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Abstract

Any connected plane nearest neighbor graph has diameter Q(nl/ 5).
This bound generalizes to Q(n'/3¢) in any dimension d.



For any set of n points in the plane, we define the nearest neighbor graph
by selecting a unique nearest neighbor for each point, and adding an edge
between each point and its neighbor. This is a directed graph with outdegree
one; thus it is a pseudo-forest. Each component of the pseudo-forest is a
tree, with a length-two directed cycle at the root.

As with minimum spanning trees, the maximum degree in a nearest
neighbor graph is five. Monma and Suri [1] showed that, conversely, any tree
with vertex degree at most five is the minimum spanning tree of some point
set; thus minimum spanning tree topologies are exactly characterized by
their degrees. Paterson and Yao [2] considered the corresponding question
for nearest neighbor graphs. They showed that a tree with depth D can
have at most O(D?) vertices. Thus unlike minimum spanning trees, nearest
neighbor graphs can not be too bushy: a tree with many vertices must
contain a long path. Paterson and Yao also constructed an example of a
nearest neighbor graph with m points and Q(D?) vertices. There remains
a large gap between D® and DY, and we are left with the question of the
exact relation between depth and size of nearest neighbor graphs.

In this paper we tighten this gap, by demonstrating that a nearest neigh-
bor graph with diameter m can have at most O(D®) points. Equivalently,
a nearest neighbor graph with n points must have diameter Q(n'/%).

It is possible that the insight into this problem provided by our proof
can remove the remaining gap, by showing what a point set must look like
if its nearest neighbor graph is to have diameter O(nl/ 6), or alternately by
leading the way to a proof that the diameter must be Q(n'/5).

Our proof that there can be O(DY) points in a nearest neighbor graph
with diameter D follows the same general outline as Paterson and Yao’s
proof of their O(D?) bound, so we summarize that outline here.

Paterson and Yao partition the plane into an infinite sequence of similar
annuli, centered on the origin which is chosen to lie on the root of the nearest
neighbor tree. The outer radius of each annulus is some suitably large
constant C times the inner radius. Each point is assigned to the annulus
containing the outermost point on the path from the point to the origin
in the nearest neighbor graph. (Most points are assigned to the annulus
containing them, but a point may be assigned to a larger annulus if its
nearest neighbor path goes away from the origin before returning.) They
then count the number of points that can be assigned to any one annulus,
and the number of possible annuli.



Lemma 1 (Paterson and Yao [2]). At most O(C?D?) points can be as-
signed to any annulus.

Proof: Suppose a point is assigned to an annulus with inner radius r.
Then the path from that point to the origin has length at least r. There
are at most D edges in the path, and the edge lengths decrease as the path
nears the origin, so the first edge must have length at least /D. Thus each
such point is contained in an empty disk with radius r/D. If we halve the
radii to /2D, no two disks meet. All such disks are contained in a large
disk with radius (Cr + r/2D), which has area O(C?r?). If there were more
points than the stated bound, the areas of the disks around them would add
to more than this. O

Lemma 2 (Paterson and Yao [2]). If C is sufficiently large, O(D7) an-
nuli can be assigned points.

Proof: Each such annulus contains a point assigned to it, namely the
outermost on the path from any of its assignees. Thus we need only consider
points that are contained in the annuli to which they are assigned, and edges
between such points. Define the depth of such an edge to be the distance
in the nearest neighbor graph from the origin, where distance along a single
edge is measured as one. Then each edge has a depth between one and D.
We label each annulus A by the seven-tuple L(A) of the smallest depths of
edges that begin inside the inner radius of A, and end either within A or
outside its outer radius. Paterson and Yao show that, if one annulus has a
larger radius than another, its label is larger in lexicographic order; therefore
each of the O(D") labels is used at most once. O

As in Paterson and Yao’s proof, we divide the plane into similar annuli.
Our proof retains Lemma 1, but modifies Lemma 2 to show that there can
in fact only be O(D*) annuli to which points are assigned.

Lemma 3. Let edges e and f pass entirely across a given annulus. Then
angle ef is at least 60° — 2 arcsin 1/C.

Proof: Let |f| > |e|. The outer endpoint of e must be outside a 60°
wedge based on f. The points outside the annulus view the circle inside the
annulus as having an angular radius of 2arcsin1/C, and any point outside
the wedge will then form an angle of at least 60° — 2 arcsin 1/C with f. O



Lemma 4. Let e and f pass entirely across a given annulus, and let the
outer endpoints of e and f be in two non-adjacent annuli. Then angle ef is
at least 90° — 4 arcsin1/C.

