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ABSTRACT 

This paper describes how the massive 
parallelism of the rapidly reconfigurable 
Xilinx XC6216 FPGA (in conjunction with 
Virtual Computing's H.O.T. Works board) 
can be exploited to accelerate the time-
consuming fitness measurement task of genetic 
algorithms and genetic programming.  This 
acceleration is accomplished by embodying 
each individual of the evolving population into 
hardware in order to perform the fitness 
measurement task.  A 16-step sorting network 
for seven items was evolved that has two fewer 
steps than the sorting network described in the 
1962 O'Connor and Nelson patent on sorting 
networks (and the same number of steps as a 
7-sorter that was devised by Floyd and Knuth 
subsequent to the patent and that is now 
known to be minimal).  Other minimal sorters 
have been evolved.  

 

1. Introduction 
Field-programmable gate arrays (FPGAs) are often used to 
facilitate rapid prototyping of new electronic products –  
particularly those for which time-to-market and other 
economic considerations preclude the design and 
fabrication of a custom application-specific integrated 
circuit.  

Genetic programming (GP) is an extension to the genetic 
algorithm (Holland 1975, Goldberg 1989, Michalewicz 
1992, Mitchell 1996, and Gen and Cheng 1997) that 
automatically creates a computer program to solve a 
problem using a simulated evolutionary process (Koza 
1992, 1994a, 1994b; Koza and Rice 1992).  Genetic 
programming successively transforms a population of 
individual computer programs, each with an associated 
value of fitness, into a new population of individuals (i.e., a 
new generation), using the Darwinian principle of survival 
and reproduction of the fittest and analogs of naturally 
occurring genetic operations such as crossover (sexual 
recombination) and mutation.   



 

The dominant component of the computational burden of 
solving non-trivial problems with the genetic algorithm or 
genetic programming is the task of measuring the fitness of 
each individual in each generation of the evolving 
population.   (Relatively little computer time is expended 
on other tasks of the algorithm, such as the creation of the 
initial random population at the beginning of the run and 
the execution of the genetic operations during the run). In a 
run of the genetic algorithm or genetic programming, the 
population may contain thousands or even millions of 
individuals and the algorithm may be run for dozens, 
hundreds, or thousands of generations.  Moreover, the 
measurement of fitness for just one individual in just one 
generation typically involves exposing the individual 
program to hundreds or thousands of different 
combinations of inputs (called fitness cases).  Executing 
one individual program for just one fitness case may, in 
turn, entail hundreds or thousands of steps.   

Field-programmable gate arrays are massively parallel 
computational devices.  Once an FPGA is configured, its 
thousands of logical function units operate in parallel at the 
chip's clock rate.  The advent of rapidly reconfigurable 
field-programmable gate arrays (FPGAs) and the idea of 
evolvable hardware (Higuchi et al. 1993; Sanchez and 
Tomassini 1996; Higuchi 1997; Thompson 1996) opens the 
possiblity of embodying each individual of the evolving 
population into hardware.  Since the fitness measurement 
task residing in the inner loop of genetic algorithm or 
genetic programming constitutes the main component of 
the computational burden of a run, the question arises as to 
whether the massive parallellism of FPGAs can be used to 
accelerate this time-consuming task.  

This alluring possiblity cannot, in practice, be realized with 
previously available FPGAs for four reasons.   

First, the encoding schemes for the configuration bits of 
almost all commercially available FPGAs are complex and 
kept confidential by the FPGA manufacturers.    

Second, the tasks of technology mapping, placement, 
routing, and creation of the configuration bits, consume so 
much time as to preclude practical use of an FPGA in the 
inner loop of the genetic algorithm or genetic 
programming.  Even if these four tasks could be reduced 
from the usual hours or minutes to as little as 10 seconds 
for each individual in the population, these four tasks 
would consume 106 seconds (278 hours) in a run of the 
genetic algorithm or genetic programming involving a 
population as minuscule as 1,000 for as short as 100 
generations.   A run involving a population of 1,000,000 
individuals would multiply the above unacceptably long 
time (278 hours) by 1,000.   

Third, the 500 milliseconds typically required for the task 
of downloading the configuration bits to an FPGA (brief 

and insignificant for an engineer who has spent hours, 
days, or months on a single prototype design) would 
consume 14 hours for even a minuscule population of 
1,000 that was run for as few as 100 generations.  Again, a 
run involving a population of 1,000,000 individuals would 
multiply this already unacceptably long time (14 hours) by 
1,000.  What's worse – both of these unacceptably long 
times (278 hours and 14 hours) are merely preliminary to 
the time required by the FPGA for the actual problem-
specific fitness measurement.  Thus, there is a discrepancy 
of numerous orders of magnitude between the time 
required for the technology mapping, placement, routing, 
bit creation, and downloading tasks and the time available 
for these preliminaries in the inner loop of a practical run 
of the genetic algorithm or genetic programming.  
Reconfigurability is not enough for practical work with 
genetic algorithms and genetic programming.  Rapid 
reconfigurability is what is needed – where "rapid" means 
times ranging between microseconds to milliseconds for all 
five preliminary tasks (technology mapping, placement, 
routing, bit creation, and downloading).  

