without requiring

1Sometimes a property stronger than soundness is required: proof
of knowledge [1], [3], which guarantees that, whenever the verifier is
convinced, not only can he deduce that a witness exists, but also that
the prover knows one such witness.

2015 IEEE Symposium on Security and Privacy

© 2015, Eli Ben-Sasson. Under license to IEEE.

DOI 10.1109/SP.2015.25

287

2015 IEEE Symposium on Security and Privacy

© 2015, Eli Ben-Sasson. Under license to IEEE.

DOI 10.1109/SP.2015.25

287

the prover to separately interact with each of these.

Unfortunately, NIZKs do not exist for languages

outside BPP (even when soundness is relaxed to hold

only computationally) [4]. But, if a trusted party is

available for a one-time setup phase, then, under suitable

hardness assumptions, NIZKs exist for all languages in

NP [5]–[7]. During the setup phase, the trusted party

runs a probabilistic polynomial-time generator algorithm

G (prescribed by the proof system) and publishes its

output pp, called the public parameters; afterwards, the

trusted party is no longer needed, and anyone can use pp
to produce proofs or to verify them. Soundness of the

NIZK depends on this trusted setup: if pp is not correctly

generated, or if secret internal randomness used within

G is revealed, then it may be feasible to convince the

verifier that false NP statements are true. Compromised

soundness can have catastrophic implications, because an

attacker may be able to cause significant damage without

being detected.

The problem of parameter generation. If no trusted

party is available, how should the public parameters pp be

generated? Without some trustworthy method to generate

public parameters, deploying practical systems that rely

on NIZKs (e.g., Zerocash [8]) seems very challenging.

One approach is to look for, in Nature or Society, a

publicly-observable distribution that equals (or is close

to) pp’s distribution. For example, if G merely outputs

a random binary string of a certain length,2 it may be

possible, via suitable measurements and post-processing

of, e.g., data about sun spots or the stock market, to

extract bits that are close to random. (See [9], [10] for

work in this direction, and [11] for a NIST prototype

using quantum randomness sources). However, if G
follows a more complex probabilistic strategy, then there

may be no stochastic process in Nature or Society that

yields a distribution close to pp’s.

An attractive alternative approach to address the

problem of parameter generation is the following:

construct a multi-party protocol for securely generating
the public parameters pp.

The setup phase will then involve a large set of parties

running the multi-party protocol for generating pp, and

for soundness of the NIZK to hold it will suffice that

only a few (ideally, even just one) of these parties are

honest. Clearly, this is a weaker and more realistic trust

assumption then placing ultimate trust in any single party.

Several works have explored this approach for the pa-

rameter distributions of various cryptographic primitives

2NIZKs for which G outputs a random binary string are said to be
in the common random string model.

and, more generally, one can invoke secure multi-party

computation [12], [13] to obtain a feasibility result. Yet,

as discussed in Section II, prior works do not yield

satisfactory efficiency in our setting, which we now

introduce.

A. Our focus

The problem of parameter generation has garnered recent

attention due to the development of new and powerful

NIZKs that enable verifying general computation via

proofs that are succinct, i.e., short and easy to verify [14].

The new proofs are known as zero-knowledge succinct
arguments of knowledge (zk-SNARKs) [15]–[17], and

have already found practical applications, e.g., to building

decentralized electronic cash [8]. Most zk-SNARKs

require an involved parameter generation, often with

complexity proportional to the size of the computation

being proved; addressing this parameter generation is

the focus of our work. Concretely, we obtain efficient

multi-party protocols for securely sampling the public

parameters required by zk-SNARKs, as we now explain.

zk-SNARK constructions. There are many zk-SNARK

constructions, with different properties in efficiency

and supported languages. In preprocessing zk-SNARKs,

the complexity of sampling public parameters grows

with the size of the computation being proved [17]–

[31]; in fully-succinct zk-SNARKs, that complexity is

independent of computation size [14], [16], [32]–[40].

Working prototypes have been achieved for preprocessing

zk-SNARKs [21], [22], [25], [27], [30] and fully-succinct

ones [39]. Several works have also explored various

applications of zk-SNARKs [8], [41]–[44].

Public parameters of zk-SNARKs. Despite the afore-

mentioned multitude of constructions, Bitansky et al.

[17] showed that essentially all known preprocessing

zk-SNARK constructions can be “explained” as the

combination of a linear interactive proof (LIP) and

a cryptographic encoding that only supports linear

homomorphisms. This yields a unified view of parameter

generation across preprocessing zk-SNARKs (that are

not fully succinct). Namely, given an NP relation R, the

generator G adheres to the following computation pattern

when producing public parameters for R: (i) derive

from R a certain circuit C (essentially, C is the multi-

output circuit that computes the LIP’s verifier’s message);

(ii) evaluate C at a random input; (iii) output the encoding

of the evaluation. In other words, public parameters of

preprocessing zk-SNARKs are the encodings of random

evaluations of certain circuits.

The sampling problem. Concretely, for a prime r,

the circuit C is defined over the size-r field Fr and

288288

the encoding of α ∈ Fr is α · G, where G generates

an order-r group G. Moreover, G is a duplex-pairing
group (i.e., G is a subgroup of some G1 ×G2 equipped

with a pairing). This discussion motivates the following

multi-party sampling problem:

Let r be a prime, G = 〈G〉 an order-r group, n a

positive integer, and C : Fm
r → F

h
r an Fr-arithmetic

circuit. Construct an n-party protocol for securely

sampling pp := C(�α) · G for random �α ∈ F
m.

We thus seek a multi-party protocol such that, even when

all but one of the n parties are malicious, the protocol’s

output is pp sampled from the correct distribution and,

moreover, the n parties, and any others observing the

protocol’s execution, learn nothing beyond pp itself. We

study this problem, and the special case of generating

public parameters for preprocessing zk-SNARKs.

In fact, as the purpose of the multi-party protocol in the

aforementioned application is to convince the systems’

users, which are bystanders to the protocol execution, we

make explicit a transcript verifier, which is an algorithm

that anyone can use to ensure correct execution of the

protocol by examining the broadcast messages.

B. Our contributions

We design, build, and evaluate a multi-party protocol

for securely sampling encodings of random evaluations

of certain circuits. The resulting system enables us, in

particular, to sample the public parameters for a class of

preprocessing zk-SNARKs that includes [21], [25], [31];

we integrated our system with libsnark [45], a C++
zk-SNARK library, to facilitate this application. In more

detail, we present the following two main contributions.

(1) Secure sampling for a class of circuits. We design,

build, and evaluate a multi-party protocol that securely

samples values of the form C(�α) · G for a random

�α, provided that C belongs to a certain circuit class

CS. Roughly, CS comprises the F-arithmetic circuits

C : Fm → F
h for which: (i) the output of each (addition

or multiplication) gate is an output of the circuit; (ii) the

inputs of each addition gate are outputs of the circuit;

(iii) the two inputs of each multiplication gate are,

respectively, a circuit output and a circuit input. (See

Figure 1a for an example of a circuit in CS.)

The multi-party protocol is based on standard cryp-

tographic assumptions, and runs atop a synchronous

network with an authenticated broadcast channel and

a common random string.3 The computation proceeds

in rounds and, at each round, the protocol’s schedule

determines which parties act; a party acts by broadcasting

a message to all others.

When n parties participate, our protocol is secure

against up to n − 1 malicious parties. If even one of

the parties is honest, and assuming the protocol reaches

completion, then the protocol’s output is a sample from

the designated distribution and no other information

leaks.4 Each party runs in time Oλ(size(C)), where

Oλ(·) hides a fixed polynomial in the security parameter

λ. The number of rounds is n · depthS(C) +O(1) and

the number of broadcast messages is O(n · depthS(C)).
Here, depthS(C) denotes the S-depth of C (introduced

later), which is at most the standard circuit depth of C,

but sometimes much smaller, as is (crucially) the case

for the zk-SNARK application discussed below.

While the above results hold for any group G, our

code implementation is specialized to the case when G is

duplex-pairing because, for this case, several additional

optimizations are possible. For this special case, we

additionally rely on random oracles so as to benefit from

the Fiat–Shamir heuristic [47].

Compared to previous results in secure multi-party

computation protocols, our specialized construction

scales up to larger number of parties without incurring

a high round complexity; see Section II.

(2) Application to zk-SNARKs. Our system can

securely sample public parameters of a zk-SNARK,

whenever the generator can be cast as sampling the

encoding of the random evaluation of a circuit in the

class CS. While the class CS appears restrictive, we ob-

serve that several known constructions of preprocessing

zk-SNARK have such a generator.

To facilitate this application to zk-SNARKs, we

(i) integrated our system with libsnark [45], and

(ii) applied our system to generating public parameters for

two specific zk-SNARK constructions: that of [21], [25]

(supporting arithmetic relations) and that of [31] (sup-

porting boolean relations). We also extended libsnark
with an implementation of [31]’s zk-SNARK, augment-

ing its existing implementation based on [21], [25].

Given an arithmetic circuit D, our code constructs

a related circuit CPGHR in CS, such that the encoding

3A broadcast channel can also be thought of as an append-only
public logbook and can be implemented in practice, e.g., via Bitcoin’s
puzzle-based block-chain protocol [46]; authentication can be achieved,
e.g., via digital signatures supported by a public-key infrastructure.
A common random string can, e.g., be implemented via a public
randomness source with high entropy (or even coin-tossing protocols).

4A malicious party may prevent the protocol from completing, by
acting incorrectly or by delaying prescribed broadcasts. However, the
culprit can be readily identified.

289289

of a random evaluation of CPGHR corresponds to public

parameters for [21], [25]’s zk-SNARK when proving

satisfiability of D. If D has Nw wires and Ng gates, then

CPGHR has size 11Nw + 2�log2 Ng�(�log2 Ng�+ 1) + 38
and S-depth 3. Similarly, given a boolean circuit D,

our code constructs a related circuit CDFGK in CS for

[31]’s zk-SNARK; if D has Nw wires and Ng gates, then

CDFGK has size 2Nw + 2�log2 Ng�(�log2 Ng� + 1) + 10
and S-depth 2.

