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Abstract

We present fast,memoryefficient, lineartime algorithmthatgen-
eratesamanifold triangularmeshsS passinghrougha setof unor
ganizedpoints P ¢ R*. Nothingis assumedboutthe geometry
topology or presenceof boundariedn the datasetexceptthat P
is sampledfrom a real manifold surface. The speedof our algo-
rithm is derived from a projection-base@pproachwe useto de-
terminethe incidentfaceson a point. Our algorithmhassuccess-
fully reconstructethesurface®f unoganizedoointcloudsof sizes
varying from 10,000to 100,000in about3—-30secondn a 250
MHz, R10000SGI Onyx2. Our techniques especiallysuitablefor
heightfieldslike terrainandrangescandataevenin thepresencef
noise.We have successfullygeneratedneshedor scandataof size
900,000pointsin lessthan40 seconds.

CR Categories: 1.3.5[ComputerGraphics]:Computationalce-
ometryandObjectModeling.

Keywords: GeometridVlodeling, SurfaceReconstructiomndFit-
ting, Three-DimesionaBhapeRecorery, RangeDataAnalysis.

1 Introduction

The problem of surfacereconstructionfrom unoiganizedpoint
cloudshasbeenandcontinuego be,animportanttopic of research.
Theproblemcanbelooselystatedasfollows: Givena setof points
P which are sampledroma surfacein R?, constructa surfaceS
sothat the pointsof P lie on S. A variationof this interpolatory
definitionis whenS approximateghe setof points P.

Therearea wide rangeof applicationgor which surfacerecon-
structionis important. For example,scanningcomplex 3D shapes
like objectsroomsandlandscapewith tactile,opticalor ultrasonic
sensorarea rich sourceof datafor a numberof analysisand ex-
ploratory problems. Surfacerepresentationare a naturalchoice
becausef theirapplicabilityin renderingapplicationsandsurface-
basedvisualizationglike information-codedextureson surfaces).
Thechallengdor surfacereconstructioralgorithmsis to find meth-
odswhich cover awide variety of shapesWe briefly discussome
of theissuednvolvedin surfacereconstruction.

We assumein this paperthat the inputs to the surfacerecon-
structionalgorithmare sampledrom an actualsurface(or groups
of surfaces).A properreconstructiorof thesesurfaceds possible
onlyif they are“sufficiently” sampledHowever, sufficiency condi-
tionslike samplingtheoremsarefairly difficult to formulateandas
aresult,mostof the existing reconstructioralgorithmsignorethis
aspecbf the problem.Exceptiondncludetheworksof [3, 7, 2].

If the surfaceis improperly sampled,the reconstructioralgo-
rithm canproduceartifacts. A commonartifactis the presencef
spurioussurfaceboundariesn the model. Manualintervention or
additionalinformationaboutthe sampledsurfacgfor instancethat
the surfaceis manifold without boundaries)re possiblewaysto
eliminatetheseartifacts. The otherextremein the samplingprob-
lem is thatthe surfaceis sampledunnecessarilglense. This case
occurswhenauniformly samplednodelwith afew fine detailscan
causdoo mary datapointsin areaf low curvaturevariation.

Sometimeghe datamight containsomeadditionalinformation
onthestructureof the underlyingsurface Laserscannershatgen-
eratesamplesiniformly onasphergor acylinder, dependingnits
degreesof freedom)aretypical examples.In this casejt is known
thatadjacentdatapointshave a very high probability of beingad-
jacentto eachotherin thefinal mesh.We referto thesedatasetsas
organizedpointclouds This informationcanbeexploited by some
algorithmsjncludingours,to give quick results.

Anotherissuein surfacereconstructions the presencef noise
andoutliersin the original data. The modeof dataacquisitionhas
a directimpacton this. For example,rangescandatacanbe very
noisy whenthe surfaceis not orientedtrans\erseto the scanning
beam. Noisy dataintroducehigh frequeng artifactsin the recon-
structedsurface(like micro-facets)andthis is a causeof concern
for mary algorithms.

The choiceof underlyingmathematicahnd datastructuralrep-
resentatiorof thederived surfaces alsoimportant. Themostcom-
mon choicearetriangularor polygonalmeshrepresentationsTri-
angularmesheslsoallow usto expressthetopologicalproperties
of the surface,andit is the mostpopularmodelrepresentatiofor
visualizationandrenderingapplications.

Finally, the recentthrustin researcho build augmentedeality
andtelepresencapplicationshasintroducedan interestingvaria-
tion of the surfacereconstructiorproblem.Considermnapplication
wheremultiple cameraor camera-projectopairsare usedto ex-
tractthe geometryof dynamicscenest interactve rates[23]. In
thisscenariothesurfacereconstructioralgorithmshouldbeableto
handleextremelylarge datasets(orderof mary millions of points)
andprovide a suitablesurfacerepresentatiomwithout significantla-
teng. Oneof the main motivationsfor this work is to develop an
approachhathandlesothorganizedandunorganizedoointclouds
very efficiently in time andmemaoryrequirements.

