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Abstract

We describe CLIPS-R, a theory revision system
for the revision of CLIPS rule-bases. CLIPS-R
differs from previous theory revision systems in
that it operates on forward chaining production
systems. Revision of production system rule-
bases is important because production systems
can perform a variety of tasks such as monitoring
and design in addition to classification tasks that
have been addressed by previous research. We
show that CLIPS-R can take advantage of a va-
riety of user specified constraints on the correct
processing of instances, such as ordering con-
straints on the displaying of information, and the
contents of the final fact list. In addition, we
show that CLIPS-R can operate as well as exist-
ing systems when the only constraint on process-
ing an instance is the correct classification of the
instance.

1 Introduction
Considerable progress has been made in the last few years
in the subfield of machine learning known as theory revi-
sion (e.g. Ourston & Mooney, 1990; Pazzani & Brunk,
1991; Wogulis & Pazzani, 1993). The general goal of this
area is to create learning models that can automatically up-
date the knowledge base of a system to be more accurate
on a set of test cases. Unfortunately, this progress has not
yet been put into common practice. An important reason
for the absence of technology transition is that only a re-
stricted form of knowledge bases have been addressed. In
particular, only the revision of logical knowledge bases that
perform classification tasks with backward chaining rules
(Clancey, 1984) has been explored. However, nearly all
deployed knowledge-based systems make use of forward-
chaining production rules with side effects. For example,
two of the knowledge-based systems reported on at the
1993 Innovative Applications of Artificial Intelligence use
CLIPS, a production system developed at NASA’s Johnson
Space Center. The remainder of the knowledge-based sys-
tems use ART, a commercial expert system that has many
of the same features as CLIPS.

There are a variety of practical reasons that the produc-
tion rule formalism is preferred to the logical rule formal-
ism in deployed expert systems. First, production rules
are suitable for a variety of reasoning tasks, such as plan-
ning, design and scheduling in addition to classification
tasks that are addressed by logical rules. Second, most de-
ployed knowledge-based systems must perform a variety
of computational activities such as interacting with external
databases or printing reports in addition to the “reasoning”
tasks. The production system formalism allows such proce-
dural tasks to be easily combined with the reasoning tasks.
Third, the production rule systems tend to be computa-
tionally more efficient. The production systems allow the
knowledge engineer to have more influence over the flow of
control in the systems allowing the performance to be fine
tuned. That is, in a logical system, the rules indicate what
inferences are valid. In a production system, the rules indi-
cate both which inferences are valid and which inferences
should be made at a particular point.

The revision of CLIPS rule-bases presents a number of
challenging problems that have not been addressed in previ-
ous research on theory revision. In particular, rules can re-
tract facts from working memory, display information, and
request user input. New opportunities to take advantage
of additional sources of information also accompany these
new problems. For example, a user might provide informa-
tion that a certain item that was displayed should not have
been, or that information is displayed in the wrong order.

In the remainder of this paper, we first give a quick
overview of CLIPS, and then describe a system CLIPS-R
for revising CLIPS rule-bases. We evaluate CLIPS-R on
the student loan problem, that we have translated from
PROLOG into CLIPS to show that CLIPS-R is competi-
tive with existing theory revision systems. In addition, we
present results obtained by inserting random errors into a
sample CLIPS rule-base that uses CLIPS features such as
displaying information and querying the user.

CLIPS-R is still in its infancy and we expect many of the
details of the individual operators and heuristics to change
as this work matures.



2 The CLIPS Production System Language

The CLIPS production system language was created and
is currently maintained by NASA for use in numerous
knowledge-based application. In addition to NASA, its
base of users include thousands of industrial and educa-
tional sites (NASA, 1991). In this section, we describe a
subset of the most recent version of CLIPS (version 6.0),
that should be sufficient to follow our examples.

CLIPS is similar to a variety of production system lan-
guages, in that it has a rule-base, an agenda (an ordered
sequence of rule activations), and a fact-list (working mem-
ory). Rule execution proceeds as follows: While there are
activations on the agenda, the top-most activation is re-
moved and executed. If the execution of the activation al-
ters the fact-list by asserting new facts or retracting existing
facts, activations from newly satisfied rules are added to the
agenda, and existing rule activations that are no longer sat-
isfied are removed from the agenda.