We evaluate the concrete costs of our protocol when

used to generate the public parameters, needed by the

aforementioned zk-SNARK, in order to prove satisfiabil-

ity of specific circuits D in the following applications.

• Our system can securely generate the public parameters

for Zerocash [8], a decentralized anonymous payment

system extending Bitcoin. Letting D be the circuit that

implements the NP relation used in Zerocash: CPGHR

has size 138,467,206 and S-depth 3; in our multi-party

protocol, the number of rounds is 3n + 3 and each

party works for 14,124 s.

• Our system can securely generate the public parameters

needed for the scalable zk-SNARK of [39], which

proves correct execution of programs on a 32-bit RISC

architecture. Letting D be the circuit used in [39]:

CPGHR has size 8,027,609 and S-depth 6; in our multi-

party protocol, the number of rounds is 6n + 6 and

each party works for 4,048 s. (In [39] there are two
required circuits; here and later we specify, for each

complexity measure, the sum of the two costs.)

In both of cases above, the S-depth is extremely small

(less than 10), but the standard depth of the same circuit

exceeds many hundreds of thousands. The fact that our

sampling protocol’s round complexity is efficient in S-

depth allows for scaling to larger number of parties.

C. Summary of challenges and techniques

We describe at a high level the challenges that arise, as

well as the techniques that we employed to address them,

for each of our two main contributions.

1) Secure sampling for a class of circuits

Let r be a prime, G = 〈G〉 an order-r group, n a positive

integer, and C : Fm
r → F

h
r an Fr-arithmetic circuit.

We seek an n-party protocol for sampling C(�α) · G,

for a random �α, that is secure against up to n − 1
malicious parties. We may compromise on functionality

by restricting C to belong to a circuit class CS, provided

that, in return, we gain improved efficiency (since,

ultimately, we want to implement the protocol and use

it to generate zk-SNARK public parameters).

The ideal functionality. The first step is to choose

the ideal functionality fC,G to be implemented by the

multi-party protocol. A reasonable candidate is the

following: on input �σ := (�σ1, . . . , �σn) where �σi =
(σi,1, . . . , σi,m) ∈ F

m
r is party i’s input, fC,G first com-

putes αj :=
∏n

i=1 σi,j for j = 1, . . . ,m; then fC,G sets

�α := (α1, . . . , αm) and computes �P := C(�α) ·G; finally,

fC,G outputs �P . Indeed, if at least one party honestly

provides an input consisting of random field elements,

fC,G outputs the encoding of a random evaluation of C.5

Potential approaches. A typical next step is to write

a boolean circuit that evaluates fC,G , and then invoke

an (off-the-shelf or tailored) multi-party protocol for

securely evaluating the circuit. However, the conversion

to a boolean is circuit is expensive, because computing

C(�α) · G involves (i) the evaluation of the Fr-arithmetic

circuit C, and (ii) h scalar multiplications over the group

G. For example, the number of boolean gates required

to compute C(�α) alone is ≥ log2 r times larger than the

number of Fr-arithmetic gates for the same task, because

each addition and multiplication in Fr is expanded into

a boolean sub-circuit of size ≥ log2 r. Similarly, each

scalar multiplication over G expands into a boolean sub-

circuit of size ≥ log2 q · log2 r. In sum, the conversion

incurs a blowup of up to five orders of magnitude

in the number of gates to securely evaluate, because

log2 q, log2 r ≥ 250 (for, e.g., 128 bits of security).

So perhaps we could instead express the computation

via an arithmetic circuit, and use a multi-party protocol

for arithmetic circuits. However, over what field should

the arithmetic circuit be defined? While the circuit C is

defined over the field Fr, the group G may not be; indeed,

for the application considered in this paper (sampling

of public parameters for zk-SNARKs), the group G is

defined over a prime field Fq that is different from

Fr. If we express the computation as an Fr-arithmetic

circuit then, while evaluating C may be efficient, scalar

multiplications over G are not. Conversely, if we express

the computation as an Fq-arithmetic circuit, while scalar

multiplications over G may be efficient, evaluating C is

not. Either way, we again incur the overheads associated

to mismatch of field characteristic.

In addition to the above considerations, known multi-

party protocols that are secure against malicious majori-

ties either (i) have round complexity that scales linearly

with circuit depth, or (ii) rely on heavy cryptographic

tools that are unlikely to yield efficient implementations

in the near future. The applications that we consider

5fC,G also checks that none of the parties’ inputs contains a zero.
Forbidding zeros biases the output distribution, but only negligibly,
since r is chosen large enough for discrete log to be hard in Z∗

r .

290290

involve circuit depths exceeding hundreds of thousands,

so that such works do not seem applicable (see Section II

for discussion and citations).

Our approach. Our approach avoids the overheads

due to mismatch in field characteristic, and also has low

round complexity.

We observe that, for particular zk-SNARK construc-

tions (including [21], [25], [31]) the circuit C can (as

discussed in Section I-C2), be written to have a special

form so as to lie in the circuit class CS. We restrict our

attention to implementing fC,G for C ∈ CS.

For such circuits, we design a protocol where parties

jointly homomorphically evaluate the circuit C (avoiding,

in particular, first computing �β := C(�α) and then �β · G).

First, all parties first commit to their shares. Then, for

each multiplication gate, since one of the two gate’s

inputs is also an input to the circuit, every party can, in

sequence, contribute, and prove correct contribution of,

his input share. Additions are done locally (as in many

other multi-party protocols.

A naive realization of the above strategy yields an

enormous number of rounds: n times C’s depth. In

contrast, we show that, via a careful scheduling of when

each party contributes his own share, we can reduce the

number of rounds to only n times C’s S-depth, where S-

depth is a much milder notion of depth (defined later). In

the zk-SNARK application that we consider, depth(C)
grows with size(C) while depthS(C) is a small constant.

We realize the above approach by splitting the con-

struction in two steps. First, we reduce the problem of

sampling the encoding of a random evaluation of C to the

problem of jointly evaluating a related circuit C̃. Second,

we build a multi-party protocol for securely evaluating

C̃. These two steps simplify providing a formal proof of

security, as well as building a prototype implementation

of the protocol. Section I-D summarizes our construction.

Our implementation is specialized to when G is a

duplex-pairing group, in which case the NIZKs used by

parties can be implemented very efficiently via Schnorr

proofs and the Fiat–Shamir heuristic [47].

2) Application to zk-SNARKs

We wish to apply our system to generating public

parameters for two specific zk-SNARK constructions:

that of [21], [25] and that of [31]. This requires a

procedure for transforming the NP relation (represented

as an instance D of arithmetic or boolean satisfiability)

given as input to generator, into a corresponding circuit

C ∈ CS such that C(�α) · G for a random �α equals the

distribution of public parameters output by the generator.

Constructing such a circuit C, subject to the restric-

tions of CS (needed for applying our sampling protocol),

is not straightforward for either of the aforementioned

zk-SNARKs. One issue that arises, in both cases, is how

to construct a sub-circuit that, given an input τ ∈ Fr,

evaluates all Lagrange interpolating polynomials at τ ;

indeed, the standard linear-size circuit for this operation

involves division gates, which our protocol does not

handle (and are thus not included in CS). Instead of

relying on the standard circuit, we rely on a suitable

FFT-like sub-circuit that avoids the division gates.

D. Construction summary

We summarize our construction of an n-party protocol

for sampling pp := C(�α) · G, for a random �α, that is

secure against up to n− 1 malicious parties. Recall that

we focus on circuits in the class CS, which consists

of circuits C : Fm → F
h for which: (i) the output of

each (addition or multiplication) gate is an output of the

circuit; (ii) the inputs of each addition gate are outputs

of the circuit; (iii) the two inputs of each multiplication

gate are, respectively, a circuit output and a circuit input.

See Figure 1a for an example of a circuit in CS.

We first introduce some ideas for the artificial special

case of a single party executing the protocol; we then

explain how these ideas can be extend to multiple parties.

A special case. Suppose that a single party wishes

to generate pp in a verifiable way: the party outputs a

transcript tr, from which pp can be deduced, such that

anyone can establish validity of the transcript. Informally,

we seek a verifier V and simulator S that satisfy:

(1) syntactical correctness: if V (tr) = 1, there is �α ∈ F
m

such that pp = C(�α) · G; and (2) zero knowledge: tr
reveals no information beyond pp in the sense that S(pp)
is indistinguishable from tr. (At this stage we do not yet

ensure that �α is uniformly drawn and unknown.)

The straightforward approach to achieve the above is

to set tr := (pp, π) where π is a NIZK proof (in the

common random string model) for the NP statement

“there exists �α such that pp = C(�α) · G”, and then to let

V be the NIZK verifier and S be the NIZK simulator.

We observe that, since C is in CS, the NP state-

ment above can be “factored” into a collection of sub-

statements so that the proof π can be constructed as the

concatenation of a NIZK sub-proof πg for each gate g
in C. Essentially, for each gate g taken in topological

order: if g is a multiplication gate, then we know that the

encoding P of one of the two inputs has already been

computed (and proved correct) so that, if γ ∈ F denotes

the other input and R the encoded output, the party can

generate a NIZK proof that R = γ · P ; if instead g is an

291291

5�
�� �� ��

 �

 �

 � �

 �

 �

��

��

��

��

��

��

(a) Example of a circuit in CS.

5�

�� ��

4�

 �

 �

3�

�� �� ��

1�

 � � � �

 � � �

 �

 �

��

��

	�

�

��

������� �����	� �����
�

(b) Example of a circuit in CE.

Fig. 1: Examples of a circuit in CS and one in CE; in the latter case, the inputs of the circuit are partitioned into

slots. The red contour lines denote (traditional) circuit depth, while blue contour lines denote S-depth and E-depth.

addition gate, the group structure of G enables anyone

to evaluate g so that no NIZK proof is needed.

Extending to multiple parties. Now suppose that there

are n > 1 participating parties. Denote by tr the transcript

of all broadcast messages. We seek a verifier V and

simulator S that satisfy variants of the above properties:

(1) distributional correctness: if at least one party is

honest and V (tr) = 1, pp equals C(�α) · G for a random

�α; and (2) zero knowledge: if at least one party is honest

and V (tr) = 1, tr reveals no information beyond pp in

the sense that S(pp) is indistinguishable from tr.
Ideally, we would still set tr := (pp, π) where π

is a NIZK proof for the NP statement “there exists

�α such that pp = C(�α) · G”. However, now there is

no single party that knows the witness �α. Each party

holds a multiplicative share of every coordinate of �α:

party i holds �σi = (σi,1, . . . , σi,m) ∈ F
m
r and αj equals∏n

i=1 σi,j .