1.1 Main Contrib utions

In this paper we presenta fast and efficient projection-basedl-
gorithmfor surfacereconstructiorfrom unoiganizedpoint clouds.
Our algorithmincrementallydevelopsan interpolatorysurfaceus-
ing the surfaceorientedpropertiesof the given datapoints. The
maincontritutionsof this paperinclude:

e Linear time performance: Eachiterationof our algorithm
adwanceghereconstructegurfaceboundaryby choosingone
pointonit andcompletesll thefacesncidentonit in constant
time. The constanbf proportionalityis very small.

e Speed:We havetesteduralgorithmon anumberof datasets
rangingfrom 10,000to 100,000unomanizedpoints. It takes
about3-30secondgo reconstructhe mesh. We have also
testedour algorithmon an organizedpoint cloud of size6.5
million. After simplifying this datato around900,000points,
it took us about40 seconddo generatehe meshon a 250
MHz, R10000SGI Onyx2 with 16 GB of mainmemory

e Memory efficiency: Our algorithm has minimal memory
overheadbecausét goesthrougha single passof all data
pointsto generateghe mesh. We do not maintainthe com-
putedtrianglesin our datastructurebecaus@ur methoddoes
notrevisit them.Only theinput datahasto bestored.



e Robustness:In the specialcaseof terraindataor datafrom
commoncenterof-projectionscanninglevices,ouralgorithm
cantoleratehigh noiselevels. The errorintroducedby noise
hasto beboundedhowever.

2 Previous Work

The problemof surfacereconstructiorhasreceved significantat-

tentionfrom researcherg computationajeometryandcomputer
graphics.In this section,we give a brief surwey of existing recon-
structionalgorithms. We usea classificationschemeiy Mencl et.

al. [21] to categyorizethe variousmethods.The mainclasse®f re-

constructioralgorithmsare basedon spatial subdivision distance
functions surfacewarpingandincrementakurfacegrowing

The commonthemein spatial subdvision techniqueds that a
boundingvolumearoundthe input datasetis subdiidedinto dis-
joint cells. The goal of thesealgorithmsis to find cells relatedto
theshapeof thepointset. Thecell selectiorschemesanbesurface-
basedr volume-based.

The surface-basedchemeproceeddy decomposinghe space
into cells, finding the cells that are traversedby the surfaceand
finding the surfacefrom the selectedcells. The approache®f
[17,11, 4, 3] fall underthiscategory. Thedifferencesn their meth-
odslie in thecell selectiorstratgy. Hoppeet. al. [17, 18, 16] usea
signeddistancdunctionof thesurfacefrom ary pointto determine
the selectedccells. Bajaj and Bernardini[4, 5, 6] constructan ap-
proximatesurfaceusing«-solidsto determinethe signeddistance
function. EdelsbrunneandMucke [22, 11] introducethe notion
of a-shapesa parameterizedonstructionthat associates poly-
hedralshapewith a setof points. The choiceof « hasto be de-
terminedexperimentally More recently Guoet. al. [13] usevis-
ibility algorithmsand Teichmannet. al. [25] usedensityscaling
andanisotropicshapingto improve theresultsof reconstructiorus-
ing a-shapes.For the two-dimensionatase Attali [3] introduces
normalizedmeshego give boundson the samplingdensitywithin
whichthetopologyof the original curve is presered.

Thevolume-basedchemedecomposethe spaceinto cells, re-
movesthosecellsthatarenot in the volume boundedby the sam-
pled surfaceand createghe surfacefrom the selectectells. Most
algorithmsin this category arebasedon Delaunaytriangulationof
theinputpoints. Theearliestof theseapproaches Boissonats [9]
“Delaunaysculpting” algorithmthat successiely removestetrahe-
drabasedon their circumspheresVeltkamp[27] usesa parameter
calledv-indicatorto determinehe sequencef tetrahedrdo bere-
moved. Theadvantageof thisalgorithmis thatthe~-indicatorvalue
adaptgto variablepoint density However, both the approachesf
BoissonatandVeltkampcannothandleobjectswith holesandsur
faceboundaries. Amentaet. al. [2, 1] usea Voronoifiltering ap-
proachbasedn three-dimensionaloronoidiagramandDelaunay
triangulationto constructhe crustof the samplepoints. They pro-
vide theoreticalguaranteesn the topology of their reconstructed
meshgiven“good” sampling.