The position within the agenda that a new rule activation
is placed is a function of the rule’s salience and the cur-
rent conflict resolution strategy. In our experiments, we use
the Breadth Strategy in which an activation is placed above
all activations of lower salience and below all activation of
equal or higher salience.

(defrule determine-point-surface-state
(declare (salience 10))
(or (and (working-state engine does-not-start)))

(spark-state engine irregular-spark))
(symptom engine low-output))

(not (repair ?))
=>
(bind ?response

(ask-question What-is-surface-state-of-the-pnts?))
(if (eq ?response burned)

then (assert (repair Replace-the-points))
else (if (eq ?response contaminated)

then (assert (repair Clean-the-points)))))

(a) Example rule from Auto Diagnosis Rule-base

(defrule never-left-school
(longest-absence-from-school ?Units)
(test (> 6 ?Units))
=>
(assert (never-left-school)))

(b) Example rule from Student Loan Rule-base

Figure 1. Example CLIPS Rules

Figure 1 shows some examples of CLIPS rules1. A rule
has an optional initial declaration section, which for the
rule in Figure 1a declares that the rule’s salience2 is 10, a

1Variables in CLIPS rules are represented by a question mark
followed by a symbol, e.g.?response. Variables represented us-
ing a single question mark are unique for each occurrence in the
rule and are similar to anonymous variables in PROLOG.

2When omitted, the salience of a rule defaults to 0.

left-hand side (LHS) or antecedent of the rule and a right-
hand side (RHS) or the consequent of the rule which fol-
lows =>. The LHS consists of a set of conditional ele-
ments that each must be satisfied to form a rule activation.
The two primitive conditional elements dealt with in this
research are the pattern conditional element and the test
conditional element. Conditional elements may also be ar-
bitrary Boolean expressions of primitive conditional ele-
ments. Pattern conditional elements are satisfied by match-
ing a fact in the fact-list. They are represented as a se-
quence of constants and variables. Test conditional ele-
ments correspond to variable-variable or variable-constant
comparisons3, such as= and> .

To satisfy the first conditional element for the rule in Fig-
ure 1a, either the facts(working-state engine does-not-start)
and (spark-state engine irregular-spark)must both be in the
fact-list or the fact(symptom engine low-output)must be in
the fact-list4. To satisfy the second conditional element,
(not (repair ?)), there can be no fact of length 2 in the fact-
list whose first element is repair. The second conditional
element in Figure 1b,(test (> 6 ?Units)), is a test condi-
tional element. For this rule to be satisfied, there must
be a two-parameter fact in the fact-list with first parameter
longest-absence-from-schooland second parameter a number
less than 6.

The RHS of a rule consists of an order sequence of actions5.
The two most common actions, assert and retract, modify
the fact-list. The assert action adds ground facts to the fact-
list. The retract action removes a fact from the fact-list. The
retract in the rule of Figure 2 retracts the fact that matched
the conditional element(phase choose-qualities).

(defrule change-to-phase-2
(declare (salience -10))
?phase<- (phase choose-qualities)
=>
(retract ?phase)
(assert (phase recommend-qualities)))

Figure 2. Example of Retract Action

Other actions are if-then-else control structures and various
functions. Variables may be introduced and bound within
the action section of a rule using the bind action. In Fig-
ure 1a, the result of calling the function ask-question with
parameterWhat-is-surface-state-of-pnts?, is stored in the vari-
able?response. The function ask-question, prints the ques-
tion to the screen and waits for a response. If the test for
the if-then-else control structure evaluates to true the se-
quence of actions in the then part are executed, otherwise
the actions in the else part are executed.

3The variables come from pattern conditions elements.
4If eachof these three facts were present in the fact-list, and the

secondconditional element was also satisfied, two rule activations
would be formed for this rule.

5Some actions are functions in that they return a value, while
other actions serve only to create a side effect.



3 Theory Revision

Most logical theory revision systems take as input a the-
ory and a set of instances that are not fully consistent with
the theory. The instances are classified tuples or sets of
propositions and the theory is usually a set of horn clauses.
Theory revision systems typically have an iterative refine-
ment control structure that includes: identification of a set
of likely repairs (usually done through an abductive pro-
cess) and evaluation of the repairs over the set of instances.
The repair that produces the greatest decrease in the error
is retained and the process repeats until either all instances
are correctly classified or no change results in a decrease
in error. The repairs consist mainly of logical generaliza-
tion and specialization operations on existing rules and the
induction of new rules.