Nevertheless, we show that it is still possible to factor

the NP statement into a collection of sub-statements,

each one involving a contribution of one share, that,

when carefully scheduled, allow the n parties to jointly

assemble π by producing suitable sub-proofs. More

generally, our construction has two steps. First, we

transform the circuit C in CS into a new circuit C̃ in a

new circuit class CE; second, we construct a multi-party

protocol for securely evaluating any circuit in CE. More

details follow.

The circuit class CE differs from CS in two ways.

First, the inputs of a circuit C̃ ∈ CE are partitioned into

slots; we write C̃ : Fm1×· · ·×F
mn → F

h to express that

the first m1 inputs are in the first slot, the next m2 in the

second, and so on; the integers m1, . . . ,mn are part of

C̃’s description. Second, the restriction on the possible

inputs of multiplication gates is relaxed to account for

input slots. CE poses the following restrictions on C̃
(with difference from CS emphasized): (i) the output of

each (addition or multiplication) gate is an output of the

circuit; (ii) the inputs of each addition gate are outputs

of the circuit; (iii) the two inputs of each multiplication

gate are, respectively, a circuit output and either a circuit

input, or a circuit output computable from inputs from a
single slot. Figure 1b is an example of a circuit in CE.

The transformation from C ∈ CS to C̃ ∈ CE is as

follows. The m inputs of C are multiplicatively shared

among n parties to obtain n ·m inputs for C̃; the slot i of

C̃ contains the m shares of party i. Each multiplication

gate in C is mapped to O(n) multiplication gates in

C̃ tasked with assembling all the relevant shares; each

addition gate in C is mapped to a corresponding addition

gate in C̃. A crucial feature of the transformation is depth

efficiency (see below).

The multi-party protocol for circuits in CE is a

generalization of the one that we described above for

a single party. Essentially, the class CE ensures that at

each multiplication gate there is one party that knows the

“local” witness for producing a NIZK proof of correct

evaluation of the gate. Thus, the protocol proceeds in

rounds, and at each round every party proves correct

evaluation of any gate ready to be processed (and so on

until no more gates need to be processed).

Depth matters. The round complexity of securely

evaluating C̃ ∈ CE is depthE(C̃) + O(1), where

depthE(C̃) is the E-depth and (roughly) corresponds

to the maximum number of gate-ownership alternations

along any input-to-output path; ownership refers to which

party provides the input share to a gate. (See Figure 1b

for a comparison of depth and E-depth for an example in

CE.) Intuitively, while going down a path in the circuit,

every change in gate ownership means that a party needs

to wait on another one to process the previous gate,

thereby costing an extra round.

Therefore, it is crucial that the transformation from

C to C̃ is efficient in terms of E-depth of C̃. By

292292

carefully combining the sub-circuits in C̃, we ensure

that depthE(C̃) = n · depthS(C), where depthS(C) is

the S-depth of C and denotes the maximum number of

alternations between addition and multiplication gates

along any input-to-output path. (Figure 1a compares

depth and S-depth for an example in CS.)

II. PRIOR WORK

Secure generation of parameters. Generating public

parameters for NIZKs has been studied before, partic-

ularly in the setting where parameters merely consist

of a random string. For example, [9], [10], [48] study

various aspects of this problem. There are also other

cryptographic primitives that require a set of public

parameters to be known to every party in the system,

and various works have explored distributed generation

of such parameters for various distributions [49]–[51].

Secure multi-party computation. The area of secure

multi-party computation has seen rapid recent progress,

both in terms of theoretical results and concrete imple-

mentations. Yet, the existing generic implementations do

not support, or inefficiently support, the setting that we

consider: many parties, dishonest majority, and evaluation

of a circuit with large (standard) circuit depth.

For example, many implementations consider the case

of two parties [52], where they achieve outstanding

efficiency [53], [54], and can process billions of boolean

gates while spending only tens of CPU cycles on each.

Most of the approaches in this setting are based on Yao’s

seminal work on garbled circuits [55], [56].

Some implementations consider the case of arbitrary

number of parties, but they suffer from other limitations.

For example, [57] consider adversaries that are honest

but curious. Other protocols [13], [58] consider mali-

cious adversaries but require an honest majority. There

are known constant-round MPC protocols for a fully-

malicious, dishonest majority [59], [60], but these require

expensive ZK proofs and have not been implemented.

When requiring security against dishonest majorities

(with at least one honest party), implementations have a

round complexity that depends linearly on the depth of

the circuit being computed [61]–[65]. The applications

that we consider in this paper involve circuit depths that

exceed hundreds of thousands, resulting in large round

complexities; such round complexities are at best very

expensive when considering network latencies on the

Internet and at worst prohibitive if one of the participating

parties uses an air gap as a precaution. While theoretical

results do achieve sublinear round complexity [66], [67],

they rely on “heavy artillery” such as fully-homomorphic

encryption and program obfuscation, unlikely to yield

efficient implementations in the near future.

III. DEFINITIONS

A. Basic notation

We denote by λ the security parameter; f = Oλ(g)
means that there exists c > 0 such that f = O(λcg). The

power set of a set S is denoted 2S . Vectors are denoted

by arrow-equipped letters (e.g., �a); their entries carry an

index but not the arrow (e.g., a1, a2). Concatenation of

vectors (and scalars) is denoted by the operator ◦.
Implicit inputs. To simplify notation, the input 1λ is

implicit to all cryptographic algorithms; similarly, we do

not make explicit adversaries’ auxiliary inputs.

Distributions. We write {y |x1 ← D1 ; x2 ←
D2 ; . . . }E to denote the distribution over y obtained

by conditioning on the event E and sampling x1 from

D1, x2 from D2, and so on, and then computing

y := y(x1, x2, . . .). Given two distributions D and D′,
we write D

negl
= D′ to denote that the statistical distance

between D and D′ is negligible in the security parameter

λ. A distribution D is efficiently sampleable if there

exists a probabilistic polynomial-time algorithm A whose

output follows the distribution D.

Groups. We denote by G a group, and consider only

groups that are cyclic and have a prime order r. Group

elements are denoted with calligraphic letters (such as

P,Q). We write G = 〈G〉 to denote that the element

G generates G, and use additive notation for group

arithmetic. Hence, P +Q denotes addition of the two

elements P and Q; a · P denotes scalar multiplication

of P by the scalar a ∈ Z; and O := 0 · P denotes the

identity element. Since r · P = O, we can equivalently

think of a scalar a as belonging to the field of size r.

Given a vector �a = (a1, . . . , an), we use �a · P as a

shorthand for the vector (a1 · P , . . . , an · P).
Fields. We denote by F a field, and by Fn the field

of size n; we consider only fields of prime order. Field

elements are denoted with Greek letters (such as α, β, γ).

B. Commitments

A commitment scheme is a pair COMM = (COMM.Gen,
COMM.Ver) with the following syntax.

• COMM.Gen(x) → (cm, cr): On input data x, the

commitment generator COMM.Gen probabilistically

samples a commitment cm of x and corresponding

commitment randomness cr.
• COMM.Ver(x, cm, cr) → b: On input data x, com-

mitment cm, and commitment randomness cr, the

commitment verifier COMM.Ver outputs b = 1 if

293293

cm is a valid commitment of x with respect to the

randomness cr.
The scheme COMM satisfies the standard completeness,

(computational) binding, and (statistical) hiding proper-

ties. We do not assume that cm hides |x|.
C. Non-interactive zero-knowledge proofs of knowledge

A non-interactive zero-knowledge proof of knowledge
(NIZK) for an NP relation R in the common random

string model is a tuple NIZKR = (NIZKR.P,NIZKR.V,
NIZKR.E,NIZKR.S) with the following syntax.

• NIZKR.P(crs, �,�)→ π: On input common random

string crs, instance �, and witness �, the prover
NIZKR.P outputs a non-interactive proof π for the

statement “there is � such that (�,�) ∈ R”.

• NIZKR.V(crs, �, π) → b: On input common ran-

dom string crs, instance �, and proof π, the verifier
NIZKR.V outputs b = 1 if π is a convincing proof for

the statement “there is � such that (�,�) ∈ R”.

Above, crs is a random string of Oλ(1) bits (the exact

length is prescribed by NIZKR). The remaining two

components are each pairs of algorithms, as follows.

• NIZKR.E1 → (crsext, trapext): The extractor’s
generator NIZKR.E1 samples a string crsext (indis-

tinguishable from crs) and corresponding trapdoor

trapext. NIZKR.E2(crsext, trapext, �, π) → �: On

input crsext, trapext, instance �, and proof π, the

extractor NIZKR.E2 outputs a witness � for the

instance �.

• NIZKR.S1 → (crssim, trapsim): The simulator’s
generator NIZKR.S1 samples a string crssim (indis-

tinguishable from crs) and corresponding trapdoor

trapsim. NIZKR.S2(crssim, trapsim, �) → π: On

input crssim, trapsim, and instance � (for which

∃� s.t. (�,�) ∈ R), the simulator NIZKR.S2 outputs

π that is indistinguishable from an “honest” proof.

NIZKR satisfies the standard completeness, (computa-

tional, adaptive) proof-of-knowledge, and (statistical,

adaptive, multi-theorem) zero-knowledge properties.

D. Arithmetic circuits

We consider arithmetic, rather than boolean, circuits.

Given a field F, an F-arithmetic circuit C takes as input

elements in F, and its gates output elements in F. We

write C : Fm → F
h if C takes m inputs and produces h

outputs.

Wires, inputs, gates, and size. We denote by wires(C)
and gates(C) the wires and gates of C; also, we denote

by inputs(C) and outputs(C) the subsets of wires(C)
consisting of C’s input and output wires. We denote by

#wires(C), #gates(C),#inputs(C), and #outputs(C)

the cardinalities of wires(C), gates(C), inputs(C), and

outputs(C) respectively. The size of C is size(C) :=
#inputs(C) + #gates(C).

