

Evolving Computer Programs using Rapidly
Reconfigurable Field-Programmable Gate Arrays and

Genetic Programming

John R. Koza
Computer Science Dept.

Stanford University
Stanford, California 94305-9020

koza@cs.stanford.edu
http://www-cs-

faculty.stanford.edu/~koza/

Forrest H Bennett III
Visiting Scholar

Computer Science Dept.
Stanford University

Stanford, California 94305
forrest@evolute.com

Jeffrey L. Hutchings
Convergent Design, L.L.C.

3221 E. Hollyhock Hill
Salt Lake City, UT 84121
hutch@Convergent-

Design.com

Stephen L. Bade
Convergent Design, L.L.C.

379 North, 900 East
Orem, UT, 84097

bade@Convergent-
Design.com

Martin A. Keane
Martin Keane Inc.
5733 West Grover

Chicago, Illinois 60630
makeane@ix.netcom.com

David Andre
Computer Science Division

University of California
Berkeley, California

dandre@cs.berkeley.edu

ABSTRACT

This paper describes how the massive
parallelism of the rapidly reconfigurable
Xilinx XC6216 FPGA (in conjunction with
Virtual Computing's H.O.T. Works board)
can be exploited to accelerate the time-
consuming fitness measurement task of genetic
algorithms and genetic programming. This
acceleration is accomplished by embodying
each individual of the evolving population into
hardware in order to perform the fitness
measurement task. A 16-step sorting network
for seven items was evolved that has two fewer
steps than the sorting network described in the
1962 O'Connor and Nelson patent on sorting
networks (and the same number of steps as a
7-sorter that was devised by Floyd and Knuth
subsequent to the patent and that is now
known to be minimal). Other minimal sorters
have been evolved.

1. Introduction
Field-programmable gate arrays (FPGAs) are often used to
facilitate rapid prototyping of new electronic products –
particularly those for which time-to-market and other
economic considerations preclude the design and
fabrication of a custom application-specific integrated
circuit.

Genetic programming (GP) is an extension to the genetic
algorithm (Holland 1975, Goldberg 1989, Michalewicz
1992, Mitchell 1996, and Gen and Cheng 1997) that
automatically creates a computer program to solve a
problem using a simulated evolutionary process (Koza
1992, 1994a, 1994b; Koza and Rice 1992). Genetic
programming successively transforms a population of
individual computer programs, each with an associated
value of fitness, into a new population of individuals (i.e., a
new generation), using the Darwinian principle of survival
and reproduction of the fittest and analogs of naturally
occurring genetic operations such as crossover (sexual
recombination) and mutation.

The dominant component of the computational burden of
solving non-trivial problems with the genetic algorithm or
genetic programming is the task of measuring the fitness of
each individual in each generation of the evolving
population. (Relatively little computer time is expended
on other tasks of the algorithm, such as the creation of the
initial random population at the beginning of the run and
the execution of the genetic operations during the run). In a
run of the genetic algorithm or genetic programming, the
population may contain thousands or even millions of
individuals and the algorithm may be run for dozens,
hundreds, or thousands of generations. Moreover, the
measurement of fitness for just one individual in just one
generation typically involves exposing the individual
program to hundreds or thousands of different
combinations of inputs (called fitness cases). Executing
one individual program for just one fitness case may, in
turn, entail hundreds or thousands of steps.

Field-programmable gate arrays are massively parallel
computational devices. Once an FPGA is configured, its
thousands of logical function units operate in parallel at the
chip's clock rate. The advent of rapidly reconfigurable
field-programmable gate arrays (FPGAs) and the idea of
evolvable hardware (Higuchi et al. 1993; Sanchez and
Tomassini 1996; Higuchi 1997; Thompson 1996) opens the
possiblity of embodying each individual of the evolving
population into hardware. Since the fitness measurement
task residing in the inner loop of genetic algorithm or
genetic programming constitutes the main component of
the computational burden of a run, the question arises as to
whether the massive parallellism of FPGAs can be used to
accelerate this time-consuming task.

This alluring possiblity cannot, in practice, be realized with
previously available FPGAs for four reasons.

First, the encoding schemes for the configuration bits of
almost all commercially available FPGAs are complex and
kept confidential by the FPGA manufacturers.

Second, the tasks of technology mapping, placement,
routing, and creation of the configuration bits, consume so
much time as to preclude practical use of an FPGA in the
inner loop of the genetic algorithm or genetic
programming. Even if these four tasks could be reduced
from the usual hours or minutes to as little as 10 seconds
for each individual in the population, these four tasks
would consume 106 seconds (278 hours) in a run of the
genetic algorithm or genetic programming involving a
population as minuscule as 1,000 for as short as 100
generations. A run involving a population of 1,000,000
individuals would multiply the above unacceptably long
time (278 hours) by 1,000.