The distancefunction of a surfacegives the shortestdistance
from ary pointto the surface. The surfacepasseshroughthe ze-
roesof this function. This approacheadsto approximatingnstead
of interpolatorysurfaceg17, 16, 8, 10]. Hoppeet. al. [17, 16] use
a Reimanniargraphto computeconsistenhormalthroughoutthe
surfaceto determinethe signeddistancefunction. The approach
of CurlessandLevoy [10] is fine-tunedfor laserrangedata. Their
algorithmis well suitedfor handlingvery large datasets.

Warping-basedeconstructioomethodsleformaninitial surface
to give a good approximationof the input point set. This method
is particularlysuitedif a roughapproximatiorof thedesiredshape
is alreadyknown. Terzopouloset. al. [26] use deformablesu-
perguadricsto fit theinput datapoints. Szeliskiet. al. [24] model
theinteractiorbetweerorientedparticlesto constructheirsurface.

The basic idea behind incrementalsurface constructionis to
build-up the surfaceusing surface-orientegropertiesof the input
datapoints. Boissonnas surfacecontouringalgorithm [9] starts
with an edgeanditeratively attachedurthertrianglesat boundary
edgesof the emeging surfaceusinga projection-base@pproach.
This algorithmis similarin veinto our approach A crucial differ-
encebetweenour methodss that Boissonnas algorithmis edge-
basedwhile oursis vertex-based.Further his algorithmcanonly
generatemanifolds without boundaries. The approachof Mencl
andMuller [19, 2(] is to startwith a global wireframeof the sur
face generatedising Euclideanminimum spanningtree construc-
tion, andtofill it iteratively to completethe surface.

3 Algorithm Overvie w

Our algorithmstartsat a datapoint, andfindsall its incidenttrian-
gles. Theneachof its adjacentverticesin the boundaryof the tri-
angulationis processedh a breadth-firsfashionto find their other
incidenttriangles. Thusthe boundaryof the completedtriangula-
tion propagatesn thesurfaceof the point cloudtill it processeall
thedatapoints. In therestof the paperwe referto the point being
processedsthereferencepoint, R.

Therearea few assumptionsve makeaboutthe dataset. The
samplingof the datais locally uniform, which meanghatthe dis-
tanceratio of thefarthestandclosesmneighborof apointin thefinal
triangulationis lessthana constantvalue. The secondassumption
is thatthemodelis locally smooth The quantitatve measuref this
assumptionis that all the anglesbetweerthe normalsof the faces
incidenton a vertex in the original surfacearewithin 90° of each
other Thefinal assumptioris to distinguishpointsfrom two close
layersof the model. The closestdistancebetweera point P in one
layerandanothelayeris at leastum, whereu is aconstanandm
is theshortestistancebetween” andanothempointin its layer

Our algorithmcanbe broadlydivided into threestagesbudket-
ing, point pruning, andfinally thetriangulationstep
Bucketing: In this stage,the datastructureis initialized with the
input data. Our datastructureis a depthpixel arraysimilar to the
dexel structure[15]. We maintaina 2D pixel arrayinto which all
datapointsare orthographicallyprojected. The pointsmappedon
to the samepixel aresortedby their depth(z) values.

Point Pruning: We first apply a distancecriterion to prunedown

our searchfor candidateadjacenipointsin the spatialproximity of

R. It is appliedin two stages Our algorithmtakesan axis-aligned
box of appropriatelimensiongenteredt R andreturnsall thedata
pointsinsideit. By usingour datastructurethis searchis limited to

thepixels aroundthe pixel whereR is projected.The secondstage
of pruningusesanEuclidearmetric,whichfurtherrejectshepoints
thatlie outsidea sphee of influencecenterecht R. The choiceof

theboxdimensionsandtheradiusof thespherearedescribedn the

next section.Thepointschoserby thissecondevel (Cr) arecalled
the candidatepointsof R.

\isibility Criterion: Next, we estimatethe tangentplaneat R,
andprojectR, Cr, andthemeshboundaryin their vicinity onthis
tangenplane.Pointsin C'r thatareoccludedrom R in theprojec-
tion areremoved.

AngleCriterion: Thisis anoptionalstep,which triesto remove
“skinny” trianglesat R, to improve the quality of triangulation.
Triangulation: Finally, the remainingpointsin C'r arethencon-
nectedn orderaroundR to completethetriangulation(seevideo).

4 Surface Reconstruction

In this section,we describeour approachto surfacereconstruction
in detail. The outputof our algorithmis aninterpolatory non-self-
intersectingriangularmeshof the given point cloud.

Theimplicit functiontheoren12] of smoothsurfacegormsthe
basisof our approachWithoutlossof generality it states*Given
animplicit surfaceS = f(z,y,z) = 0, andapoint P onit, suc



thatthetangentplaneto S at P is parallel to the (z, y) plane,then
S in the neighborhoodf P can be consideedas a heightfunc-
tion f(z,y, h(z,y)) = 0, alocal parameterizatioron its tangent
plane”.