Like logical theory revision systems, CLIPS-R has an it-
erative refinement control structure (see Figure 3), and
operators for specialization and generalization of existing
rules. However, CLIPS-R has a more generalized notion of
an instance, a novel method for identifying which repairs
should be attempted and a larger set of repair operators.

Decrease in
error rate

Heuristically Identify 
Problem Instances

Evaluate Potential
Repairs

Induce New Rule         

No decrease in 
error rate

No decrease in 
error rate

While there 
are errors

Heuristically Identify 
Potential Repairs

Problem
Instances

Repairs

Figure 3. System Organization

3.1 Instance Description

An instance used by CLIPS-R has two components: ini-
tial state information and constraints on the execution of
the rule-base given the initial state. The initial state infor-
mation consists of a set of initial facts to be loaded into
the fact-list before execution of the rule-base, and a set of
bindings that relates a function call (represented by a func-
tion name and values for its arguments) to its return value6.
The set of constraints on the execution of the rule-base in-
cludes constraints on the contents of the final fact-list7 and
constraints on the ordering of observable actions such as
displaying data or asking the user questions.

6For example, the functionask-questionwith argumentWhat-
is-surface-state-of-pnts?may returnburnedfor one instance and
contaminatedfor another instance. These bindings, recorded by
interactively running CLIPS, are saved and later used to avoid
asking the user questions during theory revision.

7The final fact-list is the fact-list when execution of the rule-
base halts.

Final fact-list constraint violations are a set of CLIPS pat-
tern conditional elements that should be satisfied by the
facts of the final fact-list. For example, for the constraint
(repair Add-gas)to be satisfied, it should match some fact
in the final fact-list. On the other hand, for the constraint
(not (working-state engine normal))to be satisfied, it should
not match any fact in the final fact-list. Constraints on the
ordering of the execution of observable actions, are repre-
sented using a finite state machine. Ordering constraints are
satisfied when the sequence of observable actions, formed
from the execution of an instance, is accepted by the finite
state machine associated with that instance. Observable ac-
tions are user identified.

3.2 Instance Evaluation

To evaluate an instance with respect to its constraints, it
is first executed while recording specific trace information.
Unlike most theory revision systems where individual in-
stances are given a score of 0 or 1 depending on whether
they are correctly or incorrectly classified by the theory, in-
dividual instances in CLIPS-R are each given an error score
that ranges from 0 to 1. The error of an individual instance
is simply the number of constraint violations divided by the
total number of possible constraint violations. The error
score for multiple instances is the average of their individ-
ual error scores.

Initial State Information:
Initial Facts: (none)
Function Call Bindings:

(ask-question what-is-surface-state-of-the-pnts?)! normal
(yes-no-p does-the-engine-start?)! yes
(yes-no-p does-the-engine-run-normally?)! no
(yes-no-p does-the-engine-rotate?)! no
(yes-no-p is-the-engine-sluggish?)! no
(yes-no-p does-the-engine-misfire?)! no
(yes-no-p does-the-engine-knock?)! no
(yes-no-p is-the-output-of-the-engine-low?)! no
(yes-no-p does-the-tank-have-any-gas-in-it?)! yes
(yes-no-p is-the-battery-charged?)! yes
(yes-no-p is-conductivity-test-for-ign-coil-pos?)! no

Constraints on Execution of Rule-Base:
Final Fact-list Constraints:

Target: (repair timing-adjustment)
Others: (none)

Ordering Constraint:

(printout The-Engine-Diagnosis-Expert-System)

(printout Suggested-Repair)

(printout Timing-Adjustment)

Table 1. Example Instance from
Auto Diagnosis Rule-Base

The number of final fact-list constraint violations is just the
total number of unsatisfied final fact-list constraints. All fi-
nal fact-list constraint violations are equally weighted. The
number of ordering constraint violations is found by de-
termining the minimum number of additions and deletions



required to be made to the observable action sequence such
that the sequence is accepted by the finite state machine.
Table 1 shows an example instance from the auto diagnosis
rule-base.