Third, the 500 milliseconds typically required for the task
of downloading the configuration bits to an FPGA (brief

and insignificant for an engineer who has spent hours,
days, or months on a single prototype design) would
consume 14 hours for even a minuscule population of
1,000 that was run for as few as 100 generations. Again, a
run involving a population of 1,000,000 individuals would
multiply this already unacceptably long time (14 hours) by
1,000. What's worse – both of these unacceptably long
times (278 hours and 14 hours) are merely preliminary to
the time required by the FPGA for the actual problem-
specific fitness measurement. Thus, there is a discrepancy
of numerous orders of magnitude between the time
required for the technology mapping, placement, routing,
bit creation, and downloading tasks and the time available
for these preliminaries in the inner loop of a practical run
of the genetic algorithm or genetic programming.
Reconfigurability is not enough for practical work with
genetic algorithms and genetic programming. Rapid
reconfigurability is what is needed – where "rapid" means
times ranging between microseconds to milliseconds for all
five preliminary tasks (technology mapping, placement,
routing, bit creation, and downloading).

Fourth, the genetic algorithm starts with an initial
population of randomly created individuals and uses
probabilistic operations to breed new candidate individuals.
These randomly created individuals typically do not
conform to the design principles unconsciously employed
by humans and are often quite bizarre. Most commercially
available FPGAs are vulnerable to damage caused by
combinations of configuration bits that connect contending
digital signals to the same line. The process of verifying
the acceptability of genetically created combinations of
configuration bits is complex and would be prohibitively
slow in the inner loop of the genetic algorithm or genetic
programming. Invulnerability (or near invulnerability) to
damage is needed in order to make FPGAs practical for the
inner loop of the genetic algorithm or genetic
programming.

Section 2 describes genetic programming. Section 3
describes the Xilinx XC6216 rapidly reconfigurable FPGA.
Section 4 discusses the types of problems that may be
suitable for genetic programming and rapidly
reconfigurable FPGAs. Section 5 describes one such
problem – a mathematical problem involving minimal
sorting networks. Section 6 outlines the preparatory steps
for applying genetic programming to the problem of
evolving sorting networks. Section 7 outlines the mapping
of the fitness measurement task for sorting networks onto
an FPGA. Section 8 describes the results. Section 9
discusses an observation on evolutionary incrementalism
that suggests future work. Section 10 is the conclusion.

2. Genetic Programming
The three steps in executing a run of genetic programming
are as follows:

(1) Randomly create an initial population of individual
computer programs.

(2) Iteratively perform the following substeps (called a
generation) on the population of programs until the
termination criterion has been satisfied:
(a) Assign a fitness value to each individual

program in the population using the fitness
measure.

(b) Create a new population of individual programs
by applying the following three genetic
operations. The genetic operations are applied
to one or two individuals in the population
selected with a probability based on fitness
(with reselection allowed).
(i) Reproduce an existing individual by copying

it into the new population.
(ii) Create two new individual programs from

two existing parental individuals by
genetically recombining subtrees from each
program using the crossover operation at
randomly chosen crossover points in the
parental individuals.

(iii) Create a new individual from an existing
parental individual by randomly mutating
one randomly chosen subtree of the parental
individual.

(3) Designate the individual computer program that is
identified by the method of result designation (e.g.,
the best-so-far individual) as the result of the run of
genetic programming. This result may represent a
solution (or an approximate solution) to the
problem.

Genetic programming has been applied to numerous
problems in fields such as system identification, control,
classification, design, optimization, and automatic
programming. Since l992, over 800 papers have been
published on genetic programming.

Additional information about genetic programming can be
found in books (Banzhaf, Nordin, Keller, and Francone
1997), edited collections of papers (Kinnear 1994,
Angeline and Kinnear 1996), conference proceedings
(Koza et al. 1996, 1997), and the World Wide Web
(www.genetic-programming.org).

3. The Xilinx XC6216 FPGA
The new Xilinx XC6200 series of rapidly reconfigurable
field-programmable gate arrays addresses the four issues
(cited in section 1) of

• openness,
• rapid technology mapping, placement, routing, and

creation of the configuration bits
• rapid downloading of configuration bits, and
• invulnerability to damage.

thereby opening the possiblity of exploiting the massive
parallelism of field-programmable gate arrays in the inner
loop of the genetic algorithm and genetic programming.

The Xilinx XC6216 chip contains a 64 ∞ 64 two-
dimensional array of identical cells (Xilinx 1997). Each of
the chip's 4,096 cells contains numerous multiplexers and a
flip-flop and is capable of implementing all two-argument
Boolean functions as well as many useful three-argument
functions. Each cell can directly receive inputs from its
four neighbors (as well as certain more distant cells).

The functionality and local routing of each cell is
controlled by 24 configuration bits whose meaning is
simple, straightforward, and public.

The configuration bits of the XC6216 can be randomly
accessed, and the memory containing the configuration bits
is directly memory-mapped onto the address space of the
host processor. That is, it is not necessary to download
100% of the configuration bits in order to change only one
bit.

Also, the Xilinx XC6216 FPGA is designed so that no
combination of configuration bits for cells can cause
internal contention (i.e., conflicting 1 and 0 signals
simultaneously driving a destination) and potential damage
of the chip. This feature is especially important when the
configuration bits are being created by an evolutionary
process such as genetic programming. Specifically, it is
not possible for two or more signal sources to ever
simultaneously drive a routing line or input node of a cell.
This is accomplished by obtaining the driving signal for
each routing line and each input node from a single
multiplexer. Thus, only a single driving signal can be
selected regardless of the choice of configuration bits. In
contrast, in most other FPGAs, the driving signal is
selected by multiple independently programmable interface
points (pips). Nonetheless, care must still be taken with the
configuration bits that control the XC6216's input-output
blocks because an outside signal (with unknown voltage)
connected to one of the chip's input pins can potentially get
channeled onto the chip.