Fourth, the genetic algorithm starts with an initial 
population of randomly created individuals and uses 
probabilistic operations to breed new candidate individuals. 
These randomly created individuals typically do not 
conform to the design principles  unconsciously employed 
by humans and are often quite bizarre.  Most commercially 
available FPGAs are vulnerable to damage caused by 
combinations of configuration bits that connect contending 
digital signals to the same line.  The process of verifying 
the acceptability of genetically created combinations of 
configuration bits is complex and would be prohibitively 
slow in the inner loop of the genetic algorithm or genetic 
programming.  Invulnerability (or near invulnerability) to 
damage is needed in order to make FPGAs practical for the 
inner loop of the genetic algorithm or genetic 
programming.   

Section 2 describes genetic programming.  Section 3 
describes the Xilinx XC6216 rapidly reconfigurable FPGA.   
Section 4 discusses the types of problems that may be 
suitable for genetic programming and  rapidly 
reconfigurable FPGAs. Section 5 describes one such 
problem – a mathematical problem involving minimal 
sorting networks. Section 6 outlines the preparatory steps 
for applying genetic programming to the problem of 
evolving sorting networks.  Section 7 outlines the mapping 
of the fitness measurement task for sorting networks onto 
an FPGA.   Section 8 describes the results.  Section 9 
discusses an observation on evolutionary incrementalism 
that suggests future work.  Section 10 is the conclusion.   

2. Genetic Programming 
The three steps in executing a run of genetic programming 
are as follows: 



 

(1) Randomly create an initial population of individual 
computer programs. 

(2) Iteratively perform the following substeps (called a 
generation) on the population of programs until the 
termination criterion has been satisfied:  
(a) Assign a fitness value to each individual 

program in the population using the fitness 
measure. 

(b) Create a new population of individual programs 
by applying the following three genetic 
operations.  The genetic operations are applied 
to one or two individuals in the population 
selected with a probability based on fitness 
(with reselection allowed).    
(i) Reproduce an existing individual by copying 

it into the new population. 
(ii) Create two new individual programs from 

two existing parental individuals by 
genetically recombining subtrees  from each 
program using the crossover operation at 
randomly chosen crossover points in the 
parental individuals.  

(iii) Create a new individual from an existing 
parental individual by randomly mutating 
one randomly chosen subtree of the parental 
individual.  

(3) Designate the individual computer program that is 
identified by the method of result designation (e.g., 
the best-so-far individual) as the result of the run of 
genetic programming.  This result may represent a 
solution (or an approximate solution) to the 
problem.   

Genetic programming has been applied to numerous 
problems in fields such as system identification, control, 
classification, design, optimization, and automatic 
programming.  Since l992, over 800 papers have been 
published on genetic programming.   

Additional information about genetic programming can be 
found in books (Banzhaf, Nordin, Keller, and Francone 
1997), edited collections of papers (Kinnear 1994, 
Angeline and Kinnear 1996), conference proceedings 
(Koza et al. 1996, 1997), and the World Wide Web 
(www.genetic-programming.org).  

3. The Xilinx XC6216 FPGA 
The new Xilinx XC6200 series of rapidly reconfigurable 
field-programmable gate arrays addresses the four issues 
(cited in section 1) of 

• openness,  
• rapid technology mapping, placement, routing, and 

creation of the configuration bits 
• rapid  downloading of configuration bits, and 
• invulnerability to damage.  

thereby opening the possiblity of exploiting the massive 
parallelism of field-programmable gate arrays in the inner 
loop of the genetic algorithm and genetic programming.   

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells (Xilinx 1997).  Each of 
the chip's 4,096 cells contains numerous multiplexers and a 
flip-flop and is capable of implementing all two-argument 
Boolean functions as well as many useful three-argument 
functions.  Each cell can directly receive inputs from its 
four neighbors (as well as certain more distant cells).   

The functionality and local routing of each cell is 
controlled by 24 configuration bits whose meaning is 
simple, straightforward, and public.   

The configuration bits of the XC6216 can be randomly 
accessed, and the memory containing the configuration bits 
is directly memory-mapped onto the address space of the 
host processor.  That is, it is not necessary to download 
100% of the configuration bits in order to change only one 
bit.   

