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There are two world-class geometers in our country—
Lobachevskii and Fedorov.
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All will be regular, regularity underlies the world.
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Mankind has been guided by the notion of regularity
since ancient times. Platonic and Archimedean bodies,
Mauritanian ornaments, parquets, Kepler snowflakes,
Hauy mineralogy, Galois’ theory, Lobachevskii geom-
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From Bulgakov’s 

 

Master and Margarita

 

.

 

etry, and the Mendeleev Table are examples of the
exhaustive interpretation of the particular manifesta-
tions of regularity. However, the general meaning of
regularity as a universal and natural law, even in human
thought, was first realized by the prominent thinker,
humanist, and Russian patriot Evgraf Stepanovich
Fedorov (December 10, 1853–May 21, 1919). In its
essence, science is unified, and, therefore, Fedorov’s
theory of regularity covers all knowledge accumulated
by mankind throughout its entire existence. The 21st
century began with the triumph of Fedorov’s ideas in
both the world of quarks and the global structure of the
Universe and in the new school handbooks on geome-
try.

Fedorov’s life was far from easy. He became inter-
ested in geometry in his childhood and, being only six-
teen years old, started writing a book which, to a large
extent, anticipated the development of geometry. He
failed to enter the Medical–Surgical Academy (1874),
and entered the Technological Institute, where he care-
fully studied 

 

Foundations of Chemistry

 

 by
D.I. Mendeleev (1834–1907), one of the most impor-
tant scientific books written in the 19th century.
Fedorov combined these studies with revolutionary
activity—he was a member of the organization 

 

Land
and Freedom

 

. It is believed that it was Italian
(Fedorov’s conspiratorial name) who was the excellent
violinist who helped famous revolutionary P.A. Kropot-
kin to escape from the Peter and Paul Fortress in 1876.
In 1880, Fedorov, who intuitively realized the funda-
mental importance of crystallography in the develop-
ment of geometry, started his studies at the Mining
Institute. Since then, all Fedorov’s weekdays, joys, and
troubles were associated with this institute. Fedorov, a
Member of the Academy, died of starvation in 1919.
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His coffin was carried high in people’s hands for the
whole way from the Mining Institute (Gorny) to the
Smolensk cemetery [1].

FEDOROV’S 

 

ELEMENTS

 

Fedorov recollected [2] that in 1863 he came across
his elder brother’s handbook on elementary geometry
written by Shul’gin for military schools. He looked
through its first pages and the contents gave rise to such
an emotion that he was carried away. A ten year old boy
had got through Shulgin’s planimetry in two days. Six
years later, being a cadet of the St. Nicholas Military
Engineering School, Fedorov started writing his first
book, 

 

The Elements of the Study of Configurations

 

 [3].

The St. Nikolas Military Engineering School was
located at the Mikhailovsky (Engineering) Castle. It
seems that the spirit of the former owner of the castle,
Emperor Paul I, brought him to the concepts of regular-
ity and order, which Paul I tried to establish in Russia.
The book was completed in 1879 but was published
only in 1885 with the help of general of artillery and
Professor of physics A.V. Gadolin (1828–1892), the
author of the most progressive method of derivation of
32 crystal classes [4].

Fedorov’s book was preceded by two famous trea-
tises—Euclid’s 

 

Elements

 

 and Newton’s 

 

Principia

 

.
Here, the question may arise as to how a young scientist
could dare to choose such a title for his first book. How-
ever, by this time (1878), Fedorov was already an orga-
nizer of an illegal socialist newspaper 

 

Nachala

 

 (ele-
ments, principles), which criticized the existing social
system and had the aim to unite all kinds of socialists
for writing a revolutionary program. In this newspaper,
Fedorov supervised the column 

 

Chronicles of the
Socialist Motion in the West

 

. The police made all possi-
ble efforts to find its anonymous publishers. After the
successful self-liquidation of the newspaper office
located at Kirochnaya ulitsa (in the house of
A.A. Panyutina, a landowner from the Perm district and
the mother of Fedorov’s future wife), Fedorov directed
all his revolutionary ardor to 

 

The Elements of the Study
of Configurations

 

. He wrote that this extremely elegant
section of elementary geometry was still almost
unstudied despite the fact that the need in this theory
was so urgent that many representatives of other natural
sciences, and first of all mineralogists, made numerous
attempts to create such a theory. However, all these
attempts failed, because the authors considered only
those aspects of the problem which were necessary for
solving their own specific problems. As a result, their
spontaneously developed theories lacked satisfactory
nomenclature and integrity, whereas mathematicians,
usually unaware of the results obtained in other
branches of science, formulated the problem quite dif-
ferently.

The distinctive feature of Fedorov’s geometry,
which distinguishes it from all the other geometries, is

the use of the concept of regularity—a configuration
composed by equivalent parts, with each of these parts
being surrounded in the same way with other equivalent
parts. Only such systems can possess the minimum
energy [5]. Thus, the finite state of any varying system
is the crystalline state, because it is only in an ideal
crystal that the particles are absolutely equivalent, i.e.,
cannot be distinguished from one another [6]. Similar
speculations brought Fedorov to the Mining Institute,
from which he graduated in 1883 at the top of his class.
According to the rules, he had to be sent on probation
work to Germany, but he never went there, because he
considered it to be humiliating to plead for something
that should be granted according to the rules.

Today, Fedorov’s 

 

Elements

 

 is considered to be one
of the deepest monographs on elementary geometry
(elementary in the sense fundamental and not simplest).
More exactly, the largest part of 

 

Elements

 

 is dedicated
to planimetry and not only to Euclidean but also spher-
ical planimetry. Stereometry is considered only in the
sections dealing with division of space (parallelohedra
and stereohedra).