A H.O.T. Works (Hardware Object Technology) expansion
board for PC type computers is available from Virtual
Computer Corporation (www.vcc.com). The board
contains the Xilinx XC6216 reconfigurable programming
unit (RPU), SRAM memory, a programmable oscillator
that establishes a suitable clock rate for operating the
XC6216, and a PCI interface for the board housed on a
Xilinx XC4013E field-programmable gate array.

4. Problems Suitable for Genetic
Programming and FPGAs

The new Xilinx XC6216 rapidly reconfigurable field-
programmable gate array addresses several of the obstacles
to using FPGAs for the fitness measurement task of genetic

algorithms. First, the XC6216 streamlines the
downloading task because the configuration bits are in the
address space of the host processor. Second, the encoding
scheme for the configuration bits is public. Third, the
encoding scheme for the configuration bits is simple in
comparison to most other FPGAs thereby potentially
significantly accelerating the technology mapping,
placement, routing, and bit creation tasks. This simplicity
is critical because these tasks are so time-consuming as to
preclude use of conventional CAD tools to create the
configuration bits in the inner loop of a genetic algorithm.

The above positive features of the XC6216 must be
considered in light of several important negative factors
affecting all FPGAs. First, the clock rate (established by a
programmable oscillator) at which an FPGA actually
operates is often much slower (typically around ten-fold)
than that of contemporary microprocessor chips. Second,
the operations that can be performed by the logical function
units of an FPGA are extremely primitive in comparison to
the 32-bit arithmetic operations that can be performed by
contemporary microprocessor chips.

However, the above negative factors may, in turn, be
counterbalanced by the fact that the FPGA's logical
function units operate in parallel. The existing XC6216
chip has 4,096 cells and chips of this same 6200 series will
be available shortly with four times as many logical
function units. A ten-fold slowing of the clock rate can be
more than compensated by a thousand-fold acceleration
due to parallelization.

The bottom line is that rapidly reconfigurable field-
programmable gate arrays can be highly beneficial for
certain types of problems.

5. Minimal Sorting Networks
A sorting network is an algorithm for sorting items
consisting of a sequence of comparison-exchange
operations that are executed in a fixed order. Figure 1
shows a sorting network for four items.

A 1

A 2

A 3

A 4
Figure 1 Minimal sorting network for 4 items.

The to-be-sorted items, A1, A2, A3, A4, start at the left on
the horizontal lines. A vertical line connecting horizontal
line i and j indicates that items i and j are to be compared
and exchanged, if necessary, so that the larger of the two is
on the bottom. In this figure, the first step causes A1 and
A2 to be exchanged if A2 < A1. This step and the next
three steps cause the largest and smallest items to be routed
down and up, respectively. The fifth step ensures that the
remaining two items end up in the correct order. The
correctly sorted output appears at the right. A five-step
network is known to be minimal for four items.

Sorting networks are oblivious to their inputs in the sense
that they always perform the same fixed sequence of
comparison-exchange operations. Nonetheless, they are of
considerable practical importance because they are more
efficient for sorting small numbers of items than the well-
known non-oblivious sorting algorithms such as Quicksort
and are therefore often embedded in commercial sorting
software.

Thus, there is considerable interest in sorting networks with
a minimum number of comparison-exchange operations.
There has been a lively search over the years for smaller
sorting networks (Knuth 1973). In U. S. patent 3,029,413,
O'Connor and Nelson (1962) described sorting networks
for 4, 5, 6, 7, and 8 items using 5, 9, 12, 18, and 19
comparison-exchange operations, respectively.

During the l960s, Floyd and Knuth devised a 16-step
seven-sorter and proved it to be a minimal seven-sorter.
They also proved that the four other sorting networks in the
1962 O'Connor and Nelson patent were minimal.

The 16-sorter has received considerable attention. In 1962,
Bose and Nelson devised a 65-step sorting network for 16
items. In 1964, Batcher and Knuth presented a 63-step 16-
sorter. In l969, Shapiro discovered a 62-step 16-sorter and,
in the same year, Green discovered one with 60 steps.

Hillis (1990, 1992) used the genetic algorithm to evolve
16-sorters with 65 and 61 steps – the latter using co-
evolution of a population of sorting networks competing
with a population of fitness cases. In this work, Hillis
incorporated the first 32 steps of Green's 60-step 16-sorter
as a fixed beginning for all sorters (Juille 1995).

Juille (1995) used an evolutionary algorithm to evolve a
13-sorter with 45 steps thereby improving on the 13-sorter
with 46 steps presented in Knuth (1973). Juille (1997) has
also evolved networks for sorting 14, 15, and 16 items
having the same number of steps (i.e., 51, 56, and 60,
respectively) as reported in Knuth (1973).