Also, the Xilinx XC6216 FPGA is designed so that no 
combination of configuration bits for cells can cause 
internal contention (i.e., conflicting 1 and 0 signals 
simultaneously driving a destination) and potential damage 
of the chip.  This feature is especially important when the 
configuration bits are being created by an evolutionary 
process such as genetic programming.  Specifically, it is 
not possible for two or more signal sources to ever 
simultaneously drive a routing line or input node of a cell.  
This is accomplished by obtaining the driving signal for 
each routing line and each input node from a single 
multiplexer.  Thus, only a single driving signal can be 
selected regardless of the choice of configuration bits.  In 
contrast, in most other FPGAs, the driving signal is 
selected by multiple independently programmable interface 
points (pips). Nonetheless, care must still be taken with the 
configuration bits that control the XC6216's input-output 
blocks because an outside signal (with unknown voltage) 
connected to one of the chip's input pins can potentially get 
channeled onto the chip.   

A H.O.T. Works (Hardware Object Technology) expansion 
board for PC type computers is available from Virtual 
Computer Corporation (www.vcc.com).  The board 
contains the Xilinx XC6216 reconfigurable programming 
unit (RPU), SRAM memory, a programmable oscillator 
that establishes a suitable clock rate for operating the 
XC6216, and a PCI interface for the board housed on a 
Xilinx XC4013E field-programmable gate array.      

4. Problems Suitable for Genetic 
Programming and FPGAs 

The new Xilinx XC6216 rapidly reconfigurable field-
programmable gate array addresses several of the obstacles 
to using FPGAs for the fitness measurement task of genetic 



 

algorithms.  First, the XC6216 streamlines the 
downloading task because the configuration bits are in the 
address space of the host processor.  Second, the encoding 
scheme for the configuration bits is public.  Third, the 
encoding scheme for the configuration bits is simple in 
comparison to most other FPGAs thereby potentially 
significantly accelerating the technology mapping, 
placement, routing, and bit creation tasks.  This simplicity 
is critical because these tasks are so time-consuming as to 
preclude use of conventional CAD tools to create the 
configuration bits in the inner loop of a genetic algorithm.   

The above positive features of the XC6216 must be 
considered in light of several important negative factors 
affecting all FPGAs.  First, the clock rate (established by a 
programmable oscillator) at which an FPGA actually 
operates is often much slower (typically around ten-fold) 
than that of contemporary microprocessor chips.  Second, 
the operations that can be performed by the logical function 
units of an FPGA are extremely primitive in comparison to 
the 32-bit arithmetic operations that can be performed by 
contemporary microprocessor chips.  

However, the above negative factors may, in turn, be 
counterbalanced by the fact that the FPGA's logical 
function units operate in parallel. The existing XC6216 
chip has 4,096 cells and chips of this same 6200 series will 
be available shortly with four times as many logical 
function units.  A ten-fold slowing of the clock rate can be 
more than compensated by a thousand-fold acceleration 
due to parallelization.   

The bottom line is that rapidly reconfigurable field-
programmable gate arrays can be highly beneficial for 
certain types of problems.   

5. Minimal Sorting Networks 
A sorting network is an algorithm for sorting items 
consisting of a sequence of comparison-exchange 
operations that are executed in a fixed order.  Figure 1 
shows a sorting network for four items.  

A 1

A 2

A 3

A 4  
Figure 1  Minimal sorting network for 4 items.   

The to-be-sorted items, A1, A2, A3, A4, start at the left on 
the horizontal lines.  A vertical line connecting horizontal 
line i and j indicates that items i and j are to be compared 
and exchanged, if necessary, so that the larger of the two is 
on the bottom.  In this figure, the first step causes A1 and 
A2 to be exchanged if A2 < A1.  This step and the next 
three steps cause the largest and smallest items to be routed 
down and up, respectively.  The fifth step ensures that the 
remaining two items end up in the correct order.  The 
correctly sorted output appears at the right.  A five-step 
network is known to be minimal for four items.   

Sorting networks are oblivious to their inputs in the sense 
that they always perform the same fixed sequence of 
comparison-exchange operations.  Nonetheless, they are of 
considerable practical importance because they are more 
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort 
and are therefore often embedded in commercial sorting 
software.   

Thus, there is considerable interest in sorting networks with 
a minimum number of comparison-exchange operations.  
There has been a lively search over the years for smaller 
sorting networks (Knuth 1973).  In U. S. patent 3,029,413, 
O'Connor and Nelson (1962) described sorting networks 
for 4, 5, 6, 7, and 8 items using 5, 9, 12, 18, and 19 
comparison-exchange operations, respectively.   