Now, consider the different sections of 

 

Elements

 

.
Such a consideration can also be included into all mod-
ern handbooks on geometry, including school hand-
books.

 

Euclidean planimetry

 

 is planimetry on a Euclidean
plane, i.e., conventional planimetry. The unusual aspect
of the Fedorov planimetry is that it is based on regular-
ity. It is regular division that reveals the fundamental
properties of space. Fedorov called a planigon any
polygon that could divide a plane in a regular way.
Already the first studies of planigons gave very interest-
ing results. Thus, it turned out that only triangles, tetra-,
penta-, and hexagons can be planigons (dashed poly-
gons in Fig. 1), that any tetragon (including nonconvex
one) is a planigon, etc. Today, these results are included
even in school handbooks on geometry [7]. The exhaus-
tive theory of planigons was developed by outstanding
geometer B.N. Delaunay (Delauné) (1890–1980) [8].

A division dual to the division of a plane into plan-
igons (the apices of this division form a regular system,
Fig. 1) were considered in 1916 by outstanding crystal-
lographer A.V. Shubnikov (1887–1970) in the solution
of the following problem [9]. Let each atom in the plane
possess the same number of bonds with other atoms.
Then, how many atomic networks are formed? Since
the problem was solved by topological methods using
the generalized Euler formula, it followed that two-
dimensional crystallography was a purely topological
science. In other words, growth of a two-dimensional
crystal did not necessarily require that the bond lengths
and the bond angles formed by these bonds be fixed. At
the first stages of growth, they can be arbitrary. The
main requirement is that these patterns could be trans-
formed into regular patterns forming new bonds and
breaking old ones. These results were generalized by
Delaunay [8], who showed that all such networks can
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be constructed only from regular polygons (Fig. 1) and
that two-dimensional crystallography has a purely
topological basis. Thus, Delaunay related the theory of
planigons with the Kepler parquetry from his 

 

World’s
Harmony

 

.

The most outstanding recent achievement of the the-
ory of planigons is the Shtogrin theorem (the idea of
this theorem was suggested by the author of the present
article), according to which each regular system on a
Euclidean plane is defined locally, i.e., by the same
environment of any point of the system with other
points of this system lying within a sphere of a fixed
radius [10]. It follows from Shtogrin’s theorem that
long-range order is the consequence of the short-range

order. The long-range order can exist only in crystal
structures.

Fedorov’s planigons have not been considered as yet
in traditional handbooks on crystallography. In this
respect, the school handbooks of geometry turned out
to be more progressive [7, 11, 12].

 

Spherical planimetry

 

 deals with regular division of
a two-dimensional sphere, i.e., a sphere’s surface. All
topologically nonequivalent divisions are exhausted by
Platonic and Catalani bodies and two infinite series of
bipyramids and deltahedra (Fig. 2). These polyhedra
are called isohedra. Polyhedra dual to isohedra are
called isogons. All the topologically nonequivalent
polyhedra are exhausted by Platonic and Archimedean
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Fig. 1. 

 

11 Kepler–Shubnikov–Delaunay networks and the corresponding Dirichlet planigons. Each infinite regular network is rep-
resented by a star of regular polygons converging at the network point. The corresponding Dirichlet planigon (composed of the
points of the plane that are closer to the given lattice point than to any other point) is represented by the etched polygon. For each
network, the symbol of its two-dimensional Fedorov group is indicated as well as the corresponding Wyckoff position in this group,
and the ratio of the discreteness radius in this network, 

 

r

 

, to the radius of its coverage, 

 

R

 

.
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bodies and two infinite series of prisms and antiprisms
(Fig. 2). In fact, isogons and isohedra form the basis of
the theory of polyhedra. Therefore, the latter theory
should be related not to stereometry but rather to
planimetry on a sphere.

Proceeding from the consideration above, school
geometry [7] should rather be called planimetry and
should be complemented with the elementary data on a
Lobachevskii plane (sum of the angles of a triangle is
less than 180

 

°

 

, each regular polygon can regularly
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Fig. 2. Regular and semiregular convex polygons. Regular polygons: 5 Platonic bodies. Semiregular isogons: 13 Archimedean bod-
ies and two infinite series of prisms and antiprisms. Semiregular isohedra: 13 Catalani bodies and two infinite series of bipyramids
and deltahedra. For each polygon, its symmetry is indicated.
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divide the Lobachevskii plane). This is already used in
practice when nesting blanks in the shoe industry [13]:
soles are sewn from regular hexagons, heels, from pen-
tagons, and shin, from heptagons.

STEREOMETRY

Delaunay was the first to compare Fedorov with
Plato and Archimedes [14], because it was Fedorov
who composed the complete list of all the combinatori-
ally different polyhedra that can fill the space being in
parallel positions, the so-called Fedorov parallelohe-
dra. Delaunay called these five polyhedra the Fedorov
bodies (Fig. 3). Four of these bodies (the first, third,
fourth and fifth ones) have been known since ancient
times. The second parallelohedron can be justly called
the Fedorov dodecahedron.

The division of the Euclidean space into parallelo-
hedra (in the case of a plane, into Fedorov parallel-
ogons) is one of its basic properties. This property is
inherent only in spaces with the zero curvature. Other
spaces of a constant curvature (it is only in these spaces
that matter can be crystallized, i.e., form absolutely
equivalent and indistinguishable particles) cannot be
divided into parallelohedra. A Euclidean observer can-
not move rectilinearly in these spaces. It should also be
indicated that many other mathematicians arrived at
parallelohedra, but their derivation gave rise to serious
difficulties even for advanced mathematicians [15, 16].
Despite this, Delaunay included parallelohedra in his
school book on geometrical problems [17].