As the number of items to be sorted increases, construction
of a minimal sorting network becomes increasingly
difficult. In addition, verification of the validity of a
network (through analysis, instead of exhaustive
enumeration) grows in difficulty as the number of items to
be sorted increases. A sorting network can be exhaustively
tested for validity by testing all n! permutations of n
distinct numbers. However, thanks to the "zero-one
principle" (Knuth 1973, page 224), if a sorting network for
n items correctly sorts n bits into non-decreasing order
(i.e., all the 0's ahead of all the 1's) for all 2n sequences of
n bits, it necessarily will correctly sort any set of n distinct
numbers into non-decreasing order. Thus, it is sufficient to
test a putative 16-sorter against only 216 = 65,536
combinations of binary inputs, instead of all 16! ~ 2 ∞

1013 inputs. Nonetheless, in spite of this "zero-one
principle," testing a putative 16-sorter consisting of around
60 steps on 65,536 different 16-bit input vectors is a
formidable amount of computation when it appears in the
inner loop of a genetic algorithm.

6. Preparatory Steps for Genetic
Programming

Before applying genetic programming to a problem, the
user must perform six major preparatory steps, namely (1)
identifying the terminals, (2) identifying the primitive
functions, (3) creating the fitness measure, (4) choosing
control parameters, (5) setting the termination criterion and
method of result designation, and (6) determining the
architecture of the program trees in the population.

For the problem of evolving a sorting network for 16 items,
the terminal set, T, is

T = {D1, ..., D16, NOOP}.
Here NOOP is the zero-argument "No Operation" function.

The function set, F, is

F = {COMPARE–EXCHANGE, PROG2, PROG3, PROG4}.

Note that none of these functions have return values.

Each individual in the population consists of a constrained
syntactic structure composed of primitive functions from
the function set, F, and terminals from the terminal set, T
such that the root of each program tree is a PROG2,
PROG3, or PROG4; each argument to PROG2, PROG3, and
PROG4 must be a NOOP or a function from F; and both
arguments to every COMPARE–EXCHANGE function must
be from T (but not NOOP).

The PROG2, PROG3, and PROG4 functions respectively
evaluate each of their two, three, or four arguments
sequentially.

The two-argument COMPARE–EXCHANGE function
changes the order of the to-be-sorted bits. The result of
executing a (COMPARE–EXCHANGE i j) is that the bit
currently in position i of the vector is compared with the bit
currently in position j of the vector. If the first bit is
greater than the second bit, the two bits are exchanged.
That is, the effect of executing a(COMPARE–EXCHANGE
i j) is that the two bits are sorted into non-decreasing
order. Table 1 shows the two results Ri and produced by
executing a (COMPARE–EXCHANGE i j). Note that
column Ri is the Boolean AND function and column Rj is
the Boolean OR function.
Two Arguments Two Results

Ai Aj Ri Rj

0 0 0 0

0 1 0 1
1 0 0 1
1 1 1 1

Table 1 The COMPARE–EXCHANGE function.

The fitness of each individual program in the population is
based on the correctness of its sorting of 216 = 65,536
fitness cases consisting of all possible vectors of 16 bits.
If, after an individual program is executed on a particular
fitness case, all the 1's appear below all the 0's), the
program has correctly sorted that particular fitness case.

Because our goal is to evolve small (and preferably
minimal) sorting networks, we ignore exchanges where i =
j and exchanges that are identical to the previous exchange.
Moreover, during the depth-first execution of a program
tree, only the first Cmax = 65 COMPARE–EXCHANGE
functions (i.e., five more steps than in Green's 60-step 16-
sorter) in a program are actually executed (thereby
relegating the remainder of the program to be unused
code).

Hits are defined as the number of fitness cases for which
the sort is performed correctly.

The fitness measure for this problem is multi-objective in
that it involves both the correctness and size of the sorting
network. Standardized fitness is defined in a lexical
fashion to be the number of fitness cases (0 to 216) for
which the sort is performed incorrectly plus 0.01 times the
number (1 to Cmax) of COMPARE–EXCHANGE functions
that are actually executed. For example, the fitness of an
imperfect sorting network for 16 items with 60 COMPARE–
EXCHANGE functions that correctly handles all but 12
fitness cases (out of 216) is 12.60. The fitness of a perfect
16-sorter with 60 COMPARE–EXCHANGE functions (such
as Green's) is 0.60.

The population size was 1,000. The percentage of genetic
operations on each generation was 89% one-offspring
crossovers, 10% reproductions, and 1% mutations. The
maximum size, Hrpb, for the result-producing branch was
300 points. The other parameters for controlling the runs
were the default values specified in Koza 1994a (appendix
D). The architecture of the overall program consisted of
one result-producing branch.

7. Mapping the Problem onto the Chip
The problem of evolving sorting networks was run on a
host PC Pentium type computer with a Virtual Computer
Corporation "HOT Works" PCI board containing a Xilinx
XC6216 field-programmable gate array. This combination
permits the field-programmable gate array to be
advantageously used for the computationally burdensome

fitness measurement task while permitting the general-
purpose host computer to perform all the other tasks.