Our algorithmis a greedymethodandworks with two parame-

ters: 1, which quantifiesour definitionof locally uniformsampling
and«, which givesa lower boundon the anglebetweenconsecu-
tive neighborsof a point on a boundaryof the surface. In order
to improve the quality of triangulation we canoptionally specifya
minimumangleparameters. It is notnecessarfor thecompletion
of our algorithm,though.
Terminology: We cateyorizethe datapointsat ary given stageof
our algorithmasfree fringe, boundaryandcompletecpoints. The
free pointsarethosewhich have no incidenttriangles. The com-
pletedpoints have all their incidenttrianglesdetermined. Points
that lie along the current surfaceboundaryare either fringe or
boundarypoints.Boundarypointsarethosepointswhichhave been
choserasareferencepoint but have somemissingtrianglesdueto
themaximumallowableangleparametety. Fringe pointshave not
yetbeenchoserasareferencepoint.

We maintaintwo invariantsduringour algorithm's execution:

Invariant 1: No free fringeor boundarypointcanbein theinterior
of atriangle(becausef our distancecriterion).
Invariant 2: At the endof eachiteration,the point chosenasthe
referencepoint becomesa completedor a boundarypoint. This
is usedlaterto prove claimsaboutoccludedpoints (for visibility
criterion).

Ouralgorithmstartswith the bucketingstepby orthographically
projectingthe datapointsontothedexel datastructure Thefollow-
ing stepsareusedto choosetheright setof pointsto be connected
to thereferencepoint R.

4.1 Point Pruning

Pruning by Distance Criterion: Pointsfar awvay from the refer
encepoint R arenot adjacento it. We eliminatethemby apply-
ing the distancecriterionin two stages. Initially, we employthe
cheaperl ., metricto narrav down our search. It is performed
by constructingan axis-alignedbox of suitabledimensionaround
R andchoosingall the freg fringe andboundarypointsinsidethe
box. The useof our datastructure(andbucketing)makesthis step
aconstantime operation.

Thedimensiorof theboxis derivedfrom . asfollows. In agen-
eralcase R (afringepoint)alreadyhasafew incidenttriangles.Let
m betheminimumdistancdrom R to its existingadjacentertices.
Fromour definitionof locally uniformsampling thefarthesmneigh-
borof R canbeat mostum away. This givesthelowerbound,and
anestimateon the dimensionof thebox. When R hasno incident
triangles(for example,at the very beginning), we find the closest
pointto R usingthe dexelarrayrepresentatioandfind m.

We call a sphereof radiuspm centeredat R asthe spheeof in-
fluence(Sr) aroundR. Thesecondstageof pruningusesa stricter
L, metricandreturnsall pointsinside Sg. Thesepointsarethe
candidatepoints(C'r) of R. We wouldlike to makeanobsenation
aboutthe candidatepoint set. Theradiusof Sr is dependentn m,
which changedrom onevertex to another Therefore,it is possi-
blethata vertex p mightbein the sphee of influenceof R, but not
vice-versa.But this asymmetrydoesnot affect the topologyof the
reconstructednesh.

Choice of Projection Plane: Typically, givenatriangulatednesh,
the triangulationarounda point implicitly definesan orderingof

its adjacentverticeson a projectionplane. In orderto complete
the triangulationarounda referencepoint R, our algorithmfinds
this orderingdirectly by projectinga selectecheighborhoocround
R onaplane. The choiceof the projectionplaneis animportant
issue anddictategherobustnes®f ourapproachAccordingto the
implicit functiontheorem,the bestprojectionplanewould be the

(b)

Figurel: (a) Visibility testaroundR. Theblack pointsarebehind
R'sboundaryedgesthe white pointsareoccludedby otheredges,
andthepointV is eliminatedasR is behindits boundaryedges(b)
Completedneshat R

tangeniplaneat R.

In the generalcase,R is a fringe point andthe estimateof its
tangentplanecanbe madeon the basisof thetrianglesalreadyin-
cidenton R. Thisis our choicefor the projectionplane(Pr). The
orderingof thecandidatepoints(C'r) aroundR in this planewill be
incorrectif andonly if thereis atriangleincidenton R with its nor
mal deviating by morethan90° from the projectionplanenormal.
This conditiondoesnot arise however, becaus®f our assumption
aboutthe surfacesmoothnessWhen R doesnothave ary incident
triangles,we fit an orientedboundingbox aroundC'r to getanes-
timate of the orientationof the surface,and hencethe projection
plane.