3.3 Identifying Which Revision to Consider

CLIPS-R attempts to fix the most important errors first.
In order to achieve this, it runs the current rule-base on
each instance and maintains a trace of rule firings. The
sequences of rule firings are used to form a trie structure
(Fredkin, 1960). The trie structure is a compact represen-
tation of all of the rule traces that groups together those
instances that share an initial sequence of rule firings. Each
leaf stores the set of instances with the same sequence of
rule firings. Associated with each instance is its individ-
ual error rate as well as an augmented trace of rule firings
(see section 3.6). In addition, associated with each internal
node of the trie is a sum of the number of errors of all in-
stances with rule firing sequences that share that node and
a sum of the total number of possible errors. An error rate
for each node is obtained by dividing the total number of er-
rors at the node by the total number of possible errors at the
node. Figure 4 shows an example trie that summarizes five
instances processed using the incorrect student loan rule-
base. Nine constraints were evaluated for each instances,
and the three numbers (e.g. [6,45,0.133]) associated with
each node are the total number of errors, the total possi-
ble number of errors and the error rate, respectively, at that
node.

Rule: continuously-enrolled [6,45,0.133]
Rule: student-deferment [6,45,0.133]

Rule: no-payment-due [5,27,0.185]
Rule: eligible-for-deferment [1,9,0.111]

Rule: no-payment-due [1,9,0.111]
Leaf: [1,9,0.111]

Leaf: [4,18,0.222]
Rule: never-left-school [1,18,0.056]

Rule: financial-deferment [1,9,0.111]
Rule: no-payment-due [1,9,0.111]

Rule: eligible-for-deferment [1,9,0.111]
Rule: eligible-for-deferment [1,9,0.111]

Rule: no-payment-due [1,9,0.111]
Leaf: [1,9,0.111]

Leaf: [0,9,0.000]

Figure 4. Example Trie for Incorrect Student Loan
Rule-Base Created from Five Instances

The trie structure is used to identify sets of instances with
relatively large numbers of constraint violations and that
have a common sequence of rule firings. To do this, a
search from root to leaf is done, where at each step, the in-
ternal node with highest error rate8 is chosen. The product
of this search is a leaf of instances associated with a single
sequence of rule firings. In Figure 4, the underlined nodes

8Ties are broken by choosing the node with highest total num-
ber of possible errors.

corresponds to the worst path through the trie. The leaf at
the end of this path contains two instances with a total of
four constraint violations.

3.4 Identifying Which Revision to Make

For each constraint violation of each instance at the worst
path leaf, a set of repair identification heuristics are used to
generate a set of candidate repairs (a candidate repair is a
call to a repair operator). Each candidate repair is then eval-
uated on the complete set of instances and the repair that
produces the greatest decrease in average error rate over all
of the instances is made. We will first describe some of
the repair operators used by CLIPS-R and then discuss the
heuristics that suggest which repairs to evaluate.

3.5 Operators

In addition to rule specialization and generalization opera-
tions typically found in previous theory revision systems,
CLIPS-R has a number of other operators for dealing with
CLIPS’s rich rule representation language. Each opera-
tor typically generates several possible revisions, each of
which is evaluated, with the best revisions retained. Each
operator takes as input the rule to be modified and other re-
vision specific information. Because of space limitations,
not all operators will be fully defined.

3.5.1 LHS Specialization & Generalization

In order to simplify the description of the specialization and
generalization operators, it is useful to conceptualize the
set of conditional elements in a rule as a single Boolean
expression. Given this representation, specialization is ac-
complished by either conjoining a primitive conditional el-
ement to a term in the expression or by deleting a disjunct
from the expression. Generalization is accomplished by ei-
ther disjoining a primitive conditional element to a term in
the expression or by deleting a conjunct from the expres-
sion.

Pattern conditional element are added by considering se-
quences of variables and constants. The allowable patterns
come from an automated analysis of the patterns found in
the initial rule-base and the training examples. Given the
set of all patterns extracted from the initial rule-base and
training examples, an exhaustive set of pattern templates9 is
generated, such that each template uniquely matches a sub-
set of the extracted patterns. The set of allowable patterns
selected for evaluation is formed by variablizing10 each of
the pattern templates in all possible ways.

Test conditional elements are added by considering all com-
binations of a comparison operator and either two variables
or a variable and a constant. The constants that can be com-

9A pattern template is syntactically equivalent to a pattern con-
ditional element.