In this arrangement, the host PC begins the run by creating
the initial random population (with the XC6216 waiting).
Then, for generation 0 (and each succeeding generation),
the PC creates the necessary configuration bits to enable
the XC6216 to measure the fitness of the first individual
program in the population (with the XC6216 waiting).
Thereafter, the XC6216 measures the fitness of one
individual. Note that the PC can simultaneously prepare
the configuration bits for the next individual in the
population and poll to see if the XC6216 is finished. After
the fitness of all individuals in the current generation of the
population is measured, the genetic operations
(reproduction, crossover, and mutation) are performed
(with the XC6216 waiting). This arrangement is beneficial
because the computational burden of creating the initial
random population and of performing the genetic
operations is small in comparison with the fitness
measurement task.

The clock rate at which a field-programmable gate array
can be run on a problem is considerably slower than that of
a contemporary serial microprocessor (e.g., Pentium or
PowerPC) that might run a software version of the same
problem. Thus, in order to advantageously use the Xilinx
XC6216 field-programmable gate array, it is necessary to
find a mapping of the fitness measurement task onto the
XC6216 that exploits at least some of the massive
parallelism of the 4,096 cells of the XC6216.

Figure 2 shows our placement on 32 horizontal rows and
64 vertical columns of the XC6216 chip of eight major
computational elements (labeled A through H). Broadly,
fitness cases are created in area B, are sorted in areas C, D,
and E, and are evaluated in F and G. The figure does not
show the ring of input-output blocks on the periphery of
the chip that surround the 64 ∞ 64 area of cells or the
physical input-output pins that connect the chip to the
outside. The figure does not reflect the fact that two such
32 ∞ 64 areas operate in parallel on the same chip.

H G F E
D

CBA

Figure 2 Arrangement of elements A through H on a 32 ∞

64 portion of the XC6216 chip.

For a k-sorter (k ≤ 16), a 16-bit counter B (near the upper
left corner of the chip) counts down from 2k - 2 to 0 under
control of control logic A (upper left corner). The vector of
k bits resident in counter B on a given time step represents
one fitness case of the sorting network problem. The
vector of bits from counter B is fed into the first (leftmost)
16 ∞ 1 vertical column of cells of the large 16 ∞ 40 area C.
Counter B is an example of a task that is easily performed
on a conventional serial microprocessor, but which
occupies considerable space (but does not consume not
considerable time) on the FPGA.

Each 16 ∞ 1 vertical column of cells in C (and each cell in
similar area E) corresponds to one COMPARE–EXCHANGE
operation of an individual candidate sorting network. The
vector of 16 bits produced by the 40th (rightmost) sorting
step of area C then proceeds to area D.

Area D is a U-turn area that channels the vector of 16 bits
from the rightmost column of area C into the first
(rightmost) column of the large 16 ∞ 40 area E.

The final output from area E is checked by answer logic F
for whether the individual candidate sorting network has
correctly rearranged the original incoming vector of bits so
that all the 0's are above all the 1's. The 16-bit accumulator
G is incremented by one if the bits are correctly sorted.
Note that the 16 bits of accumulator G are sufficient for
tallying the number of correctly sorted fitness cases
because the host computer starts counter B at 2k - 2,
thereby skipping the uninteresting fitness case of consisting
of all 1's (which cannot be incorrectly sorted by any
network). The final value of raw fitness is reported in 16-
bit register H after all the 2k - 2 fitness cases have been
processed.

The logical function units and interconnection resources of
areas A, B, D, F, G, and H are permanently configured to
handle the sorting network problem for all k ≤ 16.

The two large areas, C and E, together represent the
individual candidate sorting network. The configuration of
the logical function units and interconnection resources of
the 1,280 cells in areas C and E become personalized to the
current individual candidate sorting network.

For area C, each cell in a 16 ∞ 1 vertical column is
configured in one of three main ways. First, the logical
function unit of exactly one of the 16 cells is configured as
a two-argument Boolean AND function (corresponding to
result Ri of table 1). Second, the logical function unit of
exactly one other cell is configured as a two-argument
Boolean OR function (corresponding to result Rj of table
1). Bits i and j become sorted into the correct order by
virtue of the fact that the single AND cell in each 16 ∞ 1
vertical column always appears above the single OR cell.
Third, the logical function units of 14 of the 16 cells are
configured as "pass through" cells that horizontally pass
their input from one vertical column to the next.

For area E, each cell in a 16 ∞ 1 vertical column is
configured in one of three similar main ways.

There are four subtypes each of AND and OR cells and
four types of "pass through" cells. Half of these subtypes
are required because all the cells in area E differ in
chirality (handedness) from those in area C in that they
receive their input from their right and deliver output to
their left.

If the sorting network has fewer than 80 COMPARE–
EXCHANGE operations, 16 "pass through" cells are placed
in the last few vertical columns of area E . The genetic
operations are constrained so as to not produce networks
with more than 80 steps and, as previously mentioned, only
the first Cmax < 80 steps are actually executed.

Within each cell of areas C and E, the one-bit output of the
cell's logical function unit is stored into a flip-flop. The
contents of the 16 flip-flops in one vertical column become
the inputs to the next vertical column on the next time step.

The overall arrangement operates as an 87-stage pipeline
(the 80 stages of areas C and E, the three stages of answer
logic F, and four stages of padding at both ends of C and
E).