Gate types. A gate g of C is an addition gate
gadd, of the form α0 +

∑d
j=1 αjwj , or a (2-input)

multiplication gate gmul, of the form αwLwR. For addition

gates, inputs(gadd) := {w1, . . . ,wd} are the input wires

and coeffs(gadd) := (α0, . . . , αd) are the coefficients.

For multiplication gates, L-input(gmul) := wL is the

left input, R-input(gmul) := wR is the right input, and

coeffs(gmul) := (α) is the coefficient. For both gate types,

output(g) := w is the output wire; also, gw is the gate

for which w = output(gw). We define type(g) to be

add for addition gates, and mul for multiplication gates;

constant gates (implicit in figures) are a special case of

addition gates.

Further notions for circuits with partitioned domains.
We also consider F-arithmetic circuits C for which the

m inputs of the circuits are partitioned into n disjoint

slots; in such a case, we write C : Fm1 × · · · × F
mn →

F
h to express that the first m1 inputs belong to the

first slot, the next m2 to the second, and so on; the

integers m1, . . . ,mn are then also part of C’s description.

For i = 1, . . . , n: we denote by inputs(C, i) the input

wires that belong to the i-th slot, and by gates(C, i) the

gates that take as input an input wire in inputs(C, i);
the notations #inputs(C, i) and #gates(C, i) denote the

cardinalities of these sets; and we define size(C, i) :=
#inputs(C, i)+#gates(C, i). For every w ∈ inputs(C),
input-slot(C,w) is w’s slot number, i.e., the index i such

that w ∈ inputs(C, i).
Finally, to assist in stating the definition of E-depth

(see below), we introduce the dependency set ds(w) of

a wire w; roughly, it denotes the subset of {1, . . . , n}
denoting which slots individually carry enough infor-

mation (in terms of inputs) to compute the value of w.

The formal definition of ds(w) is quite technical, and is

Figure 2.

Two classes of circuits. We consider the following two

circuit classes CS and CE.

• CS is the class of F-arithmetic circuits C : Fm →
F
h for which every gate g in gates(C) is such that:

(i) output(g) ∈ outputs(C); (ii) if type(g) = add,

then inputs(g)∩ inputs(C) = ∅; and (iii) if type(g) =
mul, then L-input(g) �∈ inputs(C) and R-input(g) ∈
inputs(C).

• CE is the class of F-arithmetic circuits C : Fm1×· · ·×
F
mn → F

h for which every gate g in gates(C) is such

that: (i) output(g) ∈ outputs(C); (ii) if type(g) =
add, then inputs(g) ∩ inputs(C) = ∅; and (iii) if

type(g) = mul, then L-input(g) �∈ inputs(C) and, for

294294

every w,w′ ∈ inputs(C), if R-input(g) depends on w
and w′ then input-slot(C,w) = input-slot(C,w′).

Notions of depth. For circuits in CS and CE, we use

alternative notions of depth, called S-depth and E-depth;

both S-depth and E-depth are bounded from above by

(traditional) circuit depth, but are sometimes much less.

• The S-depth of C in CS is depthS(C) :=
maxw∈outputs(C) depthS(w) and depthS(w) is defined

in Figure 2; there, bw ∈ {0, 1} equals 1 if and

only if either |inputs(gw)| ≥ 2 or |inputs(gw)| =
1 ∧ coeffs(g)[0] �= 0

• The E-depth of C in CE is depthE(C) :=
maxw∈outputs(C) depthE(w) and depthE(w) is defined

in Figure 2; there, baddw ∈ {0, 1} equals 1 if

and only if ds(L-input(gw)) ∩ ds(R-input(gw)) = ∅
and depthE(L-input(gw)) ≤ depthE(R-input(gw)),
and bmul

w ∈ {0, 1} equals 1 if and only if⋂
w′∈inputs(gw)

ds(w′) = ∅.

E. Pairings and duplex-pairing groups

Pairings. Let G1 and G2 be cyclic groups of a

prime order r. Let G1 be a generator of G1, i.e.,

G1 = {αG1}α∈Fr , and let G2 be a generator for G2.

A pairing is an efficient map e : G1 ×G2 → GT , where

GT is also a cyclic group of order r (which, unlike other

groups, we write in multiplicative notation), satisfying

the following properties.

• BILINEARITY. For every pair of nonzero elements

α, β ∈ Fr, it holds that e(αG1, βG2) = e(G1,G2)αβ .

• NON-DEGENERACY. e(G1,G2) �= 1

Duplex-pairing groups. A group G of prime order

r is duplex pairing if there are order-r groups G1 and

G2 such that (i) there is a pairing e : G1 ×G2 → GT

for some target group GT , and (ii) there is a generator

G1 of G1 and G2 of G2 such that G is isomorphic to

{(α · G1, α · G2) |α ∈ Fr} ⊆ G1 ×G2.

F. Secure multi-party computation

We specialize definitions of secure multi-party compu-

tation [12], [13] to our setting, by considering parties’

inputs that are field elements rather than bit strings,

by considering families of functionalities rather than a

single functionality, and making explicit the notion of a

(transcript) verifier. These definitions provide background

and notation for this paper (and closely follow the

treatment in [68]). We assume familiarity with simulation-

based security definitions; for more, see [68].

1) Multi-party broadcast protocols

We consider multi-party protocols that run over a

synchronous network with an authenticated broadcast

channel. Namely, the computation proceeds in rounds

and, at each round, the protocol’s schedule determines

which parties act; a party acts by broadcasting a message

to all other parties. The broadcast channel is authenticated

in that all parties always know who sent a particular

message (regardless of what an adversary may do).

Moreover, we assume that parties have access to a

common random string crs; to simplify notation, we

do not make crs an explicit input. We now introduce

some notations and notions for later discussions.

Honest execution. Given a positive integer n,

an n-party broadcast protocol is a tuple Π =
(S,Σ1, . . . ,Σn) where: (i) S : N → 2{1,...,n} is the

deterministic polynomial-time schedule function; and

(ii) for i = 1, . . . , n, Σi is the (possibly stateful)

probabilistic polynomial-time strategy of party i.
The execution of Π on an input �x = (x1, . . . , xn),

denoted [[Π, �x]], works as follows. Set t := 1. While

S(t) �= ∅: (i) for each i ∈ S(t) in any order, party i
runs Σi, on input (xi, t) and with oracle access to the

history of messages broadcast so far, and broadcasts the

resulting output message msgt,i and, then, (ii) t := t+1.

The transcript of [[Π, �x]], denoted tr, is the sequence of

triples (t, i,msgt,i) ordered by msgt,i’s broadcast time.

The output of [[Π, �x]], denoted out, is the last message

in the transcript. Since Π’s strategies are probabilistic,

the transcript and output of [[Π, �x]] are random variables.

The round complexity is ROUND(Π) :=
mint∈N{t |S(t + 1) = ∅}. For i = 1, . . . , n,

the time complexity of party i is TIME(Π, i) :=∑
t∈[ROUND(Π)] s.t. i∈S(t) TIME(Σi, t) where

TIME(Σi, t) is Σi(·, t)’s time complexity.

Adversarial execution. Let A be a probabilistic

polynomial-time algorithm and J a subset of {1, . . . , n}.
We denote by [[Π, �x]]A,J the execution [[Π, �x]] modified

so that A controls parties in J , i.e., A knows the private

states of parties in J , may alter the strategies of parties in

J , and may wait, in each round, to first see the messages

broadcast by parties not in J and, only after that,

instruct parties in J to send their messages. (In particular,

[[Π, �x]]A,∅ = [[Π, �x]].) We denote by REALΠ,A,J(�x) the

concatenation of the output of [[Π, �x]]A,J and the view

of A in [[Π, �x]]A,J .

2) Ideal functionalities

While Section III-F1 describes the real-world execution

of a protocol Π on an input �x, here we describe the

295295

Fig. 2: Definitions of dependency set, S-depth, and E-depth; see Section III-D.

ideal-world execution of a function f on an input �x:

each party i privately sends his input xi to a trusted

party, who broadcasts f(�x).

Adversarial execution. Let S be a probabilistic

polynomial-time algorithm and J a subset of {1, . . . , n}.
The ideal-world execution of f on �x when S controls

parties in J differs from the above one as follows: S
may substitute the inputs of parties in J with other

same-length inputs. We denote by IDEALf,S,J(�x) the

concatenation of the value broadcast by the trusted party

and the output of S in the ideal-world execution of f
on �x when S controls parties in J .

3) Secure sampling broadcast protocols

Let r be a prime, G = 〈G〉 an order-r group, n a positive

integer, and C : Fm
r → F

h
r an Fr-arithmetic circuit. A

secure sampling broadcast protocol with n parties for
C over G is a tuple ΠS = (Π, V, S), where Π is an n-

party broadcast protocol, and V (the verifier) and S (the

simulator) are probabilistic polynomial-time algorithms,

that satisfies the following.

For every probabilistic polynomial-time algorithm

A (the adversary) and subset J of {1, . . . , n} (the

corrupted parties) with |J | < n, these two distributions

are negligibly close:⎧⎪⎨
⎪⎩
REALΠ,A,J(�σ)

∣∣∣∣∣∣∣

�σ1 ← F
m
r

...

�σn ← F
m
r

⎫⎪⎬
⎪⎭

V=1

negl
=

⎧⎪⎨
⎪⎩
IDEALfS

C,G ,S(A,J),J (�σ)

∣∣∣∣∣∣∣

�σ1 ← F
m
r

...

�σn ← F
m
r

⎫⎪⎬
⎪⎭

.

Above, �σ denotes (�σ1, . . . , �σn); V = 1 denotes con-

ditioning on the event that V , on input the tran-

script of [[Π, �x]]A,J , outputs 1; and fS
C,G denotes

the deterministic function such that fS
C,G(σ) :=

C((
∏n

i=1 σi,1, . . . ,
∏n

i=1 σi,m)) · G.