Pruning by Visibility: Thenext stageof pruningis basedon vis-
ibility in the plane Pr. It eliminatesthe pointswhich potentially
form a self-intersectingnesh. We definethe boundaryedgesof a
pointasthesetof edgedncidentonthatpointthatlie onthecurrent
surfaceboundary We projectR, C'r, andtheir boundaryedgeson
theplanePr (seeColor Plate2 - middlerow andvideo). If theline
of sightfrom R to acandidate/ertex is obstructedy any edge then
thatpointis anoccludedpoint. The existenceof visibility between
thesepointsin the planeis a sufficient but not a necessargondi-
tion for thevisibility betweerthemin the objectspaceln thelimit,
whenthe local surfaceapproacheshe tangentplanein a densely
sampledpointcloud,it becomes necessargonditionaswell. We
takea consenative approactandpruneall the pointsin C'r which
areoccludedrom R on Pg.

Pointsoccludedfrom R aredeterminechsfollows. Initially, we
orderthepointsin Cr by anglearoundR in theplanePxg.

1. All thepointsbetweerconsecutre boundaryedgeof R (shavn

by the dotted-linewedgeat R in Figure1(a)) areremoved asthey

cannotbevisiblefrom R. They aresaidto bein theinvisibleregion

of R. Theblackpointsin thefigure areexamples.

2. Similarly, pointsareremosedwhich have R in theirinvisible re-
gion (for example,point V' in the samefigure). We denotethe set
of pointsfrom Cr remainingafterthis stepasC'.

3. Finally, we eliminatepointsthatareoccludedrom R becausef

anexisting edgein the mesh(for example,the white pointin Fig-

urel(a)).

A straightforwardapproachof checkingall possible occluding
edgesis very expensve. We statethe following theoremwhich

limits our searchto very few edges.

Theorem: Only theboundaryedgesof thepointsin thesetC'r can
bepossibleoccludingedgeshetweenk andC1,.

Proof: We sketchonly a brief, informal proof dueto spacdimita-

tions. FromInvariantl, it is easyto show thatif aninternaledgeis

occluding,theremustbe at leastone boundaryedgewhich is also
occluding. This eliminatesall the internaledgesrom contention.
Figure 2(a) shavs an examplewherea boundaryedge(sayUV')

occludeghepoint@ from R, butits endpointsarenotin Cr. Since



Figure2: (a) Determiningoccludingedgegb) Angle X QY is ob-
tuse,soa < c. Further f < d+a < d+c < d+c+e. Therefore,
|QU| < |UV]|.

oneof U,V orW (letusassumé/) musthave alreadybeenchosen
asareferencepoint,it isacompletear boundarypointby Invariant
2. Further classicalgeometnytellsusthat|QU | < |UV| (seeFig-

ure2(b)). Fromourdistancecriterionandinvariant2, we claimthat
vertex @@ mustbeadjacento U. Themaximumallowableangle(«)

criteriondoesnotapplyhereif U is aboundarypoint. Thisimplies
that R liesin theinvisibleregion of @, andhencecannotbelongto

C¥ asit will be eliminatedby condition2 above. ThereforeU'V

cannotbeanoccludingedge.

Therestof the pointswhich areorderedaroundR canbetrian-

gulatedasshowvnin Figure1(b).
Pruning by Angle Criterion: The triangulationwe getfrom the
previousstepis avalid one.However, to improve the quality of tri-
angulationthis pruningstepremaoves pointsthat could potentially
form triangleswith very smallangles(“skinny” triangles).Thisis
notanecessargomponenfor theworking of our algorithm.Since
our algorithmdoesnot introduceadditional(Steinej points,it can-
notalwaysachieve the desiredquality.

We explain the working of this stepusingan example. In Fig-
ure3, considetthepoints N; and N,. Let usassumehattheangle
at R of ARN; N, is lessthanj3 (our minimum angleparameter).
One of thesepointscanbe remaved to improve the triangulation.
The choiceof theremovablevertex is not arbitrary For example,
if N is rejected,it getstrappedinsidethe triangle (in the projec-
tion plane)formedby R, N;, andary oneof N3, N4, or Ns. This
violateslnvariantl.

Thefollowing algorithmdescribes wayto avoid suchscenarios
andto form a goodtriangulationwhene/er possible. Assumethat
we have to form thetriangulationfrom P to Ny in Figure3, where
RP and RN; areconsecutre boundaryedgesof R. We startour
processingyy orderingthe pointsaroundP. In our example,this
orderingwould be P, = (N1, N2, N5, N4, N3), andthe ordering
aroundR is R, = (N1, N2, N3, Ny, Ns). Let P,[i] (R.[i]) be
thei'” elementin P, (R.). Withoutlossof generalitywe assume
R.[:] = N;. Thefollowing pseudo-codéndsall possibleadjacent
pointsto P aroundR, withouttrappingary otherpoint insidethe
triangle.