Figure 3 shows the bottom six cells of an illustrative
vertical column from area C whose purpose is to
implement a (COMPARE–EXCHANGE 2 5) operation.
As can be seen, cell 2 (second from top of the figure) is
configured as a two-argument Boolean AND function (*)
and cell 5 is configured as a two-argument OR function
(+). All the remaining 14 cells of the vertical column (of

which only four are shown in this abbreviated figure) are
"pass through" cells. These "pass through" cells
horizontally convey the bit in the previous vertical column
to the next vertical column. Every cell in the Xilinix
XC6216 has the additional capacity of being able to convey
one signal in each direction as a "fly over" signal that plays
no role in the cell's own computation. Thus, the two
"intervening" "pass through" cells (3 and 4) that lie
between the AND and OR cells (1 and 5) is configured so
that it conveys one signal vertically upwards and one signal
vertically downwards as "fly over" signals. These "fly
overs" of the two intervening cells (3 and 4) enable cell 2's
input to be shared with cell 5 and cell 5's input to be shared
with cell 2. Specifically, the input coming into cell 2
horizontally from the previous vertical column (i.e., from
the left in figure 3) is bifurcated so that it feeds both the
two-argument AND in cell 2 and the two-argument OR in
cell 5 (and similarly for the input coming into cell 5
horizontally).

Notice that when a 1 is received from the previous vertical
column on horizontal row 2 and a 0 is received on
horizontal row 5 (i.e., the two bits are out of order), the
AND of cell 2 and the OR of cell 5 cause a 0 to be emitted
as output on horizontal row 2 and a 1 to be emitted as
output on horizontal row 5 (i.e., the two bits have become
sorted into the correct order).

The remaining "pass through" cells (i.e., cells 1 and 6 in
figure 3 and cells 7 through 16 in the full 1 ∞ 16 vertical
column) are of a subtype that does not have the "fly over"
capability of the two "intervening" cells (3 and 4). The
design of this subtype prevents possible reading of signals
(of unknown voltage) from the input-output blocks that
surround the main 64 ∞ 64 area of the chip. All AND and
OR cells are similarly designed since they necessarily
sometimes occur at the top or bottom of a vertical column.

Figure 3 Implementation of (COMPARE–EXCHANGE 2

5).

Note that the intervening "pass through" cells (cells 3 and 4
in figure 3) invert their "fly over" signals. Thus, if there is
an odd number of "pass through" cells intervening
vertically between the AND cells and OR cells, the signals
being conveyed upwards and downwards in a vertical
column will arrive at their destinations in inverted form.
Accordingly, special subtypes of the AND cells and OR
cells reinvert (and thereby correct) such arriving signals.

Answer logic F determines whether the 16 bits coming
from the 80th column of the pipleine (from the left end of
area E) are properly sorted – that is, the bits are of the form
0j116-j.

When the XC6216 begins operation for a particular
individual sorting network, all the 16 ∞ 80 flip-flops in C
and E (as well as the flip-flops in three-stage answer logic
F, the four insulative stages, and the "done bit" flip-flop)
are initialized to zero. Thus, the first 87 output vectors
received by the answer logic F each consist of 16 0's.
Since the answer logic F treats a vector of 16 0's as
incorrect, accumulator G is not incremented for these first
87 vectors.

A "past zero" flip-flop is set when counter B counts down
to 0. As B continues counting, it rolls over to 216 – 1, and
continues counting down. When counter B reaches 216 –
87 (with the "past zero" flip-flop being set), control logic A
stops further incrementation of accumulator G. The raw
fitness from G appears in reporting register H and the
"done bit" flip-flop is set to 1. The host computer polls this
"done bit" to determine that the XC6216 has completed its
fitness measurement task for the current individual.

The flip-flop toggle rate of the chip (220 MHz for the
XC6216) provides an upper bound on the speed at which a
field-programmable gate array can be run. In practice, the
speed at which an FPGA can be run is determined by the
longest routing delay. We run the current unoptimized
version of the FPGA design for the sorting network
problem at 20 MHz. This clock rate is approximately ten
times slower than a contemporary serial microprocessor
devices such as the Pentium or PowerPC chip (and a little
less than one tenth of the FPGA's 220 MHz flip-flop toggle
rate).

Note that counter B and accumulator G are examples of
tasks that are more expeditiously performed on a
conventional serial microprocessor than on an FPGA.
Nonetheless, because these two tasks have been allocated
sufficient space on the FPGA, these two tasks do not
significantly slow the operation of the FPGA.

The above approach exploits the massive parallelism of the
XC6216 chip in six different ways.

First, the tasks performed by areas A, B, C, D, E, F, G, and
H are examples of performing disparate tasks in parallel in
physically different areas of the FPGA.

Second, the two separate 32 ∞ 64 areas operating in
parallel on the chip are an example (at a higher level) of
performing identical tasks in parallel in physically different
areas of the FPGA.

Third, the XC6216 evaluates the 2k fitness cases
independently of the activity of the host PC Pentium type
computer (which simultaneously can prepare the next
individual(s) for the XC6216). This is an example (at the
highest level) of performing disparate tasks in parallel.

Fourth, the Boolean AND functions and OR functions of
each COMPARE–EXCHANGE operation are performed in
parallel (in each of the vertical columns of C and E). This
is an example of recasting a key operation (the COMPARE–
EXCHANGE operation) as a bit-level operation so that the
FPGA can be advantageously used. It is also an example
of performing two disparate operations (AND and OR) in
parallel in physically different areas of the FPGA (i.e.,
different locations in the vertical columns of areas C and
E).