Next, we extend the above definition to variable

number of parties and restricted circuit classes. Let r
be a prime, G = 〈G〉 a group of order r, and C a class

of Fr-arithmetic circuits. A secure sampling broadcast
protocol for C over G is a tuple ΠS = (Π, V, S) such

that, for every positive integer n and circuit C : Fm
r → F

h
r

in C, (Πn,C , Vn,C , Sn,C) is a secure sampling broadcast

protocol with n parties for C over G.

4) Secure evaluation broadcast protocols

Let r be a prime, G = 〈G〉 an order-r group, n a positive

integer, and C : Fm1
r ×· · ·×F

mn
r → F

h
r an Fr-arithmetic

circuit. A secure evaluation broadcast protocol with
n parties for C over G is a tuple ΠE = (Π, V, S),
where Π is an n-party broadcast protocol and V, S are

probabilistic polynomial-time algorithms, that satisfies

the following.

For every probabilistic polynomial-time algorithm A,

subset J of {1, . . . , n} with |J | < n, and input �σ =
(�σ1, . . . , �σn) in F

m1
r × · · · × F

mn
r ,

{REALΠ,A,J(�σ)}V=1

negl
=

{
IDEALfE

C,G ,S(A,J),J (�σ)
}

.

Above, V = 1 denotes the event that V , on input the

transcript of [[Π, �x]]A,J , outputs 1, and fE
C,G denotes the

deterministic function such that fE
C,G(�σ) := C(�σ) · G.

As before, we extend the above definition to variable

number of parties and restricted circuit classes. Let r be

a prime, G = 〈G〉 a group of order r, and C a class of

Fr-arithmetic circuits. A secure evaluation broadcast
protocol for C over G is a tuple ΠE = (Π, V, S) such

that, for every positive integer n and circuit C : Fm1
r ×

· · · × F
mn
r → F

h
r in C, (Πn,C , Vn,C , Sn,C) is a secure

evaluation broadcast protocol with n parties for C over

G.

IV. SECURE SAMPLING FOR A CLASS OF CIRCUITS

Our main construction is a multi-party protocol for

securely sampling values of the form C(�α) · G for a

296296

random �α, provided that C belongs to the class CS. We

use two cryptographic ingredients: commitment schemes

(see Section III-B) and NIZKs (see Section III-C); both

rely on a common random string, available in our setting

(see Section III-F1).

Theorem IV.1. Assume the existence of commitment
schemes and NIZKs. Let r be a prime and G a group of
order r. There is a secure sampling broadcast protocol
ΠS = (Π, V, S) for CS over G such that, for every
positive integer n and circuit C in CS,
• ROUND(Πn,C) = n · depthS(C) + 3.
• for i = 1, . . . , n, TIME(Πn,C , i) = Oλ(size(C)).
• Vn,C runs in time Oλ(n · size(C)).
• Sn,C runs in time Oλ(n · size(C)).

Our implementation and evaluation target the case

when G is a duplex-pairing group. This special case

allows for additional optimizations (when further relying

on random oracles), as discussed in Section V.

Proof strategy. We construct the protocol of Theo-

rem IV.1 in two steps. The first step (Lemma IV.2) is

a reduction from the problem of constructing secure

sampling broadcast protocols to the problem of construct-

ing secure evaluation broadcast protocols. The second

step (Lemma IV.3) is a construction of such a secure

evaluation broadcast protocol.

Lemma IV.2 (Sampling-to-evaluation reduction). Let
r be a prime and G a group of order r. There exist
polynomial-time transformations T1 and T2 for which
the following holds.
• For every positive integer n and circuit C in CS:

(i) C̃ := T1(n,C) is a circuit in CE; (ii) for every
secure evaluation broadcast protocol ΠE with n parties
for C̃ over G, ΠS := T2(Π

E) is a secure sampling
broadcast protocol with n parties for C over G.

• T1 builds a new circuit C̃ is not much larger than C:
– depthE(C̃) = n · depthS(C);
– size(C̃) = O(n · size(C)); and
– size(C̃, i) = O(size(C)) for i = 1, . . . , n.

• T2 increases the protocol’s round complexity by 1, and
preserves all time complexities up to Oλ(1) factors.

Lemma IV.3 (Evaluation protocol). Assume the existence
of commitment schemes and NIZKs. Let r be a prime
and G a group of order r. There is a secure evaluation
broadcast protocol ΠE = (Π, V, S) for CE over G such
that, for every positive integer n and circuit C in CE:
• ROUND(Πn,C) = depthE(C) + 2;
• TIME(Πn,C , i) = Oλ(size(C, i)) for i = 1, . . . , n;
• Vn,C and Sn,C run in time Oλ(size(C)).

A. Sketch of the sampling-to-evaluation reduction

We sketch the proof of Lemma IV.2. At a high level, the

two transformations T1 and T2 work as follows.

• The circuit transformation T1, given the number of par-

ties n and a circuit C in CS, outputs a circuit C̃ ∈ CE

that computes C’s output, along with other auxiliary

values, by suitably combining n multiplicative shares

of C’s input.

• The protocol transformation T2, given a secure eval-

uation protocol ΠE for C̃, outputs a secure sampling

protocol ΠS for C by: (i) generating random shares

for all inputs, to ensure uniform sampling; (ii) ex-

tending the protocol by one last round, to obtain a

correctly-formatted output; (iii) extending the verifier,

to account for the additional round in the transcript;

and (iv) extending the simulator, to account for the

different ideal functionality, whose output excludes the

aforementioned auxiliary values (which, hence, must

be simulated).

Most of the effort goes into constructing C̃ and the

simulator of ΠS. We thus briefly discuss these two.

The circuit C̃. The circuit C̃ must compute C’s output

from n multiplicative shares of C’s input (chosen at

random). If this were the only requirement, then we

could simply set C̃ equal to the circuit that, given as

input n shares �α(1), . . . , �α(n) ∈ F
m, first combines the

shares into �α := (
∏n

j=1 α
(j)
1 , . . . ,

∏n
j=1 α

(j)
m) ∈ F

m and

then computes C(�α). Unfortunately, such a circuit is not

in the class CE, and thus we cannot invoke Lemma IV.3

to securely evaluate C̃ (and do not know how to

obtain an efficient protocol that does). The difficulty

thus lies in constructing a circuit C̃ that computes the

same function (perhaps with some additional, though

simulatable, outputs) and that, moreover, is in CE.

We thus take an alternative approach, which leverages

the fact that C lies in the class CS. Intuitively, instead of

combining shares at the beginning, C̃ combines shares

“on the fly”, as the circuit is computed, as we now

describe.

First consider the simple case where C has no non-

trivial addition gates, i.e., all gates are either multiplica-

tion gates or addition gates that output a constant. Our

reduction then outputs a circuit C̃ that contains n copies

of C as a sub-circuit (one for each party) such that

the #inputs(C) inputs of each copy are assigned to a

separate input slot of C̃; corresponding outputs of each

copy are then multiplied together, thereby combining the

shares, via O(n ·#outputs(C)) auxiliary multiplication

gates. See Figure 3a for an example.

More generally, of course, C may include addition

gates and, in such a case, the reduction is more complex,

297297

10� ��� ��� ���

 �

 �

 �

10� ���� ���� ����

 �

 �

 �

1� ���� ����

 �

 �

����

 �

 �

 �

 �

	��

������� �������

(a) Example where C has only multiplication gates.

5� ���

���

���

���
 �

 �
 �

 �

 �

5� ����������������

 �

 �

 �

 �
 �

1� ��������

 �

 �

��������

 �
 �

1�

 � �

 � �	��

������� �������

(b) Example where C has both addition and multiplication gates.

Fig. 3: Two examples of a circuit C in CS and the corresponding circuit C̃ := T1(C, n) in CE for n = 2 parties.

The blue arrows in C denote the output wires of C; the blue arrows in C̃ denote the output wires of C̃ that compute

outputs of C (while the remaining output wires carry partial computations).

because merely individually evaluating n copies of C
and then combining corresponding outputs does not

compute the correct function. The reason is not surprising:

while multiplicative sharing of inputs commutes with

multiplication, it does not commute with addition, and

thus it is hard to obtain multiplicative shares of the result

of an addition. To circumvent this problem, we break the

circuit down into components “separated” by additions,

and apply the above idea separately to each. In-between

components, before each addition, we combine shares.

In somewhat more detail, our construction works as

follows. For each multiplication gate gmul of C, we add

to C̃ a sub-circuit, consisting of O(n) multiplication

gates, that combines a value computed so far with all

the shares of gmul’s right input (which is, by definition

of CS, an input of C). For each addition gate gadd of C,

we add one addition gate to C̃ that combines the values

computed so far. Crucially, each of these sub-circuits, as

well as their combination, lies in CE. See Figure 3b.

A notable efficiency feature of our reduction is that

it ensures that the E-depth of C̃, which determines the

number of rounds required to securely evaluate C̃, is

“small”: it is bounded above by n times the S-depth

of C. Indeed, there are multiple ways to combine the

aforementioned sub-circuits, but many such ways yield

much worse efficiency, e.g., E-depth that is as worse as

n times the (standard) depth of C. Since the circuits

C that we encounter in this paper’s application have a

small S-depth, this feature is critical.

The simulator in ΠS. The construction of C̃ must

not only respect syntactic and efficiency requirements

(e.g., lie in CE, not have more than n · size(C) gates,

and so on), but must also be secure, in the sense that

the ideal functionality implemented by the evaluation

protocol ΠE for C̃ actually gives rise (with some simple

changes) to a sampling protocol ΠS that implements the

ideal functionality of C. Since our construction of C̃

introduces additional, spurious outputs, the simulator in

ΠS must be able to reproduce the view of the adversary

when only having access to C’s output (rather than C̃’s

output). Intuitively, this requires showing that partial

computations that carry information about a subset of

the parties’ shares do not leak additional information

beyond the outputs that incorporate every party’s share.

For an arbitrary circuit in CE such an argument cannot

be carried out. However, for the particular circuit C̃ that

is constructed from C we show that it is possible to

“back compute” the circuit: given the output of C, the

simulator can complete it into an output of C̃ by sampling

an assignment to the remaining (spurious) output wires

of C̃, such that the simulated output is indistinguishable

from an evaluation of C̃. This is done by taking each sub-

circuit in C̃ and computing backwards from its output.

