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1

The name ‘“‘combinatorial theory’ is often given to branches of mathematics
in which the central concept is an equivalence relation defined by means of
certain “allowed transformations” or “moves.” A class of objects is given, and
it is declared of certain pairs of them that one is obtained from the other by a

" “move”; and two objects are regarded as “equivalent” if, and only if, one is

obtainable from the other by a series of moves. For example, in the theory of
{ree groups the objects are words made from an alphabet a, b, - -+ ,a™, b7, -+,
and a move is the insertion or removal of a consecutive pair of letters zz™" or
£ 'z. In combinatorial topology the objects are complexes, and the allowed
moves are “breaking an edge” by the insertion of a new vertex, or the reverse
of thiz process.! In Church's “conversion calculus’™ the rules I and I1IT are
“moves” of this kind.

In many such theories the moves fall naturally into two classes, which may be
called “positive” and “negative.”” Thus in the free group the cancelling of a
pair of letters may be called a positive move, the insertion negative; in topology
the breaking of an edge, in the conversion caleulus the application of Rule I1
(elimination of a A), may be taken as the positive moves.  In theories that have
this dichotomy it 1s always important to discover whether there is what may be
called a “theorem of confiuence,” namely, whether if .{ and B are “equivalent”
it follows that there exizts a third object, C, derivable hoth from A and from B
by positive moves only. .\ closely connected problem is the search for “‘end-
forms,” or “normal forms,” i.e. objects which admit no positive move. Tt is
obvious that in a theory in which the confluence theorem holds no equivalence
class can contain more than one end-form, but there remains the question
whether in such a class any random series of positive moves must terminate at
the end-form, or whether infinite series of moves may also exist.

The purpose of this paper is to make a start on a general theory of “sets of
moves’’ by obtaining some conditions under which the answers to both the above
questions are favorable. The results are essentially about “partially-ordered”
systems, i.e. sets in which there is a transitive relation >, and sufficient condi-
tions are given for every two elements to have a lower bound (i.e. for the set to
be “directed”) if it is known that every two “‘sufficiently near” elements have a
lower bound. What further conditions are required for the existence of a
greatest lower bound is not relevant to the present purpose, and is reserved for a
later discussion.

1 See Alexander [1] and Newman [1].
2 See Church [1] and references there given.
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As an application the normal form theorem of Church and Rosser [1] in the
conversion calealus is derived.

2

We are concerned with two kinds of entities, “objects” and the “moves” per-
formed on them, and each move is associated with two objects, “initial” and
“final.” We are therefore dealing essentially with indexed 1-complexes (in
which, therefore, a positive sense is assigned in each 1-cell), the vertices being
the “objects,” and the positive l-cells the “moves.”” It will be convenient to
make use of this topological terminology.? The incidence relations are in no
wayv restricted: there may be many cells with the same vertices, and the initial
and final vertices of a cell may coineide. In diagrams the positive 1-cells slope
down the paper, and some of the terms used are chosen accordingly.

Vertices are denoted by italic letters, eells (the single word is used from now on
for “positive l-cell’””) by the letters £ %, §, w with various suffixes. “ruy”
means “there i a cell with initial vertex x and final vertex . An ordered set
of cells &, &, -+, &, form a path = if there are vertices xp, 21, - -+, Tr such
that v,y and x; arve the vertices of £ for 1 £ ¢ < k. The cell §; is direct or
reversed in 7 according ax it runs from xi to x; or from x; to 2.1, and the path
s denoted hy o1&y + es62 + -+ + ewdr, where e, 1s 1 as €; is direct or reversed.
If there are no reversed cells, 7 is a descending path. It 1s convenient to regard
a single vertex, », as a “null path’ with » as initial and final vertex. A vertex
which is not the initial vertex of any cell is a minimal vertex, or end.

If there is at least one non-null descending path from & to y we write x > .
z 1= a lower (upper) bound of xand yif v 2 zandy 2 2(if z 2 randz 2 y).

3

Expressed in this terminology the confluence property is

(A) If xy and 2 are connected by a path in the indexed complex I they have a
lower bound.

By a simple induetion on the number of cells in a path from x; to =, this property
can he deduced from the following special case of it:

(B) If x1 and x2 have an wpper bound they have also a lower bound.

This in its turn is easily dedueced from the still more special form (C):

(C) If auz, and @ > 22, &y and x2 have a lower bound.

The transition from (B) to (C) is a step towards localizing the property, and
the theorems that will be proved in this paper give conditions in which the
localization may be completed, i.e. in which (A) may be inferred from the fol-
lowing condition (holding for all a, z; and xs):

(D) If apx, and apzs , @y and X have a lower bound.