Fifth, numerous operations are performed in parallel in
control logic A, counter B, answer logic F, accumulator G,
and reporting register H. Answer logic F of the FPGA is
especially advantageous because numerous sequential steps
on a conventional serial microprocessor to determine
whether k bits are properly sorted. Answer logic F is an
example of a multi-step task that is both successfully
parallelized and pipelined on the FPGA.

Sixth, most importantly, the 87-step pipeline (80 steps for
areas C and E and 7 steps for answer logic F and
accumulator G) enables 87 fitness cases to be processed in
parallel in the pipeline.

8. Results
A 16-step 7-sorter (figure 4) was evolved that has two
fewer steps than the sorting network described in the 1962
O'Connor and Nelson patent on sorting networks. This
genetically evolved 7-sorter has the same number of steps
as the 7-sorter that was devised by Floyd and
Knuth.subsequent to the patent and has been proven to be
minimal (Knuth 1973).

Figure 4 Genetically evolved 7-sorter. Using a population
size of 60,000, a 19-step 8-sorter (figure 5) was evolved
on generation 58. This number of steps is known to be
minimal (Knuth 1973).

Figure 5 Genetically evolved 19-step 8-sorter. Using a

population size of 100,000, a 25-step 9-sorter (figure 6)
was evolved on generation 105. . This number of steps is
known to be minimal (Knuth 1973).

Figure 6 Genetically evolved 25-step 9-sorter. 9.

Evolutionary Incrementalism
A default hierarchy is a set of problem-solving rules in
which one (or possibly more) default rules satisfactorily
handles the vast majority of instances of a problem, while a
set of exception-handling rules then makes the corrections
necessary to satisfactorily handle the remaining instances.
A familiar example of a default hierarchy is the spelling
rule "I before E, except after C." It has been observed that
human problem-solving often employs the style of default
hierarchies (Holland 1986, 1987; Holland et al. 1986).

Figure 7 shows the percentage of the 2k = 512 fitness
cases that become correctly sorted on each of the 25 steps
of the genetically evolved minimal sorting network for nine
items of figure 6. Once the k bits of any one of the 2k
fitness cases are arranged into the correct order, no
COMPARE–EXCHANGE operation occurring later in the
sorting network can change the ordering of the k bits for
that fitness case. Thus, the percentage of fitness cases that
are correctly sorted is a non-decreasing function of the
number of executed steps of the network. As can be seen,
the graph is approximately linear. That is, the number of
fitness cases that become correctly sorted after each time
step is approximately equal for each of the 25 steps. The
largest single increase is 50 at step 21 (about two and a half
times the average of 20.5 fitness cases per step).

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 7 Percentage of correctly sorted fitness cases after
each step for the genetically evolved minimal 9-sorter.

Figure 8 shows the percentage of the fitness cases that are
correctly sorted after deletion of single step i from the
genetically evolved minimal 25-step 9-sorter of figure 6.
Admittedly, the steps of a sorting network are intended to
be executed in consecutive order. Nonetheless, the
deletion of single steps gives a rough indication of the
importance of each step. As can be seen, the degradation
caused by most single deletions is relatively small.

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 8 Percentage of fitness cases that remain correctly
sorted upon deletion of single steps from for the

genetically evolved minimal 9-sorter.

Figure 9 shows the shows the percentage of the 2k = 512
fitness cases that become correctly sorted on each of the 25
steps of a human-designed 9-sorter presented in Knuth
1973 (which does not show a minimal 7-sorter). As can be
seen, most steps of the sorting network satisfactorily
dispose of relatively few of the fitness cases; however, one
step disposes of 42% of the fitness cases (216 out of 512).

0
20
40
60
80

100

1 4 7 10 13 16 19 22 25

Figure 9 Percentage of correctly sorted fitness cases after
each step for human-designed 9-sorter. Figure 10 shows

the percentage of the fitness cases that are correctly sorted
after deletion of single step i from the human-designed 25-
step 9-sorter of figure 6.

0
20
40
60
80

100

1 4 7 10 13 16 19 22 25

Figure 10 Percentage of the fitness cases that remain

correctly sorted upon deletion of single steps from for the
human-designed 25-step 9-sorter.

We observed that the graphs for several other human-
designed minimal sorting networks displayed a similar
highly non-linear progression. The major non-linearity
occurred at different places in the sequence of steps. For
example, over 99% of the 65,536 fitness cases of Green's
60-step 16-sorter are handled by only half of the steps

Although the above observations are admittedly limited to
specific instances of one particular problem, the
observations raise the interesting question of whether there
is an general tendency of genetically evolved solutions to
problems to exhibit this kind of steady incrementalism
while human-written solutions to the same problem tend to
employ the style of default hierarchies. This presents an
interesting question for future work.

10. Conclusion
This paper demonstrated how the massive parallelism of
the rapidly reconfigurable Xilinx XC6216 field-
programmable gate array can be exploited to accelerate the
computationally burdensome fitness measurement task of
genetic programming.