10Variables may either be new or may come from previous pat-
tern conditional elements.



pared to a variable are determined by collecting the set of
values that may be bound to that variable. For example
in Figure 1b, the possible values for the variable?Units is
determined by looking at the second parameter of all facts
whose first element islongest-absence-from-school.

3.5.2 Action Promotion & Demotion

The purpose of the action promotion and demotion opera-
tors are to decrease and increase, respectively, the number
of conditions that must be satisfied before an action within
a fired rule is executed. For example in Figure 5, the demo-
tion operator could move an action at position A to position
B while the promotion operator could move an action at po-
sition B to position A.

(defrule determine-engine-state
(not (working-state engine ?))
(not (repair ?))
=>
(assert (working-state engine does-not-start)) ;;; A
(if (yes-no-p Does-the-engine-start?)

then
(if (yes-no-p Does-the-engine-run-normally?)

then (assert (working-state engine normal))
else (assert (working-state engine unsatisfactory)))

else
(assert (working-state engine does-not-start)))) ;;; B

Figure 5. Example of Promotion & Demotion Operator

The demotion operator also has the ability to embed the ac-
tion in a new if-then-else control structure. The action is
moved to either the then part or the else part of the new
if-then-else control structure and the new if-then-else con-
trol structure is moved to the position once held by the de-
moted action. User provided templates for allowable test
functions for new if-then-else control structures are used to
construct the test functions. The template defines type and
value constraints on the arguments of the function. The best
if-then-else control structure is selected by evaluating all
template-based instantiations of the test function. Lastly,
the demotion operator considers deletion of the action.

3.5.3 Assert & Retract Addition

The assert and retract addition operators allow fired rules to
assert and retract facts that should and should not, respec-
tively, be present in the fact-list when the rule was fired.
The add assert operator takes as input a pattern that should
match any fact asserted by the added action. Revariabliza-
tions, using existing variables, of the pattern form the set
of assert actions that are evaluated. The add retract action
takes as input a pattern that should match the fact retracted
by the added action. Retract actions are formed by taking
each pattern conditional element in the LHS of the rule that
is subsumed by the pattern, associating a reference vari-
able to it, and using that reference variable as argument to
the new retract action. When adding a new assert or retract
action, only unordered positions in the RHS of the rule are
considered, e.g. in Figure 7, positionsA, B andD, only.

(defrule student-deferment
=>
;;; Position A
(if (enrolled-in-more-than-n-units 11)

then
;;; Position B
(assert (student-deferment))
;;; Position C

else
;;; Position D)

;;; Position E)

Figure 7. Example of the positions where an action may
be inserted.

3.5.4 Observable Action Modification

The operators for fixing violations of observable actions are
similar to those for fixing incorrect assertions. For exam-
ple, if an observable was detected that should not have been
(or observed out of sequence) the action that created that
observable is considered for demotion or deletion. When
adding an action that creates an observable, all possible or-
dered positions within the RHS of the rule are considered,
e.g. in Figure 7, positionsA, B, C, D andE.

3.5.5 Changing Rule Salience

The salience of a rule may be increased to make the rule
fire ahead of other rules that are satisfied. All possible dis-
tinguishable increases in salience are attempted if an effect
of the RHS of the rule should have occurred but did not.
Similarly, the salience may be decreased if an effect of the
RHS occurred, but should not have occurred.

3.5.6 Rule Deletion

A rule deletion operator exists for removing rules that exe-
cute actions that should not have been executed.

3.6 Repair Identification Heuristics

Repair identification heuristics are used to suggest a set of
operators that should be attempted to improve the rule-base.
There are two sets of heuristics that may be used: final fact-
list heuristics suggest how to correct errors when the asser-
tions (e.g., the class of the instance) made when processing
an instance, do not agree with the desired assertions. Or-
dering constraint violationheuristics suggest how to correct
errors when observables are omitted or occur in the wrong
order. If both kinds of violations occur, then both kinds of
heuristics suggest repairs and the best repair is made.

Repairs are suggested to fix only those constraint violations
of instances at the worst leaf in the trie structure. A set of
functions exist for identifying repairs for certain types of
constraint violations. The information used by these func-
tions include a detailed trace of the rule firings for the in-
stance with the constraint violation, and other information
associated with the actual constraint violation.



