Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

A FLEXIBLE FRAMEWORK FOR REAL-TIME SONIFICATION WITH SONART

Wbon Seung Yeo, Jonathan Berger, R. Scott Wilson

The Center for Computer Research in Music and Acoustics
Stanford University, Stanford, CA 94305
brg@cr ma. st anf ord. edu

ABSTRACT

We describe significant developments towards a real-time imple-
mentation of SonArt, the parameter mapping framework first pre-
sented in [1] 1. Enhancements include the incorporation of Open
Sound Control (OSC) [2] which facilitates network communica-
tions, direct access to a variety of real-time synthesis software
platforms, and distributed synthesis. The original goals for open-
source, platform independence, and modularity are further dis-
cussed with an example implementation using Java and OSC ([4]).

1. INTRODUCTION

In this paper we describe significant developments of the parame-
ter mapping framework described in (Ben-Tal, Berger et al, 2002)
with particular focus on the following issues:

e network transmission of data
e real time sound generation

e distributed synthesis

e cross platform, modular design

These issues are critical for our goal of implementing a flexible,
real-time sonification framework. \We have incorporated Open Sound
Control (OSC) [2] (updated at [3]) protocol for networked commu-
nication among hardware and software. OSC allows for modular-
ity between the data server, parameter mapper and synthesis plat-
form. It also facilitates distributed synthesis adding considerable
flexibility to the framework. The need for this flexibility is evident
in our experiments with hyperspectral image data of colon cells.
This data, collected incooperation with our collaborators at Yale
University, consists of datacubes of normal and abnormal colonic
tissue. Each data cube consists of 491 x 652 pixels, each pixel
containing 128 dimensions. Our sonification experiments included
sonifying all 128 dimensions as well as a variety of data-reduced
sets attained through principal component analysis, local discrimi-
nant bases and nearest-neighbor classification. A visual RGB rep-
resentation of the data is used referentially, allowing for sonifi-
cation of specific pixels or areas of pixels by navigating around
the visual image with a computer mouse. This navigation method
necessitated interfacing with a robust and efficient real-time syn-
thesis system. The high dimensionality of the data posed both con-
ceptual and optimization challenges. We generalized the problems
encountered and searched for design solutions to these. The prob-
lems include:

e logistics and locale. Data should be available to multiple
clients simultaneously and immediately whether that data

1Thiswork is supported by DARPA award F41624-03-1-7000

originates from a single source or from multiple sources,
and whether the data is being continuously updated (for ex-
ample, taking live data output from a sensor or imager, or
addressing archived data.

e transmission. A networked distributed sound synthesis sys-
tem is a major advantage to a sonification design providing
potentially limitless computing power and flexibility. Min-
imizing latency is of critical importance to this end.

e communications. Our ideal sonification design framework
calls for platform independent solutions and flexibility of
synthesis design as well as the ability to combine multiple
solutions for a single sonification task.

The logistical, transmission and communications issues cited prompted

us to incorporate OSC as the communications protocol between
the data server, the parameter engine and the synthesis systems.

2. OPEN SOUND CONTROL

OSC is a protocol for communication among various sound control
and/or synthesis engines (i.e., computers, synthesizers, and other
multimedia devices), offering flexibility and power. Using OSC,
it is possible to send/receive data between applications, both lo-
cally and through network. Moreover, it’s implemented in almost
every widely-used sound synthesis softwares, including Csound,
Max/MSP, Pd, and Supercollider, which allows them to sonify our
dataset. At the core of OSC is a specification for the format of
messages. Each OSC message contains a URL / path style target
address and a variable number of parameter arguments. The mes-
sage format is independent of transport layer, but the vast majority
of existing implementations use UDP packets over IP networks for
transport. A Java implementation of OSC is described in ??.

The implementor of a particular sonification paradigm is thus
able to design an optimal set of messages they will respond to, cov-
ering the full range of the parameter space within that paradigm.
They would then publish that set of messages along with the ac-
ceptable ranges for each argument in a commonly agreed upon for-
mat. Stored with the message catalogue is implementation specific
information needed by the central parameter mapper to instantiate
and/or initiate communication with the paradigm in question. The
message catalogue and implementation information are used by
the parameter mapper to present the user with a graphical inter-
face for patching together connections between data sources and
synthesis targets in a consistent manner.

To date, we have developed a number of programs that incor-
porate OSC for sonification purposes. We desribe two of these
efforts.