Nore. The cell and vertex terminology, although the most convenient for

3 The notions that arise are closely related to those of the theory of partially ordered sets,
but usually not identical. Except in the case of identity the terms of that theory are
therefore avoided.
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our purpose, may suggest that “ruy” implies that y is a “next” vertex below .
Actually the foree of g is that y is an element satisfving y < r, and Iving in a
certain neighborhood of ».  For example, all the conditions (A) to (D) are
satisfied if the vertices are taken to be the points of a vertieal plane, and the
positive 1-cells the downward sloping directed segments of length less than 1.

4

The simplest way of strengthening (D) so that it implies (A), is to require
that paths descending from .y and w2 to their lower bound <hall each contain one
cell: or. in terms of moves, that if two moves are ]lln--ilnli- on ian ‘J]lj['l'T X, IIII'_\'
can also bhe ]‘t']'lhlll'mi-ll one after the u1lu‘t'. and give the same result in either
order.

THEOREM | Let 2 be suel that J' i il i, and r # i, there exists b sueh
that wul aned yub. Then property () holds.

Let “ovy” denote “apy ora = 3. We prove that if awr and auypiyp - -+ wye
there i~ a b such that wcebyebapy - -« vhy and yeeby . a stronger form of (C).
suppos=c this proved for / 1 (the case k 1 following immediately from the
datum!, and let aebybay <o vhyy , and gy . I yiy = by take by to
be ye o Iy by, sinee also yeoquye there exists a by such that be_ebe and
vl and this Hl!tl[llf'll < the induetion.

Conrorrary 1.1. The theorvem remains true '_." “reh o and If;;"’f‘ 15 substilited 'I‘u"
“rub and yul n the enuneiation, No change is needed in the lll'll{ll._l

Thi= almost trivial result is sufficient to settle many of the more familiar
theorems of the kind that we are :'u!a-'lxll't'ih'_-;_ In the “word ul'nlii!‘“ :lil'l-;nl}'
referred to, o move is to be regarded as completely determined by the initial

and final words, (so that c.g. o 0 — ris regarded as the same move whether

the first or last two letters are eancelled). Henee two pairs xx ' and yy
(where x and y may be of the form « ') in the same word W, that give rise to
different L w=<ible moves on W, have no common letter and _u;i\'l' the same result
if cancelled in either order.  Sinee every series of positive moves (cancellations)
terminates it follows that all such series starting from a given word W lead to a
common end-form.

Theorems of the Jordan-Holder type also belong to this category.  The kernel
of these theorems is a theorem on modular lattices (say with the partial ordering
> and the operations V and A). If X, Y, Z are consecutive elements in a
descending chain, &, in such a lattice let the chain & obtained by substituting
Y’ for Y be said to be directly related to & (8" dr S) if X = X v Y’ and
Z =Y A Y'and & shall be related to S if it is obtainable from & by a suc-
cession of such steps.  The theorem in question is then that from any two finite
descending chains, S and &', from A to B, a pair of related chains &, and f“; :
can be obtained by the insertion of a finite number of additional terms in & and &'
respectively. This is evidently a “confluence’” theorem. To apply 1 we take
as a tvpical vertex of X the class [3] of all chains related to a chain §, and as a

positive 1-cell the ordered pairs of classes [§,], [S:], where & is obtained from &,




226 M. H. A. NEWMAN

by the insertion of one additional term,—say P—between X and Y. Then jf
S; dr &, the insertion of a suitable term in &, gives a chain S, related to S
and hence more generally any member of [&] can be made into a chain relate(
to &, by the insertion of one suitable term. Two successive “positive moves"”
on [&] ean therefore be represented by two successive insertions of new elements
in the same chain &, and evidently the order in which they are inserted does
not affect the result. The system therefore fulfils the conditions of Theorem 1,
But any two chains descending from 4 to B have an “upper bound” in 3,
namely the class [4B]. Therefore they have a “lower bound,” and this is the
required result.

6

In these examples it is obvious that if an end-form exists it is reached by ran-
dom descent. This is necessarily so in all systems with non-interference of
moves:

THEOREM 2.  (“nder the conditions of Theorem 1, if there is a descending path
of k cells from a to an end ¢, no descending path from a contains more than k cells.

If & = 1, ¥ cannot contain a cell ay with y # e, since if it does b exists such
that yub and epb, and ¢ is not an end.  In the general case let = be a descending
path & + & + -+ - + & joining a to e, and let 4 + e + - -+ + 72, be any
descending path from a.  Let £ and 9 be cells az and ay. If & = y it follows
immediately from an induction that 7 < k. If not, let the cells { and « descend
from z and y to the common vertex w. By Theorem 1 there is a descending path
o from w to a vertex < e, i.e., since e is an end, to e itself. Since & + -+« + &
has & — 1 cells, { + ¢ has, by an inductive hypothesis, at most & — 1 cells;
therefore w + o, and finally also 72 + -+« + 7;, have at most & — 1 cells,—
ie.j £ k.

CoroLLARY 2.1,  Every descending path from a s part of a descending path of k
cells from a to e (Z.e. there is “‘random descent” to e).