The fifth chapter of Elements, dedicated to noncon-
vex polyhedra, has still not received due attention
despite the fact that Russian mathematicians recently
reported important results obtained in the theory of
nonconvex polyhedra [18].

Elements is a versatile work, the best handbook on
regularity necessary not only for mathematicians and
natural scientists but also for any educated person. I
was surprised to see Newton’s “Principia” and
Fedorov’s Elements side by side at the honorary place
in the personal library of Marutaev, a well-known musi-
cian. It shows that people with humanitarian education
also realize the necessity of a mathematical picture of
the world.

REGULARITY OF ATOMIC AND NUCLEAR 
ORBITALS

After completion of Elements (1869–1879),
Fedorov presented to D.I. Mendeleev (1834–1907) his
new manuscript (1880) in which he first stated his new
idea—to consider the Periodic Law in terms of the the-
ory of regularity. At that time, he published only the
abstract of this work [19]. The manuscript of the com-
plete work was found in Mendeleev’s Archives many
years later [20] and was published only in 1955 [21].

Fedorov writes [21] that the human brain always
seeks regularity in everything, which is quite under-
standable, because a man can be oriented in his search
for an appropriate work only considering regularly
grouped materials and only if this regularity does not
give rise to any doubt, so that he can be satisfied and
become a master of this new field.

To explain the sequence of atomic weights of ele-
ments in the Mendeleev Table, Fedorov put forward the
hypothesis of a planetary structure of an atom. Fedorov
writes [21] that the atomic surface is the most important
factor providing the occurrence of a chemical reaction.
This signifies that small bodies forming an atom are not
arranged continuously but, similar to planets, are
spaced from one another by sufficiently large distances.
Thus, at the very beginning of his scientific carrier
(1880), Fedorov came to the concept of divisibility of
an atom. Fedorov had an inclination for physics. He
wrote a large manuscript on the theory of electricity but
refused to publish it without its experimental verifica-
tion. However, fate seemed to be against it—Fedorov
had no chance to use equipment of any physical labora-
tory and, gradually, he left physics. Only at the begin-
ning of the new 19th century did he realized that the
theory he developed a quarter of century before was, in
essence, the theory of an electron.

The theory of atomic orbitals fully confirmed his
conjecture—the structure of an atom is regular! The
equivalent charges on a sphere could be stable only if
they form a regular system. All the possible configura-
tions (within an accuracy of the combinatorial equiva-
lence) are exhausted by the Platonic and Archimedean
bodies and two infinite series of prisms and antiprisms
(Fig. 2) [22]. With due regard for quantum constraints,
each electronic level (s, p, d, and f) can be represented

(a) (b) (c) (d) (e)

Fig. 3. Fedorov bodies: 5 combinatorially different parallelohedra for the points of three-dimensional lattices. (a) General 14-face
polygon, (b) Fedorov dodecahedron, (c) parallelogrammatical dodecahedron, (d) hexagonal prism, (e) parallelepiped.
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by two centrosymmetric simplexes of the four-dimen-
sional space—the s level, by a segment; the p level, by
a regular octahedron; the d level, by a pentagonal anti-
prism; and the f level, by a regular heptagonal anti-
prism.

It should be indicated that the atoms at the d and f
levels have the symmetry forbidden for crystal struc-
tures in the Euclidean space. This results in partial
destruction of the regularity of these levels in atoms that
form a crystal structure with the Euclidean metrics
[23]. The crystals consisting of such atoms have no
defects only in the spherical, Lobachevskii, and Euclid-
ean spaces with the dimension not exceeding three [24].
Therefore, the crystals with d and f elements in the
Euclidean three-dimensional space should always con-
tain defects (e.g., quasicrystals).

Only regular systems can be stable. Fersman, who
dreamed of an institute of crystallography still in 1932
[25], wrote that everything which is not crystalline can-
not be stable and should gradually be transformed into
crystals. A crystal is such an ideal state of matter, a deep
internal order to which nature strives… [26]. It should
also be noted that any defect in a crystal is influenced
by the gradient of the crystalline field and, therefore,
such a defect would either be pushed out from the crys-
tal or form a regular system with other similar defects
[27]. In this way, the crystal “cures” itself.

The representation of the orbitals of chemical ele-
ments in the Mendeleev Table corresponds to their low-
est energy level. The concrete physical conditions give
rise to the corresponding displacements of electrons to
other admissible levels [28]. Possibly, under certain
extreme conditions, all the electrons of a carbon atom
can fill the 2p level. Then, an extremely strong carbon
modification is formed with multiple bonds [29]
(Fig. 4). Possibly, the solid part of the earth’s core con-

sists of this carbon modification and is a fractal pene-
trating the iron–nickel melt [30].

It should also be indicated that all the regular fea-
tures of the atomic shell are regularly reflected into the
atomic nucleus, which should also have a regular struc-
ture. This is confirmed by the empirically determined
magic numbers of protons and neutrons in the most sta-
ble nuclei—2, 8, 20, 50, 82, and 126. However, the
nuclei are characterized not by spherical but by the
hyperbolic regularity, and the heavier the nucleus, the
more pronounced the absolute curvature of the corre-
sponding Lobachevskii space. For example, the nuclei
of the most stable isotopes of the inert gases can pos-
sess a diamond-like structure (because of the regular
arrangement of the α particles constituting these nuclei
[29]). The nuclei in which the regularity in the arrange-
ment of α particles is violated are less stable. It is the
solution of the problem of the atomic-nucleus structure
which is based on the three theories developed by three
Russian scientists—Lobachevskii (1792–1859), Men-
deleev, and Fedorov—whose works predetermined the
development of the world’s science in the 21st century.
It is most probable that the problem of low-temperature
nuclear synthesis would also be solved via dissymme-
trization of atomic nuclei.