The trace information includes:

� The sequence of rule firings.
� A copy of the fact-list prior to each rule firing.
� A copy of the final fact-list.
� Lists of actions executed by each rule firing.
� Information associating a fact and its source (i.e. an

assert action).
� Information associating a retract action and the fact

that it retracted.
� Information associating the positive pattern condi-

tional elements of each fired rule and the facts that
matched them.

Other information includes the specific fact that causes an
extra-fact constraint violation, or the pattern, associated to
a missing condition, that should have but did not match any
fact in the final fact-list.

3.6.1 Final Fact-list Constraint Violation Repair
Identification

Constraint violations on the final fact-list are in the form
of extra ground facts and missing conditions (i.e., a gen-
eral pattern that should unify with a ground fact in the fact-
list). Below is a description of the set of repair identifi-
cation heuristics for these two types of problems. In ad-
dition, some of the repair operators invoke other classes of
repair operators (Extra Rule Firing and Missing Rule firing)
to suggest repairs.

Extra Fact

� The action within the rule that asserted this fact should
be demoted.

� Promote any unexecuted retract actions in a previously
fired rule that could have retracted the fact.

� Add a retract for the fact to a previously fired rule.
� For each unfired rule in the rule-base that has a retract

that could retract this fact, identify repairs that would
allow that rule to fire (See Missing Rule Firing).

� Identify repairs that could cause the rule that asserted
the fact to not fire (see Extra Rule Firing).

Missing Condition

� Promote unexecuted assert actions in previously fired
rules that could have asserted a fact matching the con-
dition.

� Add an assert for the condition to a previously fired
rule.

� Demote any retract actions in fired rules that retracted
facts that matched the condition.

� For each unfired rule in the rule-base that has an action
that could have asserted a fact that matches the condi-
tion, identify repairs that could allow the rule to fire
(See Missing Rule Firing).

� Identify repairs that could make any fired rule that re-
tracted a fact that matched the condition, not fire (see
Extra Rule Firing).

Extra Rule Firing

� Specialize LHS of rule.
� Delete rule.
� Decrease Salience of rule.
� For each satisfied unnegated conditional element in

the rule, identify repairs that could cause the fact to
not have been present in the fact-list at the time that
the rule fired (See Extra Fact).

� For each satisfied negated conditional element in the
rule, identify repairs that could cause some fact to be in
the fact-list at the time that the rule fired (See Missing
Condition).

Missing Rule Firing

� Generalize LHS of rule.
� Increase Salience of rule.
� For each unsatisfied unnegated conditional element in

the rule, identify repairs that could allow a fact to have
been present in the fact-list at the time that the rule
should have fired (See Missing Condition).

� For each unsatisfied negated conditional element in
the rule, identify repairs that could cause all facts that
caused the conditional element to be unsatisfied to be
missing from the fact-list (See Extra Fact).

For example, a final fact-list constraint violations, caused
by an extra fact, could be repaired by demoting the assert
action of the rule that asserted the fact, or by making the rule
that asserted the extra fact not fire (e.g. specialize the rule).
Repair identification heuristics are recursive. For example,
another method for stopping the above mentioned rule from
firing would be to consider one of the facts that matched the
LHS of the rule as an extra fact in the fact-list at the time
that the rule fired.

3.6.2 Ordering Constraint Violation Repair
Identification

Constraint violations on the ordering of a sequence of ob-
servables are repaired by identifying observable actions
that should be added to or deleted from the sequence.
When the deletion of an action from the sequence is one
of the identified repairs, a repair to demote (which includes
delete) that action from the firing rule is selected for eval-
uation. When the addition of an action to the sequence is
an identified repair, a set of repairs for adding that action to
each rule fired between the last and next correctly matched
observable action are selected for evaluation.

AA BB CC DD

BB

Figure 8. Example finite state machine.

For example, assume that the actions A, B, C and D are
identified by the user as observable actions. The sequence
of observable actions A, C, C, D would be accepted by the
finite state machine in Figure 8 if an action B was executed



between actions A and C and if the second C action was not
executed. All minimal sets of repairs, for this example, are
of size two.

If the sequence of rule firings was R1, R2, R3, R4, and R5,
with rule R1 executing action A, R4 executing action C,
and R5 executing actions C and than D, e.g.

R1(A)! R2()! R3()! R4(C)! R5(C,D),

the repairs suggested by the heuristics would be:

� Demote action C from rule R5 and
� Add action B to rule R1, or
� Add action B to rule R2, or
� Add action B to rule R3, or
� Add action B to rule R4.