Proof: Let |f| > |e|, and let the annulus containing the outer endpoint of
e have radii » and C'r. The outer endpoint of f must be outside a circle of
radius C?r since we assume it is in a non-adjacent annulus to the endpoint
of e. Then the outer endpoint of e must be outside a circle ¢ with f as
radius, centered on the outer endpoint of f (otherwise that endpoint would
have the outer endpoint of e as a closer neighbor). The outer endpoint of
f views circle Cr as having an angular radius of 2arcsin1/C, so circle ¢
covers a wedge of annulus (r, Cr), based on f with angle 90° — 2 arcsin1/C,
which cannot contain the endpoints of e. The inner endpoints of e and f
are within a small circle of angular diameter 2arcsin1/C as viewed from
the outer endpoint of e. Therefore the angle of e with f must be at least
90° —4arcsinl/C. O

If we choose C' > 29, arcsin 1/C will be less than 2°. Then the angles
will “look like” 60° and 90°, in that the following inequalities hold:

e 7(60° — 2arcsin1/C) > 360°, so that no annulus can be crossed by
seven edges.

e 5(60°—2arcsin1/C) + (90° —4 arcsin 1/C) > 360°, so that if six edges
cross, all angles are smaller than 90° — e.

e 3(90° — 2arcsin 1/C') + 2(60° — 4 arcsin 1/C') > 360°, so that if there
are five crossing edges, all but two angles are smaller than 90° — e.

Theorem 1. In any connected plane nearest neighbor graph with diameter
D, there are at most O(D%) points.

Proof:  We consider two types of edge for each annulus A: those that
cross the inner but not the outer radius, and those that cross both radii.
Two edges of the second type are related in A if they have an angle less
than 90° —4 arctan 1/C, or if they are connected by a chain of related edges.
There can be at most three equivalence classes of related edges, except for
the single case that four edges cross the annulus at approximate right angles.

We label each annulus by the 4-tuple of the four smallest edge depths,
only allowing a single depth from each equivalence class of related edges.
If there are not enough edges to fill out the tuple, we fill the remaining



positions with the value D. Unlike the labels used in Lemma 2, these labels
need not increase in lexicographic order. However we show that we can
find a subsequence of the label sequence, covering a constant fraction of the
annuli, in which the labels do increase. O(D?*) labels are possible in this
subsequence, and therefore the entire sequence consists of O(D*) annuli.

Suppose we have constructed some such sequence out to some annulus
A. Let S be the set of edges that cross both radii of A. We choose the next
annulus A’ as follows. We start by considering the next annulus beyond
A, to which some point is assigned. Then as long as the annulus we are
considering either has an endpoint of an edge in S, or has four edges crossing
at approximate right angles, we move on to the next such annulus. Once
we find an annulus A’ satisfying neither of these conditions, we choose it as
the next annulus in the sequence, and continue as before.

Suppose we encounter an annulus with four edges crossing at approxi-
mate right angles. No point can be within four circles having those edges as
radii, which together cover all of the annulus except for a small region near
the center. Any edge crossing the outer annulus boundary would view this
region as having angular diameter x = O(1) arcsin 1/C, and by an argument
similar to Lemma 3 would have angles greater than 60° — z with all four
crossing edges. But no such angles, and hence no such edges can exist. The
next annulus containing any points contains the endpoint of one of the four
crossing edges, and is not of this special form. So as we search from A for
the next annulus A’, at least every other annulus is not of this form.

The remaining annuli in the search from A for A’ each contain an end-
point of an edge in .S, so there can be at most six such annuli. Thus after
we try O(1) annuli we find the next one in the sequence, and the sequence
we construct will contain a constant fraction of all the annuli.

Finally, we show that the label of A’ is larger than that of A. Let S’ be
the set of edges that cross the inner radii of both A and A’. Any such edge
is in S, and since A’ contains no endpoint of S each such edge crosses the
outer radius of A’. All its relatives in A are also in S’, and are related in S’.
Therefore |S" N L(A)| < 3, and L(A’) contains an edge not in S’

Let e be such an edge with the smallest depth. As we follow the path
from e to the tree root, we will eventually encounter an edge €’ crossing the
inner radius of A. The depth of € is strictly smaller than that of e. We
form a label L’ by adding ¢’ to the set S’ N L(A’), and filling all remaining
positions in the four-tuple by D. Then since ¢ has lower depth than all
edges in L(A’) — L, it follows that L' < L(A’) in the lexicographic order.
On the other hand, all edges in L' — ¢’ are unrelated in A, and no relative



of € can be in S or hence in L’. Thus L’ is a potential label for A and the
true label L(A) is no higher in lexicographic order.

We have shown that L(A) < L(A’). The subsequence we construct,
and thus the entire sequence of annuli, has at most O(D*) members. Each
annulus is assigned O(D?) points, and the theorem is proved. O

Paterson and Yao [2] generalize their O(D?) bound to O(D*7(@+1) in
any dimension d. The kissing number 7(d) gives the maximum cardinality of
any set of vectors in which all angles are > 60°. The corresponding quantity
for angles > 90° is simply 2d. Lemma 4 can be used to show that at most
2d subsets of crossing edges can be separated by angles of 90° — ¢, and that
this number is further reduced to 2d — 1 except in the single case of 2d
approximately orthogonal edges. Lemma 1 generalizes to a bound of O(D?)
points per higher-dimensional annulus. Thus we can improve the bound
above to O(D3?). This replaces a double exponential (7(d) is ©(22079))
by a single exponential. There are nearest neighbor graphs based on grid
graphs with Q(D?) points, so we are close to the right exponent.
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