fort<:1<5
Let N; bethevertex in P4[i]
Mark N; asconsidered
T(N;)={Nx | k < j, Nx is notmarkedconsidered}
if (T(N;) = ¢)
thenN; canbe an adjacentpoint to P aroundR
elseN; cannotbe an adjacentpoint to P aroundR

(a) (b)

Figure 3: Pruningby Angle Criterion: (a) OrderingaroundR and
P; anglesbetweenN; N,, N3 N4, and N4 Ny arelessthanj. (b)
N, trappedn A RP N5, and N, trappednside A RN Ns

In our example, N1, N2, and N; are possibleadjacentpoints
becausavhenthey werechosenall the pointsbeforethemin R,
were alreadymarkedconsidered. If ary of the remainingpoints
arechosenit will trapsomevertex. In fact,thesetT'(N;) consists
of preciselythoseverticesthatwill betrappedf N; werechoseras
theadjacenpointto P aroundR.

Fromthe setof possibleadjacentpoints{ N1, N2, N5}, we can
chooseary vertex. For the sakeof agument,let uschooseN; as
theadjacenpointto P andformthetriangle R P N5. Now thesame
algorithmis appliedat N5, andthe points N, and N5 areordered
aroundit. It canbe seenthatthe point N4 cannotbe removed, as
it will gettrappedinsidethe triangle RNs; N5. Hence,we cannot
eliminatethe skinry triangle RNs N,. It is importantto notethat
evenif we hadchosenV; or N, from theoriginal possibleadjacent
pointset,we would have endedupin the samesituation.

4.2 Triangulation

Theremainingpointsfrom Cr afterthe variouspruningstepsare
the final adjacentpoints and are connectedn orderaroundR to
completethetriangulationin the objectspace.If consecutie adja-
centpointssubtendnorethana (maximumallowableangleparam-
eter)at R in the objectspacethenthey arenot connectedo form
atriangle. This maximumangledescribeshe characteristicsf the
holesin the model,and R is consideredasa boundarypoint. All
thefreepointsin theadjacenpointlist arelabeledasfringe points
andareappendedn orderat the endof the queue.The algorithm
chooseghe next point from the queueasthe new referencepoint
R, andcontinueswith thetriangulationaroundR.

5 Robustness of our algorithm

We avoid mostof therobustnesgroblemsacedby purelygeomet-
ric methodglike noiseand degeneratesituations)by our partially
combinatoriahpproachlin ouralgorithm,wefacerobustnesgrob-
lemsin the projectionplaneevaluation. For example,sharpcurva-
turevariationsin the modelmightleadto incorrectestimate®f the
projectionplane. An importantfeatureof our algorithmis thatit
candetectsuchdegenerateasesandhandlethemspecially

To testtherobustnes®f our approacho perturbationsn thees-
timatedtangentplaneat R, we usedone of just three projection
planes- (X,Y), (Y, Z), and(Z, X), whichever wascloseto the
actualestimate.We wereableto triangulatemary modelsinclud-
ing the bunry model satisfactorily The executiontime with this
approachis muchlessthanthetimeslistedin the Table1 because
we do not needto explicitly transformthe vicinity of R to its tan-
gentplane. But the disadwantageof this approachis thatit hasa
few favorable orientationsof the modelin the coordinateframe,
anddifferentorientationggave differentresults.

5.1 Handling Noisy Data

Ability to handlenoisein the input datais an importantconsid-
erationfor ary surfacereconstructioralgorithmthatis appliedto



real-worlddata. Statisticaimethoddike mediarfiltering have been
appliedbeforeto remove outliersandhigh frequeng noiseandfit

non-interpolatorysurfaces.But thesemethodscan sometimese
slow, andmight not even generatesurfaceghatareintuitively cor-

rectfor somedatasets.

Typically, devicesusedfor dataacquisitiongeneratsampledata
in someorder In ouralgorithm,we canmakeuseof this orderand
the characteristicef the device to handlenoise. We have applied
our methodon a massve datasetof a room (Color Plate2 - top
row) acquiredby alaserrangescanner Thisis acommonCenter
Of-Projection(COP) device which returnsa sphericaldepthmap
((¢, ¢) map)of the ervironmentarounditself. The outputof sucha
device is calleda first-seersurface asit sampleonly the surface
thatit first seeslt hasno informationaboutoccludedregionsfrom
its COR Thesamplingdensityof this device s alsoextremelyhigh
(one sampleper tenth of a degreein both § and¢). When adja-
centsamplesarelessthananinch apart thenoisein the sampless
nearlytwo inches.If we apply our original algorithmto this noisy
dataset,the selectegprojectionplanewould be completelyaltered
by innumerablemicro-facetdormedin thevicinity of a point.