During the l960s, Floyd and Knuth devised a 16-step 
seven-sorter and proved it to be a minimal seven-sorter.  
They also proved that the four other sorting networks in the 
1962 O'Connor and Nelson patent were minimal.  

The 16-sorter has received considerable attention.  In 1962, 
Bose and Nelson devised a 65-step sorting network for 16 
items.  In 1964, Batcher and Knuth presented a 63-step 16-
sorter.  In l969, Shapiro discovered a 62-step 16-sorter and, 
in the same year, Green discovered one with 60 steps.   

Hillis (1990, 1992) used the genetic algorithm to evolve 
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing 
with a population of fitness cases.  In this work, Hillis 
incorporated the first 32 steps of Green's 60-step 16-sorter 
as a fixed beginning for all sorters (Juille 1995).   

Juille (1995) used an evolutionary algorithm to evolve a 
13-sorter with 45 steps thereby improving on the 13-sorter 
with 46 steps presented in Knuth (1973).  Juille (1997) has 
also evolved networks for sorting 14, 15, and 16 items 
having the same number of steps (i.e., 51, 56, and 60, 
respectively) as reported in Knuth (1973).   

As the number of items to be sorted increases, construction 
of a minimal sorting network becomes increasingly 
difficult.  In addition, verification of the validity of a 
network (through analysis, instead of exhaustive 
enumeration) grows in difficulty as the number of items to 
be sorted increases.  A sorting network can be exhaustively 
tested for validity by testing all n! permutations of n 
distinct numbers.  However, thanks to the "zero-one 
principle" (Knuth 1973, page 224), if a sorting network for 
n items correctly sorts n  bits into non-decreasing order 
(i.e., all the 0's ahead of all the 1's) for all 2n sequences of 
n  bits, it necessarily will correctly sort any set of n distinct 
numbers into non-decreasing order.  Thus, it is sufficient to 
test a putative 16-sorter against only 216 = 65,536 
combinations of binary inputs, instead of all 16! ~ 2 ∞ 



 

1013 inputs.  Nonetheless, in spite of this "zero-one 
principle," testing a putative 16-sorter consisting of around 
60 steps on 65,536 different 16-bit input vectors is a 
formidable amount of computation when it appears in the 
inner loop of a genetic algorithm.  

6. Preparatory Steps for Genetic 
Programming 

Before applying genetic programming to a problem, the 
user must perform six major preparatory steps, namely (1) 
identifying the terminals, (2) identifying the primitive 
functions, (3) creating the fitness measure, (4) choosing 
control parameters, (5) setting the termination criterion and 
method of result designation, and (6) determining the 
architecture of the program trees in the population.   

For the problem of evolving a sorting network for 16 items, 
the terminal set, T, is 

T = {D1, ..., D16, NOOP}.   
Here NOOP is the zero-argument "No Operation" function.  

The function set, F, is 

F = {COMPARE–EXCHANGE, PROG2, PROG3, PROG4}.  

Note that none of these functions have return values.  

Each individual in the population consists of a constrained 
syntactic structure composed of primitive functions from 
the function set, F, and terminals from the terminal set, T 
such that the root of each program tree is a PROG2,  
PROG3, or PROG4; each argument to PROG2,  PROG3, and 
PROG4 must be a NOOP or a function from F; and both 
arguments to every COMPARE–EXCHANGE function must 
be from T (but not NOOP). 

The PROG2,  PROG3, and PROG4 functions respectively 
evaluate each of their two, three, or four arguments 
sequentially.   

The two-argument COMPARE–EXCHANGE function 
changes the order of the to-be-sorted bits.  The result of 
executing a (COMPARE–EXCHANGE i j) is that the bit 
currently in position i of the vector is compared with the bit 
currently in position j of the vector.  If the first bit is 
greater than the second bit, the two bits are exchanged.  
That is, the effect of executing a(COMPARE–EXCHANGE 
i j) is that the two bits are sorted into non-decreasing 
order.  Table 1 shows the two results Ri and produced by 
executing a (COMPARE–EXCHANGE i j).  Note that 
column Ri is the Boolean AND function and column Rj is 
the Boolean OR function.   
Two Arguments Two Results 

Ai Aj Ri  Rj  

0 0 0 0 

0 1 0 1 
1 0 0 1 
1 1 1 1 

Table 1  The COMPARE–EXCHANGE function. 

The fitness of each individual program in the population is 
based on the correctness of its sorting of 216 = 65,536 
fitness cases consisting of all possible vectors of 16 bits.  
If, after an individual program is executed on a particular 
fitness case, all the 1's appear below all the 0's), the 
program has correctly sorted that particular fitness case.   