FEDOROV GROUPS

It was fated that, instead of working with Men-
deleev, Fedorov worked for ten years in the Geological
Committee, where he composed geological maps of
northwest Russia. As usual, Fedorov found brilliant
solutions to routine geological problems, e.g., he devel-
oped a universal theodolite method in mineralogy and
petrography (1893). He also designed a special device,
the so-called Fedorov’s stage, which allowed him to
study by the latter method the optical properties at any
point along any direction of a thin section of a rock. 

The most famous Fedorov’s work is associated with
regularity in crystal structures. Fedorov was the first to
derive 230 discrete groups of motion of the Euclidean
space with a finite independent domain (1890) [31]. In
Russia, these groups are justly called Fedorov groups.
The story of their derivation was initiated by outstand-
ing French mathematician Jordan (1838–1922) and
German physicist Sohncke (1842–1897), a follower of
Neumann (1798–1859), a prominent expert in crystal
physics from Köenigsberg. Jordan in his memories
entitled On Groups of Motion first stated that the dis-
covery made by Galois (1811–1832) can also be inter-
preted as the discovery of groups of motion. At that
time, Jordan had two students, Lie (1842–1899) and
Klein (1849–1925), who “divided” the theory of groups
into two parts—continuous groups were studied by Lie,
and discrete groups, by Klein. These two theories were
developed along different lines, so that today they can
hardly be unified.

Fig. 4. Bravais parallelepiped of the hypothetical carbon
structure described by the Fedorov group I4r/amd.
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Jordan described in his memoirs [32] 174 groups of
motion. Zohncke singled out from these groups the dis-
crete groups directly related to the arrangement of
atoms in crystal structures and found that the list of
these groups was not complete. In 1874, Zohncke
derived infinite regular systems of points on a Euclid-
ean plane [33]. In 1869, he published the list of discrete
groups of motion with the finite independent domain in
the Euclidean space which consisted only of the first-
order symmetry transformations [34]. However, he
mistakenly included into this list one group twice. This
mistake was revealed by his post graduate student
Arthur Schönflies (1853–1928), who established that
the groups can also be derived by using second-order
transformations. Schönflies started their derivation and
published intermediate results obtained. Fedorov paid
attention to these publications and decided to complete
the derivation of such groups started still in Elements.
He sent his results to Schönflies and indicated some
inaccuracies in Schönflies’ derivation. In turn, Schön-
flies made the same. From this moment on, they entered
into a lively correspondence, which concluded with the
derivation of 230 groups by both scientists. Fedorov
completed his derivation somewhat earlier [31]. This
derivation had become a landmark in the development
of natural sciences. Thus, finally, Mankind rigorously
established that crystals are regular atomic formations
which, by definition, should be described by the
Fedorov groups.

The Schönflies monograph [35] received wide rec-
ognition in Europe and since then the Schönflies nota-
tion has been widely used. Even Russian crystallogra-
phers use this notation although it is important only for
crystal classes. Germans did not forget Fedorov either.
In 1896, Fedorov, an unknown laboratory assistant
from the Geological Committee, was elected a Corre-
sponding Member of the Bavarian Academy of Sci-
ences. Klein was going to address the Russian Tzar and
to ask him to make Fedorov also a member of the Rus-
sian Academy. Only Fedorov’s resolute protest pre-
vented Klein from doing so. Fedorov’s colleagues
working with him in Krasnotyr’insk (where Fedorov
rather successfully prospected new copper deposits)
could not believe the fact that they worked with a mem-
ber of a German academy.

Neither Fedorov nor Schönflies made use of the lat-
tice classification suggested by Bravais, who had made
the first steps in group–theoretical crystallography. The
results obtained by Bravais can be considered as the
derivation of all the Fedorov groups possessed by lat-
tices [36]. Altogether, there are 14 such groups.
Another interpretation of the Bravais results is the der-
ivation of all the different groups of the integral auto-
morphisms of positive quadratic forms (arithmetic
holohedry [36]), which seems to be the deepest mean-
ing of the above classification. The best lattice classifi-
cation should be based on the Fedorov theory of paral-
lelohedra [37]. Delaunay completed this classification
and made it extremely elegant by dividing all the lat-

tices into 24 kinds [38]. This classification is the most
appropriate for solving a number of applied problems
(the unique choice of the main frame of reference in the
lattice, the rigorous description of ideal habits of crys-
tals according to Wulff, combinatorial–symmetric clas-
sification of the first Brillouin zones [39], etc.). It
should be noted that modern handbooks on crystallog-
raphy consider the types of the Bravais lattices insuffi-
ciently rigorously [40].