An alternative minimal set of repairs would similarly in-
clude the addition of action B between actions A and C,
but instead would include the deletion of the first C action.
The new repairs suggested by the heuristics would be:

� Demote action C from rule R4 and
� Add action B to rule R5.

All seven of the above repairs would be identified for eval-
uation.

Note that the sets of repairs that would include the addition
of multiple B actions and the deletion of a C action, while
being accepted by the finite state machine, would not be a
minimal set of repairs and would not identify repairs for
evaluation.

3.7 Rule Induction

When other repair operators fail, an attempt is made to in-
duce a new rule to solve some final fact- list constraint vio-
lation. A sampling of rules are first generated then, in turn,
revised through a local hill-climbing iterative refinement
search. The rule with the lowest error when added to the
rule-base is added. Initial rules are generated in the fol-
lowing manner. The LHS of the rule is formed by taking
the least general generalization (Plotkin, 1970) of the ini-
tial fact-lists for a pair of instances that have similar final
fact-list constraint violations. If the common constraint vi-
olation corresponds to a positive constraint (e.g. a missing
condition in the final fact-list) the RHS of the rule contains
a single assert of the missing condition. Similarly, if the
final fact-list constraint violation corresponds to a negative
constraint (e.g. an extra fact in the final fact-list) the RHS
contains a single retract for the extra fact.

4 Experiments

A series of experiments were designed to analyze various
characteristics of CLIPS-R. In the first domain, we show
that CLIPS-R is competitive with other theory revision
systems on the student loan rule-base (Pazzani & Brunk,

1991), a problem translated from PROLOG to CLIPS. In
addition, on this domain, we show that CLIPS can take ad-
vantage of information that FOCL-FRONTIER (Pazzani &
Brunk, 1993) cannot by including information on whether
some intermediate conclusions are true of each instance.
In the second domain, we deal with the auto diagnosis rule-
base that is distributed with CLIPS. This experiment uses
many of the features of CLIPS including saliences, display-
ing data, and querying the user for information.

4.1 Student Loan Rule-Base

The student loan domain consists of a set of nine rules (rep-
resented as Horn clauses) and a set of 1000 instances. The
rule-base contains four errors (an extra literal, a missing
literal, an extra clause and a missing clause). This initial
theory has an error of 21.6%. In order to use this rule-base
with CLIPS-R, the nine Horn clause rules were converted
into nine production rules, each with a single assert action.
Multiple clauses in the Horn clause rules were converted to
a disjunction of conjuncts within a CLIPS production rule.

Execution of an instance for the student loan rule-base con-
sisted of asserting into an empty fact-list a set of facts spe-
cific to the instance and then executing the rule-base to
completion11. All results for the following experiments are
averages of 20 runs. All instances not used for training are
used for testing.

Train Size FOCL % Error CLIPS-R % Error
25 11.8 12.6
50 5.8 3.0
75 2.8 2.1

Table 2. A Comparison of FOCL and CLIPS-R

The first experiment performed was to determine how well
CLIPS-R performed at revising the rule-base relative to
FOCL-FRONTIER. Table 2 shows that the error rate is
competitive with that of FOCL-FRONTIER on this prob-
lem. Only with 50 training examples is the difference in
error significant (p< .05).

The second experiment performed using this rule-base was
to determine if CLIPS-R could take advantage of inter-
mediate concepts during revision. In the first experiment,
CLIPS-R was only given a single constraint (on the tar-
get concept), either(no-payment-due)or (not (no-payment-
due)). For this experiment, CLIPS-R is also given vary-
ing percentages of the eight intermediate concepts as con-
straints, e.g.(eligible-for-military-deferment)or (not (eligible-
for-military-deferment)). For each instance and percentage of
intermediate concepts, a random subset of the intermediate
concepts was selected to form the constraints.

11A rule count execution limit, provided as input to CLIPS-R,
stops execution of an instance if the number of rules executed is
greater than the limit. When the limit is reached, the maximum
error possible is returned as the evaluation for the instance.
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Figure 9. Percent Target Error as a function of
Training Set Size when using 0%, 50% and 100%

of the Intermediate Concepts during Revision.