Because our goal is to evolve small (and preferably 
minimal) sorting networks, we ignore exchanges where i = 
j and exchanges that are identical to the previous exchange.  
Moreover, during the depth-first execution of a program 
tree, only the first Cmax = 65 COMPARE–EXCHANGE 
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby 
relegating the remainder of the program to be unused 
code).   

Hits are defined as the number of fitness cases for which 
the sort is performed correctly.   

The fitness measure for this problem is multi-objective in 
that it involves both the correctness and size of the sorting 
network.  Standardized fitness is defined in a lexical 
fashion to be the number of fitness cases (0 to 216) for 
which the sort is performed incorrectly plus 0.01 times the 
number (1 to Cmax) of COMPARE–EXCHANGE functions 
that are actually executed.  For example, the fitness of an 
imperfect sorting network for 16 items with 60 COMPARE–
EXCHANGE functions that correctly handles all but 12 
fitness cases (out of 216) is 12.60.  The fitness of a perfect 
16-sorter with 60 COMPARE–EXCHANGE functions (such 
as Green's) is 0.60.   

The population size was 1,000.  The percentage of genetic 
operations on each generation was 89% one-offspring 
crossovers, 10% reproductions, and 1% mutations.  The 
maximum size, Hrpb, for the result-producing branch was 
300 points.  The other parameters for controlling the runs 
were the default values specified in Koza 1994a (appendix 
D).  The architecture of the overall program consisted of 
one result-producing branch.   

7. Mapping the Problem onto the Chip 
The problem of evolving sorting networks was run on a 
host PC Pentium type computer with a Virtual Computer 
Corporation "HOT Works" PCI board containing a Xilinx 
XC6216 field-programmable gate array.  This combination 
permits the field-programmable gate array to be 
advantageously used for the computationally burdensome 



 

fitness measurement task while permitting the general-
purpose host computer to perform all the other tasks.   

In this arrangement, the host PC begins the run by creating 
the initial random population (with the XC6216 waiting).  
Then, for generation 0 (and each succeeding generation), 
the PC creates the necessary configuration bits to enable 
the XC6216 to measure the fitness of the first individual 
program in the population (with the XC6216 waiting).  
Thereafter, the XC6216 measures the fitness of one 
individual.  Note that the PC can simultaneously prepare 
the configuration bits for the next individual in the 
population and poll to see if the XC6216 is finished.  After 
the fitness of all individuals in the current generation of the 
population is measured, the genetic operations 
(reproduction, crossover, and mutation) are performed 
(with the XC6216 waiting).  This arrangement is beneficial 
because the computational burden of creating the initial 
random population and of performing the genetic 
operations is small in comparison with the fitness 
measurement task.   

The clock rate at which a field-programmable gate array 
can be run on a problem is considerably slower than that of 
a contemporary serial microprocessor (e.g., Pentium or 
PowerPC) that might run a software version of the same 
problem.  Thus, in order to advantageously use the Xilinx 
XC6216 field-programmable gate array, it is necessary to 
find a mapping of the fitness measurement task onto the 
XC6216 that exploits at least some of the massive 
parallelism of the 4,096 cells of the XC6216. 

Figure 2 shows our placement on 32 horizontal rows and 
64 vertical columns of the XC6216 chip of eight major 
computational elements (labeled A through H).  Broadly, 
fitness cases are created in area B, are sorted in areas C, D, 
and E, and are evaluated in F and G.  The figure does not 
show the ring of input-output blocks on the periphery of 
the chip that surround the 64 ∞ 64 area of cells or the 
physical input-output pins that connect the chip to the 
outside.  The figure does not reflect the fact that two such 
32 ∞ 64 areas operate in parallel on the same chip.   

H G F E
D

CBA

 
Figure 2  Arrangement of elements A through H on a 32 ∞ 

64 portion of the XC6216 chip.   

For a k-sorter (k ≤ 16), a 16-bit counter B (near the upper 
left corner of the chip) counts down from 2k  - 2 to 0 under 
control of control logic A (upper left corner).  The vector of 
k bits resident in counter B on a given time step represents 
one fitness case of the sorting network problem.  The 
vector of bits from counter B is fed into the first (leftmost) 
16 ∞ 1 vertical column of cells of the large 16 ∞ 40 area C.  
Counter B is an example of a task that is easily performed 
on a conventional serial microprocessor, but which 
occupies considerable space (but does not consume not 
considerable time) on the FPGA.  

Each 16 ∞ 1 vertical column of cells in C (and each cell in 
similar area E) corresponds to one COMPARE–EXCHANGE 
operation of an individual candidate sorting network.  The 
vector of 16 bits produced by the 40th (rightmost) sorting 
step of area C then proceeds to area D.  