Fedorov’s classification of all the space groups is
much deeper than Schönflies’ classification. Fedorov
divided all the groups into symmorphic (whose crystal
class is the stabilizer of the Fedorov group), hemisym-
morhic (in which the axial hemihedry is the maximum
stabilizer of the Fedorov group), and asymmorphic (all
the remaining groups). This classification of groups
considerably facilitated their derivation. Also, it turned
out that this classification has a rather deep mathemati-
cal sense: there is a one-to-one correspondence
between the symmorphic and finite groups of integral
matrices. It is not accidental that D.K. Faddeev, a well-
known expert in algebra, used Fedorov’s classification
as the basis for the table of representations of the
Fedorov groups [41]. Faddeev’s classification is more
natural for crystallography than the classification sug-
gested in [42], which is confirmed by [43]. We believe
that it is necessary to publish a new edition of Fad-
deev’s tables which would be based on the modern
crystallographic nomenclature of the Fedorov groups
[44]. The innovations introduced into the nomenclature
in [45] seem to be excessive. The nomenclature of the
Fedorov groups convenient for computer work is given
in [46]; it is also useful for making compact tables of
these groups (Table 1) [47].

Fedorov also derived regular systems purely alge-
braically. This derivation was then repeated by the
mathematician Bogomolov [48]. The most widespread
purely algebraic method of derivation of the Fedorov
groups was suggested by Zassenhaus [49]. The method
was used to derive all the four-dimensional Fedorov
groups [50]. Geometrization of this algorithm made in
[51] resulted in the compact analytical representation
of the vector systems–the complete set of vectors in any
crystal structure (Galiulin–Delone formula [52]).

However, not all of Fedorov’s contemporaries real-
ized the meaning of the Fedorov groups, the convenient
classification of regular point systems following from
these groups, and the crystal structures composed of
such systems. Thus, Vernadsky (1843–1945) in his lec-
tures on physical crystallography delivered at the Phys-
ics Faculty of Moscow State University in 1908 stated
that crystallography can confine itself only to 32 crystal
classes [53]. Fedorov was also criticized by Wulff
(1863–1925) [54]. As a result, the Department of Crys-
tallography of the Physics Faculty of Moscow State
University made a much more modest contribution to
the development of crystallography than the Depart-
ment of Crystallography of the Mining Institute
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Table 1.  219 abstractly different Fedorov groups

Pi P1+.
P2/m P2s/m P2. Pm.
P2/b P2s/b P2s+. Pb+. 219sym = 73sym + 54hemisym + 2asym
I2/m I2. Im. (230     = 73      + 54            + 103)
I2/b Ib+. * – enantiomorphic (11)
Pmmm'' Pmma P222 Pmm2. Pmc2s. + – uniform (10)
Pccm Pmna P222s Pcc2. Pmn2s. . – degenerate (53)
Pban Pbam P2s2s2 Pma2. Pca2s+. " – caleidoscopic (7)
Pnnn Pmmn P2s2s2s+ Pnc2. Pna2s+. ' – Molnar (22)

Pnnm Pnn2.
Pcca Pba2.
Pnna 32 CRYSTAL CLASSES OF MEROHEDRY
Pbcm
Pbcn
Pccn i 1
Pnma 2/m 2 m
Pbca mmm 222 mm2

Cmmm' Cmcm C222 Cmm2. Cmc2s. 4/mm 422 4mm 4i2m 4/m 4 4i
Cccm Cmca C222s Ccc2. 6/mmm 622 6mm 6i2m 6/m 6 6i
Cmma C2mm. 3im 32 3m 3i 3
Ccca C2mb. m3m 432 4i3m m3 23

C2cm.
C2cb.

Immm' Imma I222 Imm2.
Ibam Ibca I2s2s2s Ima2.

Iba2.
Fmmm' F222 Fmm2.
Fddd Fdd2
P4/mmm'' P4/mbm' P422 P4mm. P4smc. P4i2m P4i2sm P4/m P4s/m P4. P4i
P4/mcc P4/nmm P422s P4cc. P4snm. P4i2c P4i2sc P4/n P4s/n P4s.
P4/nbm P4/mnc P4s22 P4bm. P4scm. P4r+*
P4/nnc P4s/mmc' P4s22s P4nc. P4sbc. P4im2

P4s/mcm' P4r22* P4ic2
P4s/nnm P4r22s* P4ib2
P4s/mnm' P4in2
P4s/nmc
P4/ncc
P4s/nbc
P4s/ncm
P4s/mbc

I4/mmm' P4r/amd I422 I4mm. I4rmd I4i2m I4i2d I4/m I4r/a I4. I4i
I4/mcm' I4r/acd I4r22 I4cm. I4rcd I4im2 I4r

I4ic2
P6/mmm'' P6s/mcm' P622 P6mm. P6smc. P6i2m' P6/m P6s/m P6. P6i
P6/mcc P6s/mmc' P6s22 P6cc. P6scm. P6i2c P6s.

P6rr22* P6im2'' P6rr*
P6r22* P6ic2 P6r*+

P3im1 P321 P3m1. P3i P3.
P3ic1 P3r21* P3c1. P3r*+
P3i1m P312 P31m.
P3i1c P3r12* P31c.
R3im R32 R3m R3i R3
R3ic R3c