B. Sketch of the evaluation protocol

We sketch the proof of Lemma IV.3. The evaluation

protocol ΠE = (Π, V, S) for C ∈ CE works as follows.

• In the first round (t = 1), each party i individually

commits to each one of his own private inputs,

i.e., each party i commits to the values assigned to

wires in inputs(C, i), and proves, in zero knowledge,

knowledge of the committed values (using relation

RA of Figure 4).

• In each one of the subsequent depthE(C) rounds (t =
2, . . . , depthE(C)+1), each party i determines if there

are any gates g in gates(C) such that (i) the E-depth

of output(g) equals the round number minus 1 (i.e,

t − 1), and (ii) if type(g) = mul then R-input(g)
depends only on inputs in inputs(C, i). If so, then party

i individually evaluates each such gate (in topological

order) and broadcasts the result, along with a zero-

knowledge proof that the evaluation was correct (using

relation RB of Figure 4). In this way, the parties prove

correct evaluation of all gates of C, first processing

298298

all gates whose outputs have E-depth 1, then all those

whose outputs have E-depth 2, and so on.

• After depthE(C) such rounds, in the last round

(t = depthE(C) + 2), party 1 consults the broadcast

messages so to gather, and broadcast in a single

message, the encoding of the value of every output

of C. The purpose of this last round is to construct

a syntactically well-formed output of the protocol;

tasking party 1 to do so is an arbitrary choice.
Since the circuit C belongs to the circuit class CE, by

definition of CE, whenever a party i is supposed to prove

correct evaluation of a gate g: (i) if g is an addition

gate, then encodings for g’s inputs have been broadcast

in previous rounds, and (ii) if g is a multiplication gate,

an encoding for g’s left input has been broadcast in

previous rounds (or computed by i in this round) and i
knows the value for its right input. In either case, party

i can compute an encoding for g’s output, and knows a

witness to the NP statement that attests to this encoding’s

correctness. Moreover, note that, again since C belongs

to CE, every gate’s output wire is also an output wire of

C, so that broadcasting encodings of every gate’s output

does not leak information beyond what is leaked by the

output of the ideal functionality, C(�σ) · G.
The transcript of broadcast messages can be checked

by a verifier V , by ensuring that input commitments carry

valid proofs and, for each gate, that the party responsible

for that gate has produced valid proofs for its evaluation

(based on suitable prior values); this ensures that the

circuit has been evaluated on the parties’ private inputs.

Moreover, the transcript can be generated by a simulator

S, having access to the encoding of the circuit’s output,

by simulating each proof of correct evaluation.

V. OPTIMIZATIONS FOR DUPLEX-PAIRING GROUPS

The use of NIZKs in Theorem IV.1 is “light”: the

sampling protocol uses NIZKs for two relations, denoted

RA and RB and defined in Figure 4, that involve only

arithmetic in G and invocations of the commitment

verifier COMM.Ver. While the theorem holds for any

choice of prime-order group G, we obtain a particularly-

efficient instantiation when G is a duplex-pairing group

of order r; our implementation and evaluation target

this special case, which occurs, e.g., in the setting of

public-parameter generation for zk-SNARKs.

Strategy. The sampling protocol of Theorem IV.1 is

obtained in two steps: a reduction from sampling to

evaluation (Lemma IV.2), and an evaluation protocol

(Lemma IV.3). The reduction is efficient, so we focus on

optimizing the evaluation protocol, by suitably instanti-

ating the commitment scheme and NIZKs for RA and

RB. This instantiation relies on random oracles.

Choice of commitment scheme. We instantiate the

commitment scheme COMM with Pedersen commit-

ments [49]. Let P and Q be two generators of G,

for which there is no known linear relation (if G is

an elliptic curve group then such P and Q can be

found by applying point decompression to two random

strings, or heuristically, to SHA256(0) and SHA256(1)).
A Pedersen commitment cm for a value x is obtained

by letting cr be a random element of Fr and computing

cm := x · P + cr · Q.

Choice of NIZK for the relation RA. To prove knowl-

edge of a committed value x encoded in a commitment

cm, we use an adapted version of Schnorr’s protocol

[69] for zero-knowledge proof-of-knowledge of discrete

logarithm. In the interactive version of the protocol, the

prover first chooses random α and β in Fr and produces

R = α ·P+β ·Q. The verifier responds with a uniformly

sampled element c of Fr, to which final prover message

is u := α+ c · x, v := β + c · cr. The verifier accepts iff

u · P + v · Q = R+ c · cm. The protocol is made non-

interactive by applying Fiat–Shamir heuristic [47] (in

our concrete implementation, using SHA256 hashing).

Choice of NIZK for the relation RB. We find that

in our implementation we only need a special case of

the relation RB. For this special case what needs to be

proved are the following two kinds of statements:

1) that a multiplicative relationship holds between a

committed to value and two elements of G: (P, α,
R, 0, c) ∈ RB ⇔ R := ασ · P , where σ is equal to

a value committed to in the commitment cm; and

2) that a multiplicative relationship holds between three

elements of G: (P, α,R, 1, c) ∈ RB ⇔ R := ασ ·P ,

where σ := logG c.

When G is a duplex pairing group, the proof for a

statement of the second kind is empty as anyone can

verify the statement by checking e(αP, c) = e(R,G).
To efficiently prove the statements of the first kind,

we slightly modify the construction of Lemma IV.3.

We insert an additional round after the first round

(in which all parties commit to their inputs). In this

additional round each party, for each of its inputs

x samples a random generator P of G, computes

R := x · P and outputs (P,R). Moreover, the party

outputs a NIZK proof-of-knowledge that the implicitly

defined x̂ := logP R is indeed consistent with the

corresponding commitment cm, i.e. cm for x decommits

to logP R. Call the corresponding relation Raux. Note

that, publishing such encodings (P, x · P) of inputs x
does not break confidentiality: a pair (Q, x·Q) (for some

Q) is necessarily output every time an input x is used

in a multiplication gate. By a hybrid argument, having

299299

The NP relation RA. An instance-witness pair (�,�) is in
RA if and only if COMM.Ver(σ, cm, cr) = 1, when parsing
� as a commitment cm and � as a tuple (σ, cr) for which
σ ∈ Fr and cr is commitment randomness.

The NP relation RB. An instance-witness pair (�,�) is in
RB if and only if all the following checks pass.
1) Parse � as tuple (R,P, α, b, c) and � as a tuple (σ, cr).
2) Check that the G-element R equals the G-element ασ · P .
3) If b = 0, check that COMM.Ver(σ, c, cr) = 1; if b = 1,

check that the G-element c equals the G-element σ · G (and
ignore cr).

Fig. 4: Description of the two NP relations RA and RB.

polynomially many such pairs is as helpful as having

just one. Equipped with such encodings checking RB

can be done just via pairing evaluations.

Finally, a NIZK proof for relation Raux is obtained by

combining the Σ-protocol for knowledge of a Pedersen

commitment, and Schnorr’s Σ-protocol for knowledge

of discrete logarithm in equality composition [70]. As

above, we make the resulting Σ-protocol non-interactive

by applying Fiat–Shamir heuristic.

VI. IMPLEMENTATION

Our system. We built a system that implements our

constructions. Given a prime r, an order-r duplex-

pairing group G = 〈G〉, and an Fr-arithmetic circuit

C : Fm
r → F

h
r in the class CS, our system provides a

multi-party protocol for securely sampling C(�α) · G for

random �α in F
m
r . Specifically, the system implements the

constructions underlying Section IV’s theorems, in the

case when G is a duplex-pairing group. (As discussed

in Section V, if G is duplex-pairing, one can instantiate

commitment schemes and NIZKs very efficiently.)

Application to zk-SNARKs via integration with
libsnark. The parameter generator of many

zk-SNARK constructions works as follows: evaluate

a certain circuit C at a random input �α, and then

output pp := C(�α) · G as the proof system’s public

parameters. (See discussion in Section I-A.) Thus, our

system can be used to securely sample public parameters

of a zk-SNARK, provided that the circuit used in its

generator belongs to the circuit class CS. To facilitate

this application, we have integrated our code with

libsnark [45], a C++ library for zk-SNARKs. (In

particular, pp can be used directly by libsnark.)

Two zk-SNARK constructions. We worked out cir-

cuits for parameter generation for two (preprocessing)

zk-SNARK constructions: the one of [21], [25] and the

one of [31]. The first zk-SNARK “natively” supports

proving satisfiability of arithmetic circuits, while the

second zk-SNARK that of boolean circuits.

Specifically, we wrote code that lays out a circuit

CPGHR ∈ CS that can be used to generate public

parameters for [21], [25]’s zk-SNARK; likewise for

laying out a circuit CDFGK ∈ CS for [31]’s zk-SNARK.

We have invoked our system on both and demonstrated

the secure sampling of respective public parameters.

A critical issue is that CPGHR and CDFGK have size

quasilinear in the circuit whose satisfiability is being

proved. A naive implementation of the computation

pattern of the zk-SNARK’s generator results in circuits

that are not in CS; conversely, a naive implementation

in CS results in circuits of quadratic size. Via careful

design, quasilinear-size circuits in CS can be obtained.

VII. EVALUATION

We describe the evaluation of our system, which

provides a multi-party protocol for securely sampling

C(�α) · G, where �α is random, for circuits C that belong

to the circuit class CS (see Section VI).

Setup. We evaluated our system on a desktop PC with

a 3.40 GHz Intel Core i7-4770 CPU and 16 GB of

RAM available. All experiments are in single-thread

mode (though our code also supports multiple-thread

mode). When invoking functionality from libsnark
(with which our code is integrated), we selected the

build option CURVE=BN128, which means that group

arithmetic is conducted over a certain Barreto–Naehrig

curve [71] at 128 bits of security.

Costs for the general case. Our system’s efficiency

only depends on the size and S-depth of the circuit C
in CS, and also n (the number of participating parties).

In Figure 6 we report approximate costs for several

complexity measures: the number of rounds, each party’s

time complexity, the number of broadcast messages, the

transcript size, and the transcript verification time.