Area D is a U-turn area that channels the vector of 16 bits 
from the rightmost column of area C into the first 
(rightmost) column of the large 16 ∞ 40 area E.    

The final output from area E is checked by answer logic F 
for whether the individual candidate sorting network has 
correctly rearranged the original incoming vector of bits so 
that all the 0's are above all the 1's.  The 16-bit accumulator 
G is incremented by one if the bits are correctly sorted.  
Note that the 16 bits of accumulator G are sufficient for 
tallying the number of correctly sorted fitness cases 
because the host computer starts counter B at 2k  - 2, 
thereby skipping the uninteresting fitness case of consisting 
of all 1's (which cannot be incorrectly sorted by any 
network). The final value of raw fitness is reported in 16-
bit register H after all the 2k  - 2 fitness cases have been 
processed.   



 

The logical function units and interconnection resources of 
areas A, B, D, F, G, and H are permanently configured to 
handle the sorting network problem for all k ≤ 16.   

The two large areas, C and E, together represent the 
individual candidate sorting network.  The configuration of 
the logical function units and interconnection resources of 
the 1,280 cells in areas C and E become personalized to the 
current individual candidate sorting network.   

For area C, each cell in a 16 ∞ 1 vertical column is 
configured in one of three main ways.  First, the logical 
function unit of exactly one of the 16 cells is configured as 
a two-argument Boolean AND function (corresponding to 
result Ri  of table 1).  Second, the logical function unit of 
exactly one other cell is configured as a two-argument 
Boolean OR function (corresponding to result Rj of table 
1).  Bits i and j become sorted into the correct order by 
virtue of the fact that the single  AND cell in each 16 ∞ 1 
vertical column always appears above the single OR cell.  
Third, the logical function units of 14 of the 16 cells are 
configured as "pass through" cells that horizontally pass 
their input from one vertical column to the next.   

For area E, each cell in a 16 ∞ 1 vertical column is 
configured in one of three similar main ways.   

There are four subtypes each of AND and OR cells and 
four types of "pass through" cells. Half of these subtypes 
are required because all the cells in area E differ in 
chirality (handedness) from those in area C in that they 
receive their input from their right and deliver output to 
their left.   

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, 16 "pass through" cells are placed 
in the last few vertical columns of area E .  The genetic 
operations are constrained so as to not produce networks 
with more than 80 steps and, as previously mentioned, only 
the first Cmax < 80 steps are actually executed.  

Within each cell of areas C and E, the one-bit output of the 
cell's logical function unit is stored into a flip-flop.  The 
contents of the 16 flip-flops in one vertical column become 
the inputs to the next vertical column on the next time step.   

The overall arrangement operates as an 87-stage pipeline 
(the 80 stages of areas C and E, the three stages of answer 
logic F, and four stages of padding at both ends of C and 
E).   

Figure 3 shows the bottom six cells of an illustrative 
vertical column from area C whose purpose is to 
implement a (COMPARE–EXCHANGE 2 5) operation.  
As can be seen, cell 2 (second from top of the figure) is 
configured as a two-argument Boolean AND function (*) 
and cell 5 is configured as a two-argument OR function 
(+).  All the remaining 14 cells of the vertical column (of 

which only four are shown in this abbreviated figure) are 
"pass through" cells.  These "pass through" cells 
horizontally convey the bit in the previous vertical column 
to the next vertical column.  Every cell in the Xilinix 
XC6216 has the additional capacity of being able to convey 
one signal in each direction as a "fly over" signal that plays 
no role in the cell's own computation.  Thus, the two 
"intervening" "pass through" cells (3 and 4) that lie 
between the AND and OR cells (1 and 5) is configured so 
that it conveys one signal vertically upwards and one signal 
vertically downwards as "fly over" signals.  These "fly 
overs" of the two intervening cells (3 and 4) enable cell 2's 
input to be shared with cell 5 and cell 5's input to be shared 
with cell 2.  Specifically, the input coming into cell 2 
horizontally from the previous vertical column (i.e., from 
the left in figure 3) is bifurcated so that it feeds both the 
two-argument AND in cell 2 and the two-argument OR in 
cell 5 (and similarly for the input coming into cell 5 
horizontally).   

Notice that when a 1 is received from the previous vertical 
column on horizontal row 2 and a 0 is received on 
horizontal row 5 (i.e., the two bits are out of order), the 
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted 
as output on horizontal row 2 and a 1 to be emitted as 
output on horizontal row 5 (i.e., the two bits have become 
sorted into the correct order).  