Pm3m'' Pm3n' P432 P4i3m' Pm3' Pa3 P23
Pn3n Pn3m' P4s32 P4i3n' Pn3 P2s3

P4r32*
Im3m' Ia3d I432 I4i3m' I4i3d Im3 Ia3 I23

I4r32 I2s3
Fm3m'' Fd3m' F432 F4i3m'' Fm3' F23
Fm3c' Fd3c F4r32 F4i3c Fd3

Note: s is a twofold screw axis, r is a right-handed screw axis, and i is an inversion axis.
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founded by Fedorov. The outstanding results of the
Physics Faculty of Moscow State University were
obtained by noncrystallographers. Thus, Vlasov (1908–
1975) predicted the existence of long-range order in
plasma [55] and bending of space by a growing crystal
[56]. Ivanenko (1904–1994), together with Heisenberg,
predicted the proton–neutron model of a nucleus
(1932) and, together with Pomeranchuk, the synchro-
tron radiation (1945), formulated the problem of regu-
larity of the global structure of the Universe (1994)
[57]. A high level of crystallography at the Geology and
Chemistry Faculties of Moscow State University was
achieved by Fedorov’s followers Bokii (1909–2001)
[58], Belov (1891–1992) [59], Popov (1905–1963)
[60], and Livinskaya (1920–1994) [61]. High level of
crystallographic studies at the Moscow Institute of
Steel and Alloys is also associated with the Leningrad
school and its representative Shaskol’skaya (1913–
1983) [62]. An important role in the development of
Russian crystallography was also played by Crystallo-
graphic University created by Shubnikov, Bokii, and
Shaskol’skaya [58].

The situation with the 17 two-dimensional Fedorov
groups was quite different. They were derived by
Fedorov in 1891 [63], although, in fact, all these groups
can be found in Medieval Mauritanian ornaments [64].
Arabs decorated their mosques with such ornaments;
they symbolized for Moslems infinite regular paths to
Allah [65]. Unfortunately, there is still no handbook on
two-dimensional crystallography, which seems to be a
considerable gap in education, because many crystallo-
graphic problems can readily be understood in the two-
dimensional case. As a result, two-dimensional crystal-
lography is less used in practice than three-dimensional
crystallography.

Table 2 lists the Bravais parallelograms for the
17 two-dimensional Fedorov groups. The independent
domain of the group is hatched. Latin letters indicate
the Wyckoff positions corresponding to this group. The
symbol of the general Wyckoff position is given along
with the symbols of the special positions, which are
indicated at the corresponding symmetry elements
(mirror planes and rotation axes). Table 2 has six col-
umns. The first two columns correspond to holohedry
and contain both symmorphic and nonsymmorphic
groups in the order of a decrease in holohedry (along
the vertical); the third, fourth, and fifth columns corre-
spond to hemihedry (axial, symmorphic, and nonsym-
morphic (pb) groups); the sixth column corresponds to
tetartohedry (p, the sixth row).

To the merit of school teaching [7], which, in some
instances, is better than teaching in modern higher
schools, the elements of two-dimensional crystallogra-
phy are considered in modern school handbooks. The
level of understanding of crystallography and its rela-
tion to other sciences, and, first of all, to mathematics,
physics, chemistry, and biology, is determined by real-
ization of the meaning of the Fedorov groups.

PERFECTIONISM

Fedorov started his philosophical work on perfec-
tionism in 1872 and continued writing it for many years
[66]. His wife, Ludmila Vasil’evna Fedorova, recollects
the time before her marriage [1]: “… He told us his the-
ory of perfectionism, which I then rewrote for him.
Unfortunately, it was published with considerable cen-
sure gaps in those places where he mentioned Germans
as perfectionists and predicted their future failure.” The
term perfectionism was coined by Fedorov and signi-
fies the strive for perfection. Fedorov shows the univer-
sal nature of the main laws of evolution, which describe
the development of the most diverse phenomena. Using
the laws established in natural sciences (physics, in the
broad sense), he considered the specific features of
biology, psychology, and sociology. Fedorov believes
that evolution can never be ended with the attainment of
perfection, it can only strive for perfection. The most
elegant and perfect elements, which are formed in the
process of evolution, unavoidably disappear and make
space for new even more perfect and harmonic ele-
ments. Perfection and harmony are attained only at the
moments of their disappearance. When life is in full
swing, only its unstable forms can develop. Life deals
only with unstable forms.

Now, we draw your attention to the fact that double
helix of DNA is associated with the action of a tenfold
axis [67]. It is this axis that “protects” DNA from crys-
tallization in the Euclidean space in a way similar to the
d shell of an atom having the shape of a pentagonal
antiprism (Fig. 5), which prevents the growth of an
ideal crystal [23]. The crystal structure is uniquely
reconstructed from its nucleus. It can have no muta-
tions, so necessary for life. Thus, crystals signify death.
I heard about this Fedorov concept from Alan MacKay,
an English crystallographer, the founder of the theory
of quasicrystals [68], who in turn referred to his teacher
John Bernal (1901–1971). Bernal, the founder of pro-
tein crystallography planned to state his original posi-
tion in understanding symmetry (the addition of a five-
fold axis [69]) at the 7th International Congress of
Crystallographers in Moscow in 1966, but he could not
do it because of his illness. Instead, the Congress was
addressed by Shubnikov, who, in Fedorov’s spirit,
called the crystallographers to keep the banner of pure
crystallography [70].

The Fedorov groups form the main criterion sepa-
rating crystal structures from all the other atomic for-
mations, cannot be generalized. In the mathematical
sense, Shubnikov’s black and white groups and Belov’s
color groups are the subgroups of the Fedorov groups
and, in fact, are the mathematical interpretations of
these groups.

The latter studies of global crystal formation [71]
allow one to emphasize the above thought of Fedorov
and to state that only crystals signify depth. Other sys-
tems, e.g., quasicrystals, cannot be uniquely recon-
structed and they have no long-range order. Therefore,
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they possess the ability (although only limited) to
accommodate. One can reveal some primitive elements
of life in these systems. A crystal with defects also has
some primitive elements of life, because defects are
always subjected to the action of a force—an electric
field gradient [27, 72]. Formation of twins (considered
in one of the first of Fedorov’s articles [73]), OD struc-
tures [74] (whose theory is consistent with the theory of
twinning (Fig. 6) and unique local continuation [75]),
and the Penrose-like model of a quasicrystal [76] are
some examples of the attempts of matter to avoid the
attainment of any stable state. In all the occasions, these
attempts are stopped by Pauling’s approximants, ideal

crystal structures which, within the experimental accu-
racy, can be assigned noncrystallographic symmetry.