We makeuseof the fact thatthe datapoint is on the first-seen
surfacein the sphericalcoordinatesystemto solve this problem.
In sucha coordinatesystem,this surfacecanbe considerechs a
monotonicsurfacewith respecto a uniqueprojectionplanesimilar
to heightfield or terraindata. In this case,the (¢, ¢) planecan
be consideredasthe projectionplanefor all the points. Sincethe
perturbationsn the datasetdueto noisearealwaysorthogonalto
the projectionplane,our algorithmis not affectedby it.

Theunderlyingtwo dimensionatlexelarrayis considere@sthe
(8, ¢) projectionplanewith only onedatapointateachdexel. The
neighborsof a point in thefinal triangulationcanonly be from its
adjacentdexels Hencethe first stepof pruning (by L. metric)
choose®nly the pointsfrom the adjacendexelsof R. Theradius
of Sr is setto aslightly highervaluethanthe noisein the system.
Asall thepointsin C'r arevisiblefrom R, visibility oranglechecks
canbe skipped. If we chooseto remove thesetests, it takesless
thansevensecondso reconstruca datasetof sizearound900,000
points.

In practice,we fix the dimensionsof the dexel array We re-
tain onerepresentate pointif multiple pointsgetmappedntothe
samedexel. Thisthinsthe high samplingdensity andformsalevel
of simplification. The dimensionsof the dexel array controlsthe
amountof simplificationandthe run time of the algorithm. Since
all the processindime in our algorithmis dependenbn the num-
berof candidatepoints boundingthis numberis a major sourceof
speed-upn handlingterraindata.

Theimagein Color Plate2 (top row) showsthetexturedrecon-
structedrcoommodel. Thetextureis createdrom theintensityval-
uesreturnedby the laserdevice. Theimageon theright shovsthe
micro-facetsn the floor of the room, in spite of point simplifica-
tion.

6 Application of Our Approach

Thestrengthof ouralgorithmliesin its speecandmemoryrequire-
ments. In telepresencapplicationg23], wheremultiple cameras
areusedto extractthe geometryof a dynamicsceneat interactve
rates the surfacereconstructioralgorithmshouldcopeup with the
multi-million point datainput, simplify it and provide a suitable
surfacerepresentatiorOur algorithmis well-suitedfor thesekinds
of applicationsandcanbeusedto simplify, reconstructhesurface,
mege the surfacesxtractedfrom differentcamerasandstitchthe
geometnyto createonesinglegeometriaepresentationf thescene.
Thefollowing approaclkcanbe usedto solve this problem.
Multiple camerasarelocatedat known locationsin the erviron-
mentto be sampled. The depthextractioncanbe doneusingary
vision algorithmsuchasa stereo-basedpproachEachpixel in the

No. of No. of Init. Time | ReconsTime

Model points | Triangles| (in secs) (in secs)
Club 16864 | 33660 0.2758 3.9644
Bunry 34834 | 69497 0.5961 9.1809
Foot 20021 | 39919 0.3802 5.2725
Skidoo 37974 | 75461 0.6680 8.536
Mannequin| 12772 | 25349 0.2405 3.9289
Phone 83034 | 165730 1.5634 26.597

Tablel: Performancef ouralgorithm:SeeColor Platel

imagecapturedby every camerahasa depthvalueassociatedvith
it. As theimagewith depthfrom eachcameracanbe considered
asa heightfield, our algorithmcanbe usedto triangulatethe point
cloudfrom eachcameraindependently The meiging of geometry
from differentcamerags doneasfollows. Thereconstructeanesh
of a camerasayC,, canbetransformedo anothercameras (say
C-) viewpoint, aswe know the exact location and orientationof
eachcamera.The transformednmeshis projectedasa depthmask
onthe dexel array of C,. Thefirst seensurfacepropertyensures
thattherecanbeno pointseerfrom C, with ahigherdepththanits
correspondinglepthmaskvalue. Pointsseenby both C; and C;
(equaldepthvalues)aresafelyeliminated.Thetriangulationof the
restof the pointswould give the meshrepresentationf the geom-
etry visible from C, only. The stitchingof thesemesheds done
by consideringonly their boundarypoints. The resultingsurface
canbetexturemappedvith thecolorvaluesreturnedby thecamera
imagesto generate realisticmodelwith fewer datapoints.

We have alsoshavn the versatility of our approactby applying
it on completelyunoiganizedpoint clouds.However, it is specially
suitedfor image-basedenderingapplicationsvherethe datasetis
in theform of heightfields.

7 Implementation

This sectiondescribesheissuesve facedwhile implementingour
algorithm. We storethe all the datapointsin our dexel datastruc-
ture. Eachpointin the dexel arrayhasa z value anda pointerto
otherverte attritutes.

Generatinga unique surfacerepresentatiorirr espectiveof the
orientationof a modelis animportantrequiremenbf ary surface
reconstructioralgorithm. The resultof our algorithmis basedon
the orderin which verticesare processedThis, in turn, is depen-
denton the order of insertionof all the new fringe pointsin the
breadth-first-procesgueue. Any metric which is independenbf
the orientationof the modelcanbe usedfor this ordering. In our
implementationye insertpointsinto the queuein the sameorder
aswe form new triangles.