The remaining "pass through" cells (i.e., cells 1 and 6 in 
figure 3 and cells 7 through 16 in the full 1 ∞ 16  vertical 
column) are of a subtype that does not have the "fly over" 
capability of the two "intervening" cells (3 and 4).  The 
design of this subtype prevents possible reading of signals 
(of unknown voltage) from the input-output blocks that 
surround the main 64 ∞ 64 area of the chip.  All AND and 
OR cells are similarly designed since they necessarily 
sometimes occur at the top or bottom of a vertical column.   



 

 
Figure 3  Implementation of (COMPARE–EXCHANGE 2 

5). 

Note that the intervening "pass through" cells (cells 3 and 4 
in figure 3) invert their "fly over" signals.  Thus, if there is 
an odd number of "pass through" cells  intervening 
vertically between the AND cells and OR cells, the signals 
being conveyed upwards and downwards in a vertical 
column will arrive at their destinations in inverted form.  
Accordingly, special subtypes of the AND cells and OR 
cells reinvert (and thereby correct) such arriving signals.   

Answer logic F determines whether the 16 bits coming 
from the 80th column of the pipleine (from the left end of 
area E) are properly sorted – that is, the bits are of the form 
0j116-j.  

When the XC6216 begins operation for a particular 
individual sorting network, all the 16 ∞ 80 flip-flops in C 
and E (as well as the flip-flops in three-stage answer logic 
F, the four insulative stages, and the "done bit" flip-flop) 
are initialized to zero.  Thus, the first 87 output vectors 
received by the answer logic F each consist of 16 0's.  
Since the answer logic F treats a vector of 16 0's as 
incorrect, accumulator G is not incremented for these first 
87 vectors.   

A "past zero" flip-flop is set when counter B counts down 
to 0.  As B continues counting, it rolls over to 216 – 1, and 
continues counting down.  When counter B reaches 216 – 
87 (with the "past zero" flip-flop being set), control logic A 
stops further incrementation of accumulator G.  The raw 
fitness from G appears in reporting register H and the 
"done bit" flip-flop is set to 1.  The host computer polls this 
"done bit" to determine that the XC6216 has completed its 
fitness measurement task for the current individual.   

The flip-flop toggle rate of the chip (220 MHz for the 
XC6216) provides an upper bound on the speed at which a 
field-programmable gate array can be run.  In practice, the 
speed at which an FPGA can be run is determined by the 
longest routing delay.  We run the current unoptimized 
version of the FPGA design for the sorting network 
problem at 20 MHz.  This clock rate is approximately ten 
times slower than a contemporary serial microprocessor 
devices such as the Pentium or PowerPC chip (and a little 
less than one tenth of the FPGA's 220 MHz flip-flop toggle 
rate).   

Note that counter B and accumulator G are examples of 
tasks that are more expeditiously performed on a 
conventional serial microprocessor than on an FPGA.  
Nonetheless, because these two tasks have been allocated 
sufficient space on the FPGA, these two tasks do not 
significantly slow the operation of the FPGA.   

The above approach exploits the massive parallelism of the 
XC6216 chip in six different ways.   

First, the tasks performed by areas A, B, C, D, E, F, G, and 
H are examples of performing disparate tasks in parallel in 
physically different areas of the FPGA.  

Second, the two separate 32 ∞ 64 areas operating in 
parallel on the chip are an example (at a higher level) of 
performing identical tasks in parallel in physically different 
areas of the FPGA.  

Third, the XC6216 evaluates the 2k fitness cases 
independently of the activity of the host PC Pentium type 
computer (which simultaneously can prepare the next 
individual(s) for the XC6216).  This is an example  (at the 
highest level) of performing disparate tasks in parallel.   

Fourth, the Boolean AND functions and OR functions of 
each COMPARE–EXCHANGE operation are performed in 
parallel (in each of the vertical columns of C and E).  This 
is an example of recasting a key operation (the COMPARE–
EXCHANGE operation) as a bit-level operation so that the 
FPGA can be advantageously used.   It is also an example 
of performing two disparate operations (AND and OR) in 
parallel in physically different areas of the FPGA (i.e., 
different locations in the vertical columns of areas C and 
E).   

Fifth, numerous operations are performed in parallel in 
control logic A, counter B, answer logic F, accumulator G, 
and reporting register H.   Answer logic F of the FPGA is 
especially advantageous because numerous sequential steps 
on a conventional serial microprocessor to determine 
whether k bits are properly sorted.   Answer logic F is an 
example of a multi-step task that is both successfully 
parallelized and pipelined on the FPGA.   



 

Sixth, most importantly, the 87-step pipeline (80 steps for 
areas C and E and 7 steps for answer logic F and 
accumulator G) enables 87 fitness cases to be processed in 
parallel in the pipeline.   