Costs for two zk-SNARK constructions. When ap-

plying our system to generate public parameters for a

zk-SNARK, the circuit C is designed so that C(�α) · G
(for random �α) equals the zk-SNARK’s generator output

distribution. This distribution depends on the particular

NP relation given as input to the generator; thus, the

circuit C also depends on this NP relation. Moreover,

different zk-SNARK constructions “natively” support

different classes of NP relations.

In order to shed light on our system’s efficiency when

applied to generate zk-SNARK public parameters, we

report the size and S-depth of the circuit C as a function

of the input NP relation, relative to two zk-SNARK

constructions.

• The zk-SNARK [31]. This zk-SNARK supports

300300

boolean circuit satisfiability: the generator receives as

input a boolean circuit D, and outputs public parame-

ters for proving D’s satisfiability. If D has Nw wires

and Ng gates, our code outputs a corresponding circuit

C := CDFGK with size 2Nw + 2�log2 Ng�(�log2 Ng�+
1) + 10 and S-depth 2.

• The zk-SNARK of [21], [25]. This zk-SNARK supports

arithmetic circuit satisfiability: the generator receives

as input an arithmetic circuit D, and outputs public

parameters for proving D’s satisfiability. If D has Nw

wires and Ng gates, our code outputs a circuit C :=
CPGHR with size 11Nw+2�log2 Ng�(�log2 Ng�+1)+38
and S-depth 3.

These costs are summarized in Figure 5 .

Costs for two concrete examples. We report costs for

the following concrete choices of a circuit C := CPGHR.

• Example #1: the circuit C targets Zerocash [8].

Namely, C(�α) · G (for random �α) equals the output

distribution of the generator of the preprocessing

zk-SNARK on which Zerocash is based.

• Example #2: the circuit C targets the scalable

zk-SNARK of [39]. Namely, C(�α) · G (for random

�α) equals the output distribution of the generator used

to set up the scalable zk-SNARK.

Figure 5 reports the size and S-depth of C for these two

examples, and Figure 6 reports the corresponding costs.

VIII. CONCLUSION

Like time and space, trust is also a costly resource.

To facilitate the deployment of NIZKs and, in particular,

zk-SNARKs in various applications, it is not only

important to minimize the time and space requirements of

proving and verification, but also the trust requirements of

parameter generation. The system that we have presented

in this paper can be used to reduce the trust requirements

of parameter generation for a class of zk-SNARKs: the

system provides a multi-party broadcast protocol in

which only one honest party, out of n participating ones,

is required to securely sample the public parameters.

Integration of our system with libsnark greatly

facilitates this application. As a demonstration, we have

used our system for securely sampling public parameters

for the zk-SNARKs of [21], [25], [31].

ACKNOWLEDGMENTS

We thank Bryan Parno and the anonymous referees

for numerous comments on an earlier draft that greatly

improved the clarity of this paper.

This work was supported by: The Air Force Research

Laboratory (AFRL) under contract FA8750-11-2-0211;

the Broadcom Foundation and Tel Aviv University

Authentication Initiative; the Center for Science of

Information (CSoI), an NSF Science and Technology

Center, under grant agreement CCF-0939370; the Check

Point Institute for Information Security; the U.S. Defense

Advanced Research Projects Agency (DARPA) and the

Air Force Research Laboratory (AFRL) under contract

FA8750-11-2-0211; the European Community’s Seventh

Framework Programme (FP7/2007-2013) under grant

agreement number 240258; the Israeli Centers of Re-

search Excellence I-CORE program (center 4/11); the

Israeli Ministry of Science and Technology; the Leona

M. & Harry B. Helmsley Charitable Trust; MIT Office

of the Provost; The National Science Foundation under

award EFRI-1441209; and the Office of Naval Research

under contract N00014-11-1-0470.

APPENDIX A

EXAMPLES OF CIRCUITS UNDERLYING GENERATORS

As discussed in Section I-A, the generator G of es-

sentially all known (preprocessing) zk-SNARK construc-

tions follows the same computation pattern. To generate

the public parameters pp for a given NP relation R, G
first constructs an Fr-arithmetic circuit C : Fm

r → F
h
r

(which is somehow related to R), then samples �α in

F
m
r at random, and finally outputs pp := C(�α) · G

(where G generates a certain group of order r). Different

zk-SNARK constructions differ in (i) which NP relations

R are “natively” supported, and (ii) how the circuit C
is obtained from R.

Below, we give two examples of how the generator

of a known zk-SNARK construction can be cast in the

above paradigm and, moreover, the resulting circuit C
lies in the class CS. Throughout, we denote by F[z] the

ring of univariate polynomials over F, and by F
≤d[z]

the subring of polynomials of degree ≤ d.

A. Example for a QAP-based zk-SNARK

We describe how to cast the generator of [21]’s

zk-SNARK as computing the encoding of a random

evaluation of a circuit C that lies in CS. More precisely,

we consider [25]’s zk-SNARK, which modifies [21]’s.

Supported NP relations. This zk-SNARK supports

arithmetic circuit satisfiability, i.e., relations of the form

RD = {(�x, �w) ∈ F
n
r × F

h
r : D(�x, �w) = 0�} where

D : Fn
r × F

h
r → F

�
r is an Fr-arithmetic circuit.

QAPs. The construction is based on quadratic arith-
metic programs (QAP) [20]: a QAP of size m and degree

d over F is a tuple (�A, �B, �C,Z), where �A, �B, �C are

three vectors, each of m+ 1 polynomials in F
≤d−1[z],

and Z ∈ F[z] has degree exactly d. As shown in [20],

each relation RD can be reduced to a certain relation

R(�A, �B, �C,Z), which captures “QAP satisfiability”, by

301301

zk-SNARK Circuit satisfiability of D when D is Circuit C in CS

size(C) depthS(C)

Danezis et al. [31] a Nw-wire Ng-gate boolean circuit 2Nw + 2�log2 Ng�(�log2 Ng�+ 1) + 10 2

Parno et al. [21], Ben-Sasson et al. [25] a Nw-wire Ng-gate arithmetic circuit 11Nw + 2�log2 Ng�(�log2 Ng�+ 1) + 38 3

Ben-Sasson et al. [8] Example #1’s arithmetic circuit 138,467,206 3

Ben-Sasson et al. [39] Example #2’s arithmetic circuit 8,027,609 6

Fig. 5: Size and S-depth of the circuit C in CS obtained from D, for various choices of D.

Complexity measure Cost for
general case Example #1 Example #2

number of rounds n · depthS(C) + 3 3n+ 3 6n+ 6

each party’s time complexity 0.035 · size(C) ms 14,124 s 4,048 s

number of broadcast messages n · (depthS(C) + 3) 6n 6n

transcript size 0.072 · n · size(C) kB 12,877 · n MB 906 · n MB

transcript verification time 1.03 · n · size(C) ms 196,208 · n s 50,945 · n s

Fig. 6: Our system’s costs for the general case, Example #1, and Example #2; n is the number of parties.

computing (�A, �B, �C,Z) := GetQAP(D) for a suitable

function GetQAP; if D has Nw wires and Ng gates, then

the resulting QAP has size m = Nw and degree d ≈ Ng.

The parameter generator. On input an Fr-arithmetic

circuit D : Fn
r × F

h
r → F

�
r, the generator does:

1) Compute (�A, �B, �C,Z) := GetQAP(D), and denote
by m and d the QAP’s size and degree; then construct
an Fr-arithmetic circuit C : F8

r → F
d+7m+n+22
r

such that C(τ, ρA, ρB, αA, αB, αC, β, γ) computes the
following outputs:
(
1, τ, . . . , τd,

A0(τ)ρA, . . . , Am(τ)ρA, Z(τ)ρA,

A0(τ)ρAαA, . . . , Am(τ)ρAαA, Z(τ)ρAαA,

B0(τ)ρB, . . . , Bm(τ)ρB, Z(τ)ρB,

B0(τ)ρBαB, . . . , Bm(τ)ρBαB, Z(τ)ρBαB,

C0(τ)ρAρB, . . . , Cm(τ)ρAρB, Z(τ)ρAρB,

C0(τ)ρAρBαC, . . . , Cm(τ)ρAρBαC, Z(τ)ρAρBαC,

(A0(τ)ρA +B0(τ)ρB + C0(τ)ρAρB)β, . . . ,

(Am(τ)ρA +Bm(τ)ρB + Cm(τ)ρAρB)β,

(Z(τ)ρA + Z(τ)ρB + Z(τ)ρAρB)β,

αA, αB, αC, γ, γβ, Z(τ)ρAρB, A0(τ)ρA, . . . , An(τ)ρA

)
.

2) Sample �α in F
8
r at random.

3) Compute pp := C(�α) · G.

4) Output pp.6

B. Example for a SSP-based zk-SNARK

We explain how the generator of [31]’s zk-SNARK can

be cast as computing the encoding of a random evaluation

of a certain circuit C that lies in CS.

6The first d + 7m + 15 elements in pp form the proving key pk,
while the remaining n+ 7 form the verification key vk.

Supported NP relations. This zk-SNARK supports

boolean circuit satisfiability, i.e., relations RD =
{(�x, �w) ∈ {0, 1}n × {0, 1}h : D(�x, �w) = 0�} where

D : {0, 1}n × {0, 1}h → {0, 1}� is a boolean circuit.

SSPs. The construction is based on square span
programs (SSP) [31]: a SSP of size m and degree d
over F is a tuple (�A,Z), where �A is a vector of m+ 1
polynomials in F

≤d−1[z] and Z ∈ F[z] has degree

exactly d. As shown in [31], each relation RD can

be reduced to a certain relation R(�A,Z), which captures

“SSP satisfiability”, by computing (�A,Z) := GetSSP(D)
for a suitable function GetSSP; if D has Nw wires and

Ng gates, then the resulting SSP has size m = Nw and

degree d ≈ Nw +Ng.

The parameter generator. On input a boolean cir-

cuit D : {0, 1}n × {0, 1}h → {0, 1}�, the generator

does the following.

1) Compute (�A, �B, �C,Z) := GetSSP(D), and denote
by m and d the SSP’s size and degree; then construct
an Fr-arithmetic circuit C : F3

r → F
d+2m+n+9
r such

that C(τ, β, γ) computes the following outputs:
(
1, τ, . . . , τd,

A0(τ), . . . , Am(τ), Z(τ),

A0(τ)β, . . . , Am(τ)β, Z(τ)β,

γ, γβ, Z(τ), A0(τ), . . . , An(τ)
)

.