Figure 9 shows percent error on the target concept as a func-
tion of training set size for three percentages of intermedi-
ate concepts. As percentage of intermediate concepts in-
creases, error on the target concept decreases. In fact, the
error rate at training set size 25 with 100% of the interme-
diate concepts is less than the error rate at training set size
75 with no intermediate concepts.

4.2 Auto Diagnosis Rule-Base

The auto diagnosis rule-base (provided with the CLIPS
software) uses features of CLIPS not easily expressed in
pure Horn clauses. It is an expert system that prints out an
introductory message, asks a series of questions of the user,
and prints out a concluding message including the predicted
diagnosis. This rule-base has a total of 15 rules.

Instances were generated from 258 combinations of re-
sponses to the user query function. Each instance consisted
of a set of answers for each invocation of the query func-
tion (e.g., see Figure 1a) as initial state information, a single
constraint on the final fact-list and an ordering constraint for
the sequence of printout actions. The target constraint for
each instance was a positive constraint for a repair fact, e.g.
(repair Replace-the-points).

Execution of an instance for the auto diagnosis rule-base
consisted of clearing the fact-list, setting the bindings that
determine the return values for each function call instance
(to simulate user input for the user query function) and exe-
cuting the rule-base to completion. The bindings that asso-
ciate function calls to their return values allowed an other-
wise interactive rule-base to be run in batch mode. This is
necessary because no user would be willing to answer the
same questions for 50 instances on different variations of
the rule-base.

The experiments performed using the auto diagnosis rule-
base were designed to determine how well CLIPS-R could
do at revising mutated versions of the correct rule-base.
Mutations consisted of extra, missing or incorrect12 con-
ditional elements or actions and incorrect rule salience val-
ues. Two sets of 20 mutated rule-bases were randomly gen-

12An incorrect conditional element was formed by changing the
last argument of the conditional element to some other possible
value. Wrong assert actions were formed similarly.

erated with one set of rule-bases having only a single muta-
tion and the other set having three mutations per rule-base.
Each mutated rule-base was revised using a random set of
50 training instances. The remaining instances were used
for testing. Figure 10 contains a scatter plot showing the
initial error of each mutated rule-base and the final error
after revision of the rule-base.
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Figure 10. Target Error After Revision as a
function of Target Error Before Revision.

An analysis of the scatter plots in Figure 10 shows that, for
the most part, CLIPS-R was able to reduce the error rates of
the mutated rule-bases (points below the diagonal indicate
a decrease in target error). For one mutation, the average
rule-base error was 11.2% before learning and 0.7% after
learning. With three mutations, the error before learning
was 28.0% and after learning it was 7.2%.

5 Related Work

Most of the previous work with production systems con-
cerned cognitive modeling, e.g. PSG (Newell & McDer-
mott, 1975), OPS (Forgy & McDermott, 1976) and PRISM
(Langley & Neches, 1981). Some, including PRISM, have
dealt with learning and revision of knowledge-bases. Most
of the models explored using these systems have been very
different from the CLIPS production system model. For
example, some systems had multiple working memories,
e.g. ACTE (Anderson, 1976), other systems associated
strengths with production rules that, when combined with
the conflict resolution strategy, make the firing of strong
rules more likely. Previous work on learning included gen-
eralization and discrimination (specialization) of rules, e.g.



PRISM (Langley, 1987), and composition of rules, e.g.
Lewis (1978). CLIPS-R differs from this prior research in a
variety of ways including its focus on batch processing of a
set of instances to find minimal revisions to a rule-base cre-
ated by a knowledge engineer, its strategies to dealing with
the complex RHS of CLIPS productions, its approach for
identifying which rules to consider repairing, and its use
of a variety of constraints on the correct processing of an
instance.

6 Conclusion

We have described CLIPS-R, a theory revision system for
the revision of CLIPS rule-bases. Novel aspects of CLIPS-
R include the ability to handle forward chaining theories
with “nonlogical” operations such as rule saliences and the
retraction of information from working memory. We have
introduced an approach to focusing the revision process of
a forward chaining production system on the changes that
are likely to be most beneficial. CLIPS-R can take advan-
tage of a variety of user specified constraints on the cor-
rect processing of instances such as ordering constraints on
the displaying of information, and the contents of the final
fact-list. In addition, we have shown that CLIPS-R can op-
erate as well as existing systems when the only constraint
on processing an instance is the correct classification of the
instance.
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