The simplest way of introducing mutations into a
crystal is twinning, formation of a set of crystal struc-
tures related by symmetry transformations (twinning
operations) not contained in the Fedorov group that
describes the crystal structure. The atomic structure at
the contact surface is another polymorphic modifica-
tion of the structure (diamond–lonsdaleite, sphalerite–
wurtzite, calcite–aragonite, pyrite–marcasite, etc.).
Therefore, the study of the twinning laws is the most
promising way of searching for new phases of a sub-
stance. Any plane of a crystal structure can play the part
of a twinning plane. The axial polysynthetic twins are
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formed due to multiple reflection in such planes. The
surface separating individuals in a twin is called a twin
boundary (contact surface). If the intergrowth surface is
a plane dividing the twin structure into two parts, the
twinned structures formed are called contact twins; oth-
erwise, they are called penetration twins. The contact
surface can have fractal indices.

Composition (contact) plane in twins may either
coincide with the twinning plane (mirror twin) or not
coincide with it. If a twinning axis lies in the composi-
tion plane, the twins are called parallel. If the twinning
axis is perpendicular to the composition plane, the
twins are called normal. If the composition planes are
parallel to one another, the twins are called polysyn-
thetic; otherwise, they are called cyclic. A twin is ratio-
nal if the twinning operation in the Bravais reference
system is written by rational numerals. These twins are
ideal crystals, because they are described by the
Fedorov group, which is a subgroup of the initial group.

The most widespread type of twins are merohedral
twins in which the twinning operations are the symme-
try operations of the holohedry of the individual that are
not contained in its crystal class. In this case the corre-
sponding groups of parallel translations of individuals
are the same. Sometimes, the twin symmetry can be
higher than the symmetry of an individual. These are
the mimetic twins. The processes of twinning in crys-
tals can be considered as elementary events of life.

What is life? Fedorov wrote [66]: “Thorough
consideration of the conditions of development
always shows that evolution is not a continuous
upward band, it is similar to branching observed
in crystallization from solutions. Not all the
branches of the crystalline substance propagate
uniformly, the situation is quite different. Almost
all the branches disappear one after another, i.e.,
stop growing immediately after the formation of
more favorable conditions for crystallization.
The vital branches are those which, because of
the conditions of the solution drying, would con-
tinuously maintain the highest growth rate, and
these are always the most miserable shapeless
crystallizing (but not crystallized) masses. To
some extent, everybody can observe this phe-
nomenon in water freezing on a window. Of
course, as soon as a delicate flakelike mass of
growth figures is brought into contact with a sat-
urated solution with an introduced well-shaped
little crystal, the whole flakelike mass disappears
at an amazing rate, and, instead, the introduced
crystal starts growing. This fact is even more
emblematic of the general law of development:
delicate unstable growth figures are emblematic
of motion, life, and eternal and continuous
changes, whereas a crystal is emblematic of
death, equilibrium, and immobility. No doubt,
death is stronger than life, and the attainment of
the constant conditions of mobility indicates the

moment of death and beginning of perfect crys-
tallization.”
Living matter cannot be stable. It seems that Nature

created Man in the search for new ways of its own fur-
ther development. Man differs from animals because of
his strive for intellectual activity as necessary for him as
food. Therefore, he must pay for being able to perform
such an activity [77] in the way he pays for bread and
meat. This is exactly what Fedorov himself did.
Fedorov organized the Department of Crystallography
at the Mining Institute with his own money despite the
fact that at that time he was a Director, and a progres-
sive one. “…Progress cannot be based on binding or
unbinding hands of individual citizens, providing the
most favorable conditions for an individual and the
removal of all the obstacles in the development of the
already accumulated forces” [66]. Fedorov was not
appointed a Director by the order of the administration,
he was selected by students. From 1895 to 1905,
Fedorov was a Professor of geology at the St. Peter
Academy at Petrovskoe–Razumovskoe (Now
Timiryazev Agricultural Academy in Moscow). For ten
years of his professorship, he was never invited to
deliver a lecture on crystallography at Moscow Univer-
sity. Instead, once a week, the Moscow–St. Petersburg
train stopped at the Petrovsko-Razumovskoe station to
take a sole passenger, Professor Fedorov, who went to
St. Petersburg to deliver one of his regular lectures on
crystallography at the Mining Institute.

Up to the very end of his life, Fedorov was a Russian
patriot. Because of the war with Germany, he refused to
publish in German his work “The Realm of Crystals”
[78], where he stated that goniometric data allows one
to characterize crystals and draw some conclusions on
their atomic structure. This work is still disputed by
crystallographers throughout the world. English crys-
tallographer Thomas Barker visited Fedorov to master
this method. However, without Fedorov, this work had
not been concluded.

UNITY OF SCIENCE BASED ON REGULARITY

Fedorov always stated that science is unified. This
thought is also shared by modern scientists [79, 80].
And science can be unified only based on regularity.
The most successful step in understanding the impor-
tance of such a science was made by Fedorov. The
future of science lies in its unity. As an example of the

Fig. 5. Semiregular pentagonal antiprism.
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fruitful influence of such unity, we mention here the
proof of the famous Fermat theorem by the mathemati-
cian Faddeev, who invoked for this almost all the
branches of modern mathematics [81]. The solution
was found by considering two theories—those of ellip-
tic functions and modulated forms [82]. Both these the-
ories are associated with the finite groups of integral
matrices, i.e., lead to crystallography. Attempts of find-
ing purely crystallographic (i.e., regularity-based)
proof of this theorem were also undertaken by crystal-
lographers [83].