2) Sample �α in F
3
r at random.

3) Compute pp := C(�α) · G.

4) Output pp.7

7The first d + 2m + 5 elements in pp form the proving key pk,
while the remaining n+ 4 form the verification key vk.

302302

REFERENCES

[1] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge
complexity of interactive proof systems,” SIAM J. Comp., 1989.

[2] O. Goldreich, S. Micali, and A. Wigderson, “Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems,” JACM, 1991.

[3] M. Bellare and O. Goldreich, “On defining proofs of knowledge,”
in CRYPTO ’92, 1993.

[4] O. Goldreich and Y. Oren, “Definitions and properties of zero-
knowledge proof systems,” Journal of Cryptology, 1994.

[5] M. Blum, P. Feldman, and S. Micali, “Non-interactive zero-
knowledge and its applications,” in STOC ’88, 1988.

[6] M. Blum, A. De Santis, S. Micali, and G. Persiano, “Non-
interactive zero-knowledge,” SIAM J. Comp., 1991.

[7] U. Feige, D. Lapidot, and A. Shamir, “Multiple noninteractive
zero knowledge proofs under general assumptions,” SIAM J.
Comp., 1999.

[8] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers,
E. Tromer, and M. Virza, “Zerocash: Decentralized anonymous
payments from Bitcoin,” in SP ’14, 2014.

[9] R. Canetti, R. Pass, and A. Shelat, “Cryptography from sunspots:
How to use an imperfect reference string,” in FOCS ’07, 2007.

[10] J. Clark and U. Hengartner, “On the use of financial data as a
random beacon,” in EVT/WOTE ’10, 2010.

[11] National Institute of Standards and Technology. (2014) NIST
randomness beacon. [Online]. Available: http://www.nist.gov/itl/
csd/ct/nist beacon.cfm

[12] O. Goldreich, S. Micali, and A. Wigderson, “How to play any
mental game or a completeness theorem for protocols with honest
majority,” in STOC ’87, 1987.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness
theorems for non-cryptographic fault-tolerant distributed compu-
tation (extended abstract),” in STOC ’88, 1988.

[14] S. Micali, “Computationally sound proofs,” SIAM J. Comp., 2000.
[15] C. Gentry and D. Wichs, “Separating succinct non-interactive

arguments from all falsifiable assumptions,” in STOC ’11, 2011.
[16] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From ex-

tractable collision resistance to succinct non-interactive arguments
of knowledge, and back again,” in ITCS ’12, 2012.

[17] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth,
“Succinct non-interactive arguments via linear interactive proofs,”
in TCC ’13, 2013.

[18] J. Groth, “Short pairing-based non-interactive zero-knowledge
arguments,” in ASIACRYPT ’10, 2010.

[19] H. Lipmaa, “Progression-free sets and sublinear pairing-based
non-interactive zero-knowledge arguments,” in TCC ’12, 2012.

[20] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic
span programs and succinct NIZKs without PCPs,” in EURO-
CRYPT ’13, 2013.

[21] B. Parno, C. Gentry, J. Howell, and M. Raykova, “Pinocchio:
Nearly practical verifiable computation,” in SP ’13, 2013.

[22] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza,
“SNARKs for C: Verifying program executions succinctly and in
zero knowledge,” in CRYPTO ’13, 2013.

[23] H. Lipmaa, “Succinct non-interactive zero knowledge arguments
from span programs and linear error-correcting codes,” in
ASIACRYPT ’13, 2013.

[24] P. Fauzi, H. Lipmaa, and B. Zhang, “Efficient modular NIZK
arguments from shift and product,” in CANS ’13, 2013.

[25] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct
non-interactive zero knowledge for a von Neumann architecture,”
in Security ’14, 2014, extended version at http://eprint.iacr.org/
2013/879.

[26] H. Lipmaa, “Efficient NIZK arguments via parallel verification
of Beneš networks,” in SCN ’14, 2014.

[27] A. E. Kosba, D. Papadopoulos, C. Papamanthou, M. F. Sayed,
E. Shi, and N. Triandopoulos, “TRUESET: Faster verifiable set
computations,” in Security ’14, 2014.

[28] M. Backes, D. Fiore, and R. M. Reischuk, “Nearly practical and
privacy-preserving proofs on authenticated data,” ePrint 2014/617,
2014.

[29] R. S. Wahby, S. Setty, Z. Ren, A. J. Blumberg, and M. Wal-
fish, “Efficient RAM and control flow in verifiable outsourced
computation,” ePrint 2014/674, 2014.

[30] Y. Zhang, C. Papamanthou, and J. Katz, “Alitheia: Towards
practical verifiable graph processing,” in CCS ’14, 2014.

[31] G. Danezis, C. Fournet, J. Groth, and M. Kohlweiss, “Square
span programs with applications to succinct NIZK arguments,”
in ASIACRYPT ’14, 2014.

[32] P. Valiant, “Incrementally verifiable computation or proofs of
knowledge imply time/space efficiency,” in TCC ’08, 2008.

[33] T. Mie, “Polylogarithmic two-round argument systems,” Journal
of Mathematical Cryptology, 2008.

[34] G. Di Crescenzo and H. Lipmaa, “Succinct NP proofs from an
extractability assumption,” in CiE ’08, 2008.

[35] I. Damgård, S. Faust, and C. Hazay, “Secure two-party computa-
tion with low communication,” in TCC ’12, 2012.

[36] S. Goldwasser, H. Lin, and A. Rubinstein, “Delegation of
computation without rejection problem from designated verifier
CS-proofs,” ePrint 2011/456, 2011.

[37] N. Bitansky and A. Chiesa, “Succinct arguments from multi-
prover interactive proofs and their efficiency benefits,” in
CRYPTO ’12, 2012.

[38] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “Recursive
composition and bootstrapping for SNARKs and proof-carrying
data,” in STOC ’13, 2013.

[39] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Scalable
zero knowledge via cycles of elliptic curves,” in CRYPTO ’14,
2014, extended version at http://eprint.iacr.org/2014/595.

[40] N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin,
A. Rubinstein, and E. Tromer, “The hunting of the SNARK,”
ePrint 2014/580, 2014.

[41] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn,
“Succinct malleable NIZKs and an application to compact shuffles,”
in TCC ’13, 2013.

[42] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish, “Verifying computations with state,” in SOSP ’13,
2013.

[43] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno, “Pinocchio
Coin: building Zerocoin from a succinct pairing-based proof
system,” in PETShop ’13, 2013.

[44] M. Fredrikson and B. Livshits, “Zø: An optimizing distributing
zero-knowledge compiler,” in Security ’14, 2014.

[45] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs.
[Online]. Available: https://github.com/scipr-lab/libsnark

[46] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,”
2009. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

[47] A. Fiat and A. Shamir, “How to prove yourself: practical solutions
to identification and signature problems,” in CRYPTO ’87, 1987.

[48] J. Groth and R. Ostrovsky, “Cryptography in the multi-string
model,” in CRYPTO ’07, 2007.

[49] T. P. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in CRYPTO ’91, 1992.

[50] J. F. Canny and S. Sorkin, “Practical large-scale distributed key
generation,” in EUROCRYPT ’04, 2004.

[51] J. Katz, A. Kiayias, H.-S. Zhou, and V. Zikas, “Distributing the
setup in universally composable multi-party computation,” in
PODC ’14, 2014.

[52] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay — a
secure two-party computation system,” in SSYM ’04, 2004.

[53] a. shelat and C.-h. Shen, “Fast two-party secure computation
with minimal assumptions,” in CCS ’13, 2013.

[54] M. Bellare, V. T. Hoang, S. Keelveedhi, and P. Rogaway,
“Efficient garbling from a fixed-key blockcipher,” in SP ’13,
2013.

[55] A. C.-C. Yao, “How to generate and exchange secrets,” in
SFCS ’86, 1986.

[56] Y. Lindell and B. Pinkas, “A proof of security of Yao’s protocol
for two-party computation,” Journal of Cryptology, 2009.

[57] A. Ben-David, N. Nisan, and B. Pinkas, “FairplayMP: a system
for secure multi-party computation,” in CCS ’08, 2008.

[58] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen, “Asyn-
chronous multiparty computation: Theory and implementation,”

303303

in PKC ’09, 2009.
[59] J. Katz, R. Ostrovsky, and A. Smith, “Round efficiency of

multi-party computation with a dishonest majority,” in EURO-
CRYPT ’03. Springer-Verlag, 2003.

[60] R. Pass, “Bounded-concurrent secure multi-party computation
with a dishonest majority,” in STOC ’04. ACM, 2004.

[61] C. Orlandi, “Is multiparty computation any good in practice?” in
ICASSP ’11, 2011.

[62] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P.
Smart, “Practical covertly secure MPC for dishonest majority -
Or: Breaking the SPDZ limits,” in ESORICS ’13, 2013.

[63] I. Damgård, R. Lauritsen, and T. Toft, “An empirical study
and some improvements of the MiniMac protocol for secure
computation,” in SCN ’14, 2014.

[64] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in EU-
ROCRYPT ’11, 2011.

[65] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, “Multi-
party computation from somewhat homomorphic encryption,” in
CRYPTO ’12, 2012.

[66] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikun-
tanathan, and D. Wichs, “Multiparty computation with low
communication, computation and interaction via threshold fhe,”
in EUROCRYPT ’12, 2012.

[67] S. Garg, C. Gentry, S. Halevi, and M. Raykova, “Two-round
secure MPC from indistinguishability obfuscation,” in TCC ’14,
2014.

[68] G. Asharov and Y. Lindell, “A full proof of the BGW protocol
for perfectly-secure multiparty computation,” ePrint 2011/136,
2011.

[69] C. P. Schnorr, “Efficient signature generation by smart cards,”
Journal of Cryptology, 1991.

[70] D. Chaum and T. P. Pedersen, “Wallet databases with observers,”
in CRYPTO ’92, 1992.

[71] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic
curves of prime order,” in SAC’05, 2006.

304304