Acknowledgments
Phillip Freidin of Silicon Spice provided invaluable
information concerning FPGAs and helpful comments on
this paper. Stefan Ludwig of DEC and Steve Casselman
and John Schewel of Virtual Computer Corporation
provided helpful assistance concerning operation of the
XC6216.

References

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors).
1996. Advances in Genetic Programming 2. Cambridge,
MA: The MIT Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and
Francone, Frank D. 1997. Genetic Programming – An
Introduction. San Francisco, CA: Morgan Kaufmann
and Heidelberg: dpunkt.

Gen, Mitsuo and Cheng, Runwei. 1997. Genetic
Algorithms and Engineering Design. New York: John
Wiley and Sons.

Goldberg, David E. Genetic Algorithms in Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley l989.

Higuchi, Tetsuya, Niwa, Tatsuya, Tanaka, Toshio, Iba,
Hitoshi, de Garis, Hugo, and Furuya, Tatsumi. 1993. In
Meyer, Jean-Arcady, Roitblat, Herbert L. and Wilson,
Stewart W. (editors). From Animals to Animats 2:
Proceedings of the Second International Conference on
Simulation of Adaptive Behavior. Cambridge, MA: The
MIT Press. 1993. Pages 417 – 424.

Higuchi, Tetsuya (editor). 1997. Proceedings of
International Conference on Evolvable Systems: From
Biology to Hardware (ICES-96). Lecture Notes in
Computer Science. Volume 1259. Berlin: Springer-
Verlag.

Hillis, W. Daniel. 1990. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Forrest, Stephanie (editor). Emergent Computation: Self-
Organizing, Collective, and Cooperative Computing
Networks. Cambridge, MA: The MIT Press.

Hillis, W. Daniel. 1992. Co-evolving parasites improve
simulated evolution as an optimization procedure. In
Langton, Christopher, Taylor, Charles, Farmer, J. Doyne,
and Rasmussen, Steen (editors). Artificial Life II, SFI
Studies in the Sciences of Complexity. Volume X.
Redwood City, CA: Addison-Wesley. Pages 313-324.

Holland, John H. 1975. Adaptation in Natural and
Artificial Systems. Ann Arbor, MI: University of
Michigan Press.

Holland, John H. l986. Escaping brittleness: The
possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In Michalski,
Ryszard S., Carbonell, Jaime G. and Mitchell, Tom M.
(editors). Machine Learning: An Artificial Intelligence
Approach, Volume II. Los Altos, CA: Morgan Kaufmann.
Pages 593-623.

Holland, John H. 1987. Classifier systems, Q-morphisms,
and Induction. In Davis, Lawrence (editor). Genetic
Algorithms and Simulated Annealing. London: Pittman.
Pages 116-128.

Holland, John H, Holyoak, K. J., Nisbett, R. E., and
Thagard, P. A. l986. Induction: Processes of Inference,
Learning, and Discovery. Cambridge, MA: The MIT
Press.

Juille, Hugues. 1995. Evolution of non-deterministic
incremental algorithms as a new approach for search in

state spaces. In Eshelman, L. J. (editor). Proceedings of
the Sixth International Conference on Genetic
Algorithms. San Francisco, CA: Morgan Kaufmann. 351
– 358.

Juille, Hugues. 1997. Personal communication.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in
Genetic Programming. Cambridge, MA: MIT Press.

Knuth, Donald E. 1973. The Art of Computer
Programming. Volume 3. Reading, MA: Addison-
Wesley.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic
Discovery of Reusable Programs. Cambridge, MA: MIT
Press.

Koza, John R. 1994b. Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel,
David B., Garzon, Max, Iba, Hitoshi, and Riolo, Rick L.
(editors). 1997. Genetic Programming 1997:
Proceedings of the Second Annual Conference, July 13–
16, 1997, Stanford University. San Francisco, CA:
Morgan Kaufmann.

Koza, John R., Goldberg, David E., Fogel, David B., and
Riolo, Rick L. (editors). 1996. Genetic Programming
1996: Proceedings of the First Annual Conference, July
28-31, 1996, Stanford University. Cambridge, MA: MIT
Press.

Koza, John R., and Rice, James P. 1992. Genetic
Programming: The Movie. Cambridge, MA: MIT Press.

Michalewicz, Zbignlew. Genetic Algorithms + Data
Structures = Evolution Programs. Berlin: Springer-
Verlag 1992.

Mitchell, Melanie. 1996. An Introduction to Genetic
Algorithms. Cambridge, MA: The MIT Press.

O'Connor, Daniel G. and Nelson, Raymond J. 1962.
Sorting System with N-Line Sorting Switch. United States
Patent number 3,029,413. Issued April 10, 1962.

Sanchez, Eduardo and Tomassini, Marco (editors). 1996.
Towards Evolvable Hardware. Lecture Notes in
Computer Science, Volume 1062. Berlin: Springer-
Verlag.

Thompson, Adrian. 1996. Silicon evolution. In Koza, John
R., Goldberg, David E., Fogel, David B., and Riolo, Rick
L. (editors). 1996. Genetic Programming 1996:

Proceedings of the First Annual Conference, July 28-31,
1996, Stanford University. Cambridge, MA: MIT Press.

Xilinx. 1997. XC6000 Field Programmable Gate Arrays:
Advance Product Information. January 9, 1997. Version
1.8.