It should also be noted that the Fedorov groups (dis-
crete groups with finite independent domains) exist in
all the spaces of constant curvatures [84–88], in partic-
ular, in Lobachevskii spaces. Fedorov deeply respected
Lobachevskii. He wrote that Lobachevskii destroyed
the artificial obstacle between mathematics and natural
sciences by proving that geometry is based not on the
indisputable truth but on the truth, which requires its
experimental verification and confirmation [89].

This attitude to mathematics formulated still in the
19th century turned out to be extremely important not
only for modern mathematics but even for teaching of
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mathematics in school. According to Arnol’d [90],
mathematics is a part of physics and, similar to physics,
is an experimental science. In the well-known article
Mathematics and Natural Sciences (1930), Gilbert
wrote that geometry is a part of physics. However, there
is also an opinion that mathematics and physics have
nothing in common. This brought the conclusion that
geometry may be excluded from all the mathematical
courses. And indeed, such an attempt has already been
made in Russia [90, p. 11]. It is timely to compare the
negative attitude of Chebyshev (1821–1894), one of the
most prominent mathematicians of the 19th century, to
Fedorov’s Elements, who wrote that the modern sci-
ence has no interest in such a geometry, with the first
epigraph to the present article and Delaunay’s words
that “Geometry is a difficult science in which one has to
think at every step.” As follows from Fedorov’s and
Delaunay’s works, one cannot state modern geometry
and mathematics, in general, without invocation of reg-
ularity, i.e., crystallography.

CONCLUSIONS
To E.S. Fedorov

Deep in beautiful vials,
Similar to a sculptor–magician,
Colorless dense solutions
Create for us beautiful crystals.

Based on the vague entangling
Of thoughts, expectations, and dreams,
The human brain endlessly sculptures
Visions of fantastic creations.

The World of ethereal ideas
Is close to the mineral realm,
Shining like crystal faces
The dreams are instilled in our hearts.

January 2, 1919
N.A. Morozov “Crystals. Star Songs”

Books 1, 2. Moscow 1920–1921
These verses addressed to Fedorov, written on Janu-

ary 2, 1919, by N.A. Morozov (1854–1946), impris-
oned for 23 years (1881–1905) in the Schliesselburg
Fortress, provoke deep thinking. What is the crystal civ-
ilization? What contribution did crystallography make
to World’s history? What is Future in the light of the
opposition of Life and Crystal? How deeply is Fedorov
understood by our contemporaries? Mankind should
always be grateful to Fedorova (1851–1936) for the
memoirs about her husband [1], which, in fact, should
be regarded as a literary masterpiece. Probably,
Fedorov would have never become the Fedorov we
know without the understanding and constant support
of his wife. We are lacking Bokii, who brought us as
closer to Fedorov. Just imagine that, being a child,

Fig. 6. Crystal twinning. Type of twins most often encountered and the symbols of twinning operations and composition planes.

No. Twin Twinning operation
and composition plane

1 Manebach twin of orthoclase KAlSi3O8 m(001)/(001)

2 Baveno twin of orthoclase m(021)/(021)

3 Right Carlsbad twin of orthoclase 2[001]/(010)

4 Left Carlsbad twin of orthoclase –

5 Swallow tail (gypsum CaSO4 · 2H2O) m(100)/(100)

6 Polysynthetic plagioclase twin (001)/(001)

7 Kalomine twin Zn4(Si2O7)(OH)2 · H2O m(001)/(001)

8 Pseudohexagonal antigrowth twins of chrysoberyl BeAl2O4 –

9 Staurolite Fe[OH]2 · 2Al2SiO5 m(032)/(032)

10 Staurolit m(232)/(232)

11 Cassiterite type (rutile TiO2) m(101)/(101)

12 Aragonite law (agaronite CaCO3) m(110)/(110)

13 ZnO twin m(001)/(001)

14 Dophin'e twin of quartz SiO2 6[001]/(101)

15 Brazilian twin of quartz m(110)/(110)

16 Twin along pinacoid (Iceland spar) 6[001]/(001)

17 Diamond twin –

18 Diamond twin along octahedron m(111)/(111)

19 Spinel twins with respect to octahedron m(111)/(111)

20 Iron cross (pyrite FeS2) m(110)/(100)

21 Maltese cross (pyrite FeS2) m(110)/(100)
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Bokii sat on Fedorov’s knee! We should also be grateful
to Nina Georgievna Furmanova, Bokii’s daughter, who
made a precious gift to us all— the reprints of the
majority of Fedorov’s articles collected by her grandfa-
ther and father and two volumes of the “Fundamentals
of Differential and Integral Calculus” written by
Fedorov [91, 92] still never mentioned in any of his bib-
liographies. The penetration into the crystallographic
meaning of Fedorov’s ideas was also facilitated by
Shafranovskiœ (1907–1994) and Frank-Kamenetskiœ
(1912–1994) [93].

The modern tendency of integration of various sci-
ences made the restoration of the Fedorov Institute
(created by Fedorov’s brightest student, Boldyrev
(1883–1946)) quite timely [94]. This Institute should
be an international organization performing the studies
in all the natural and humanitarian sciences under the
UNESCO supervision.
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