ICADO1-1

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

3. THE DATA VIEWER: AN EXAMPLE APPLICATION

Based upon the needs to use a visual representation of data as a
means of navigation for sonification exploration we designed a
Mac OS X application with:

e auser interface that allows the user to click on a data point,
get the corresponding (MATLAB) data of that point, and
send them out as OSC locally or through network

e the ability to import .mat data files and associated image
files.

e the ability to provide an IP address and port number for
OSC communications.

o the ability to support multi-IP addressing.

Viewer =

> 0

Active Paint Trajectory
Playback Rate: 5.96 (pixels/sec)
X 110.00 AT I
.-Qp—
v 151.00 = “up)
! Loop Playback ,—“ P =
[L JNudgel R
) Start fon)
L E— ==
Target Host Address: localhost Portno.: 57123

Figure 1: OS-X Data Viewer.

Figure 1 is a screenshot of this program.
Viewer supports two modes of data transfer:

e trajectory. the user can set up a linear path within the screen
image by dragging the mouse. A playback panel allows for
the transfer of the data vector along the points on the path
through the OSC connection. The location of path can be
linearly calibrated, and data playback rate can be adjusted.

e mouse. The data vector of individual pixels correspond-
ing to the user selected mouse position are sent through the
OSC connection.

Subsequently, a Java applet version of the data viewer was
written and is currently in use for managing sonification using
standard web browsers (figure 2). This provides the flexibility of
platform independence. Although currently the viewer supports
only local transmission, a future network version will provide a

alale} ViewerApplet Page

« [¢ | +] 2 fie:/s/usersiwoony/Deskrop/Viewerapplet.htm! ~Q- Gao
ViewerApplet
- a Java applet with OSC
Set 1 Set 2

Woon Seung Yeo / CCRMA , Stanford University

|

Figure 2: Java Data Viewer.

powerful framework for serving and processing sonification from
a centralized data source.

Basically, this has almost same function as the OS X program
mentioned above. It shows an image when loaded by browsers,
and as users click and/or drag on the image, the data vector cor-
responding to the (x,y) coordinate values of mouse pointer will be
sent out through OSC connection. As with many other applets,
parameters for the dataset, image display, and OSC connection pa-
rameters can be configured externally by using HTML tags. This
is a useful feature for designing web pages as interfaces for data
sonification. The following is an example of HTML source used
to display the applet.

<APPLET archi ve="DenoMuse. jar"
code="DenmoMuse" wi dt h="512"
hei ght ="512" vspace="10">
<PARAM NAME="| MAGEFI LENANME"
val ue="Coef f _BO1l. snal | .| pg">
<PARAM NAME=" DATAFI LENAME"
val ue="Coef f _BO1. mat ">
<PARAM NAME=" PORTNUMBER'
val ue="57123">
<PARAM NAME=" TYPETAG'
val ue="/webSoni " >
</ APPLET>}

Since this applet works on every machine with Java-enabled web
browsers, it is virtually platform independent. This is a critical
factor for distributed sound synthesis systems over network where
machines of various platform coexist.

Although currently this applet only supports local transmis-
sion, a future network version will provide a powerful framework
for sonification server of centralized data.

4. CONCLUSION

Our programs produced satisfactory results in terms of efficient
data transmission performance when tested on a local network. We
could generate sounds with Max/MSP, and PD using 128 dimen-
sional colon cell data transmitted from a different machine over the

ICADO01-2

Proceedings of the 2001 International Conference on Auditory Display, Espoo, Finland, July 29- August 1, 2001

network. However, it was still one-to-one unidirectional communi-
cation within a well-controlled environment. Future research will
focus on achieving robust performance for more general cases of
distributed environment. Sonifying large-scale, high dimensional
data imposes significant issues in terms of storing and managing
mapping information. We continue to develop methods to meet
these challenges.

5. REFERENCES

[1] O.Ben-Tal,J. Berger, B. Cook, M. Daniels, G. Scavone, and
P. Cook SONART : The Sonification Application Research
Toolkit, Proceedings of the 2002 International Conference on
Auditory Display, Kyoto, Japan.

[2] M. Wright, A. Freed, A. Lee, T. Madden, and A. Momeni,
Managing Complexity with Explicit Mapping of Gestures to
Sound Control with OSC, Proceedings of the 2001 Interna-
tional Computer Music Conference, Havana, Cuba.

[3] Open Sound Control,http://cnmat.cnmat.berkeley.edu/OpenSoundControl/

[4] C. Ramakrishnan, Open Sound Control for Java,
http://www.mat.ucsb.edu/ c.ramakr/illposed/javaosc.html

ICADO01-3