8. Results 
A 16-step 7-sorter (figure 4) was evolved that has two 
fewer steps than the sorting network described in the 1962 
O'Connor and Nelson patent on sorting networks.  This 
genetically evolved 7-sorter has the same number of steps 
as the 7-sorter that was devised by Floyd and 
Knuth.subsequent to the patent and has been proven to be 
minimal (Knuth 1973).   

 
Figure 4  Genetically evolved 7-sorter.  Using a population 
size of 60,000,  a 19-step 8-sorter (figure 5) was evolved 
on generation 58.   This number of steps is known to be 
minimal (Knuth 1973).   

 
Figure 5  Genetically evolved 19-step 8-sorter.  Using a 

population size of 100,000,  a 25-step 9-sorter (figure 6) 
was evolved on generation 105. . This number of steps is 
known to be minimal (Knuth 1973).    

 
Figure 6  Genetically evolved 25-step 9-sorter.  9. 

Evolutionary Incrementalism 
A default hierarchy is a set of problem-solving rules in 
which one (or possibly more) default rules satisfactorily 
handles the vast majority of instances of a problem, while a 
set of exception-handling rules then makes the corrections 
necessary to satisfactorily handle the remaining instances.  
A familiar example of a default hierarchy is the spelling 
rule "I before E, except after C."  It has been observed that 
human problem-solving often employs the style of default 
hierarchies (Holland 1986, 1987; Holland et al. 1986).   

Figure 7 shows the percentage of the 2k  = 512 fitness 
cases that become correctly sorted on each of the 25 steps 
of the genetically evolved minimal sorting network for nine 
items of figure 6.  Once the k bits of any one of the 2k  
fitness cases are arranged into the correct order, no 
COMPARE–EXCHANGE operation occurring later in the 
sorting network can change the ordering of the k bits for 
that fitness case.   Thus, the percentage of fitness cases that 
are correctly sorted is a non-decreasing function of the 
number of executed steps of the network.  As can be seen, 
the graph is approximately linear.  That is, the number of 
fitness cases that become correctly sorted after each time 
step is approximately equal for each of the 25 steps.  The 
largest single increase is 50 at step 21 (about two and a half 
times the average of 20.5 fitness cases per step).  
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Figure 7  Percentage of correctly sorted fitness cases after 
each step for the genetically evolved minimal 9-sorter.   

Figure 8 shows the percentage of the fitness cases that are 
correctly sorted after deletion of single step i from the 
genetically evolved minimal 25-step 9-sorter of figure 6.   
Admittedly, the steps of a sorting network are intended to 
be executed in consecutive order.  Nonetheless, the 
deletion of single steps gives a rough indication of the 
importance of each step.  As can be seen, the degradation 
caused by most single deletions is relatively small.   
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Figure 8  Percentage of fitness cases that remain correctly 
sorted upon deletion of single steps from  for the 

genetically evolved minimal 9-sorter.   

Figure 9 shows the shows the percentage of the 2k = 512 
fitness cases that become correctly sorted on each of the 25 
steps of a human-designed 9-sorter presented in Knuth 
1973 (which does not show a minimal 7-sorter).  As can be 
seen, most steps of the sorting network satisfactorily 
dispose of relatively few of the fitness cases; however, one 
step disposes of 42% of the fitness cases (216 out of 512).   
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Figure 9  Percentage of correctly sorted fitness cases after 
each step for human-designed 9-sorter.  Figure 10 shows 

the percentage of the fitness cases that are correctly sorted 
after deletion of single step i from the human-designed 25-
step 9-sorter of figure 6.   
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Figure 10  Percentage of the fitness cases that remain 

correctly sorted upon deletion of single steps from  for the 
human-designed 25-step 9-sorter.    

We observed that the graphs for several other human-
designed minimal sorting networks displayed a similar 
highly non-linear progression.  The major non-linearity 
occurred at different places in the sequence of steps.  For 
example, over 99% of the 65,536 fitness cases of Green's 
60-step 16-sorter are handled by only half of the steps 

Although the above observations are admittedly limited to 
specific instances of one particular problem, the 
observations raise the interesting question of whether there 
is an general tendency of genetically evolved solutions to 
problems to exhibit this kind of steady incrementalism 
while human-written solutions to the same problem tend to 
employ the style of default hierarchies.  This presents an 
interesting question for future work.  

10. Conclusion 
This paper demonstrated how the massive parallelism of 
the rapidly reconfigurable Xilinx XC6216 field-
programmable gate array can be exploited to accelerate the 
computationally burdensome fitness measurement task of 
genetic programming.   
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