Our algorithmderivesits speedandefficiency from the simplic-
ity of eachof its stages.Further asmostof the computatioris on
the projectionplane,a lot of geometridricks canbe usedto speed
up the process.We have takencareto avoid costly operationdike
squarerootsandtrigonometricfunctions. The orderingof vertices
on a planearounda point is doneby partitioningthe pointsin dif-
ferentquadrantsn the local coordinatesystemandorderingthem
independentlyoy computingthe sin(8) functionusingfirst princi-
ples.We avoid repeatedomputationssmuchaspossibleby strik-
ing atrade-of betweermemoryandspeed Oncea pointis marked
asa completegoint, memoryusedby it is immediatelyfreed. As
we have optimizedour function to order pointsaroundR, we use
thesamefunctionto performsomeof thevisibility pruningsteps.

8 Performance and Results

The compleity of ouralgorithmis input sensitve, i.e., time spent
is proportionatlto the modelcompleity. This canbe seenfrom the
resultsshowvnin Tablel. Thebunry model,which hasfewer points



No.of No. of Init. Time* | ReconsTime | ReconsTime
points | Triangles| (in secs) 1(in secs) 2 (in secs)
143858 267131 82.508 5.998 1.020
883577 | 1707468 88.554 38.782 6.913

Table2: Performancef the systemfor the Roomrangedataset:
SeeColor Plate2. ReconstructiorTime 2: without visibility and
anglecriteriacheck. (*: Includesthe readingtime of the original
dataset—6479713points)

thantheskidoomodel,takesmoretimefor reconstructionglueto its

compleity. Similarly, themannequirmodeltakesalmostthesame
time asthatof the club model,becaus®f high curvaturevariations
and non-uniformsamplingin the regions nearthe nose,eyesand
ears.For the samereasonwe areableto handlemassve datasets
of sizein theorderof millions of pointsin afew secondsaswe are
makinguseof heightfield dataproperties.

Our algorithmis a single passalgorithm,and doesnot needto
revisit thetrianglesoncethey areformed. We do not produceary
higherdimensionakimplices(like tetrahedrd9, 14]) thatrequire
their removal to makeit a valid manifold. We alsodo not change
thetriangulationoncethey arecompleted.

Reducedmemoryrequirementis anotherfeatureof our algo-
rithm. Our algorithm doesnot storethe trianglesformed during
reconstructiorin the mainmemory Only thosetriangleswhich are
incidentonfringe andboundarypointsareretainedasthey areused
for visibility pruning.Hencewe areableto handlemassve models
with millions of datapoints.

Table1 shavs thetime takenby our algorithmon variouspoint
clouds.Theinitializationtimein thetableincludesthetimetakento
readin the modelandinitializing the datastructure All thetiming
measuremenis this papemweremadeona250MHz, R10000SGl
Onyx2 with 16 GB of main memory Table 2 shows the timing
of our algorithmon thelaserdata. The initialization time includes
thetime to readin the original modelof around6.5 million points,
filling up the datastructureand eliminating the points. The two
entriesin the tableshaw the timings for two differentsizesof the
dexelarray: 400 x 600and1000 x 1500.

8.1 Limitations of Our Approach

Any projection-basedpproactyivesdifferenttriangulationfor dif-
ferentstartingpoints.Our approactalsosuffersfrom thesamdim-
itation. But oncethe seedpoint is fixed, the triangulationis same
for ary transformatiorof the model. The secondimitation is also
commonto mostsurfacereconstructioralgorithms— sharpcurva-
turevariations. If the facesincidenton a vertex do not satisfyour
criterion of surfacesmoothnesgshenour algorithmmight produce
incorrecttriangulations. For undersampledand extremely non-
uniformedmodels,our algorithmproducesspuriousmodelbound-
aries,asshaovn in the Color Plate2 (bottomrow).

9 Conclusion

We have presented new projection-basedurfacereconstruction
algorithmfrom unomganizedpoint clouds. The key featuresof our
methodarespeedmemoryefficiency andlineartime performance.
Further it is a singlepassalgorithmandcanmakeuseof the char
acteristicsof the dataacquisitionphaseto handlenoisy data. We
have demonstratethe applicationof our algorithmon variousdata
sets,including a massve, noisy rangescanmodelof a room. We
are successfullyableto generatevalid, non-self-intersectingori-
entablemanifold surfacemeshegor pointcloudsof sizeafew hun-
dredthousandn a matterof tensof secondsWe believe thatsuch
a performancevithout any manualinterventionor restrictedappli-
cability is a big win for our algorithm.
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