That Theorem 2 and Corollary 2.1 fail if the condition is weakened as in
Corollary 1.1 is shown by the example in Fig. 1, (positive cells slope downward).

The main criteria for “confluence” are established in Theorems 3, 4, 5, and 9,
all of which are independent. It is Theorems 5 and 9 that are used in the
application to the conversion calculus.

TueoreM 3. In an indexed complex in which all descending paths are finite,
(D) implies (A).

(Note that in such a complex “>" is a proper ordering, since if x > z an
infinite descending path is obtained by going round and round the re-entrant
path from z to z.)

1 Namely, if X and ¥ are in 87, insert P itself; if XYZ and XY'Z are consecutive terms
of §: and S| respectively, insert P’ = ¥’ A Pin &} ; if UXY and UX'Y, insert P =
X'V P. Ttiseasily shewn that in the second case XPYZ is related to X¥'P'Z, in the third
UXPY to UP”X'Y. Cf. Birkhoff [1] p. 37.
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The svmbol [£]; is used as an abbreviation for & + & + --- + & . Ttis
convenient to allow the value k = 0, [£], being a null path.

A peal of a path is the common vertex of a sucecessive pair of cells —¢ + 1,
(“up” before “down’’).

Let [£]); and {5z be paths descending from a vertex a to vertices b and ¢ respec-
tivelv. Let my be the path —[£]; 4+ [9)r, and let it bhe assumed that paths
m, T3, -+, 7, each leading from a to b, have been defined. Let X, be the
(finite) indexed subcomplex of = formed by all the cells occurring in the paths
m, - ,m . LThe depth in X, of a vertex x is defined to be the maximum
possible number of cells in a descending path from a to x in X, , (or 0 if there
is no such path). Thus the depth of any vertex in X,y 1s not less than its
depth in X;.

If =, contains no peak, 7.1 is not defined. 1If it contains at least one peak,
choose one, =av y, of minimum depth in X, among peaks of r, . Let the vertices

Fra. 1

immediately preceding and suceeeding y on m, he v and v, the (positive) cells
yu and ye being w and ' respeetively. There exist, by (D), paths ¢ and 7,
(either or both of which may be null), descending from w and » to a common
vertex w, and m,.; is formed from =, by substituting ¢ — r for —w + w’. The
effect is to replace the peak at y by at most two new ones, of depths in X,
at least 1 greater than that of y in X, (or zero). By a simple induction it
follows that =, has at most r peaks; and if we make the inductive hypothesis
that the peaks of m are of depth at least n in Xo. it follows that, if r < 27,
at most 2" — r peaks of wany, are of depth n or lessin Xony . Thus the induction
is complete and it is proved that «f » = 2" all peaks of =, are of depth at least n.
If [¢]. is a descending path of maximum length in X, from a to a given vertex z,
wherer = 27, {ibelongs to Xei for i = 1,2, - -+, m. Suppose that, for a certain ¢,
X, is the first of the X’s to contain {;, where j > 2". Then [¢]; is a descending
path in X ; of maximum length to its final vertex, z: , since any longer one could
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be used as part of a longer descending path to 2z in X, . Thus the depth of :,
in X, is 7. Since {; belongs to X, but to no earlier X, it is a cell of one of the
descending paths that eliminate a peak, y, in the formation of = from #
By the result of the preceding paragraph, if the depth of yin X, is p,j — 1
9e7E Bt the depth of z; in X', exceeds that of yin X, by at least 2,7 = p+2
Therefore j — 1 < 27", j <1 4 27" < 2', contrary to the hypothesis,

The series of paths my, wa, <+ terminates.  If not choose, for each n, 4
maximal descending path, ¢, , in X from a to a peak of m. . Since the fipst
cell of each of these paths is in the finite complex X there is at least one eell,
wy , which is the first eell of ¢, for an infinity of #.  Since the =econd eell of each
of thi= infinite <ubsequence i< in Xy there i= at least one cell, w . such that

wi -+ we 1= the beginning of an infinity of the o, . Continuing in this way we
obtain an infinite descending path @ + ws 4 -+ in 2, —contrary to its given

property.,

Thus the series of paths = from 5 to ¢ terminates in a path x, . which, since
it has no peak, must descend or a=eend diveetly from b to e, or else descend
from b to a vertex o and then rise to e,

The finiteness condition imposed on deseending paths in Theorem 3 cannot
be replaced by the corresponding “completeness™ condition, that every descend-
ing chain of vertices has a lower hound in 2. This i< <hown by the complex
in Fig. 3, in which the vertices e and « ave lower bounds of all sets of vertices

not containing cither of them: but ¢ and « have thems=elves no lower bound.

6. Topology of X

The complex X ean be made into a 2-complex, g by adding a 2-cell bounded
by ecach of the l-exveles @ + @ r — & oceurring in the proof of theorem 3
one for each =), Every component of =% is simply connected. Any two paths,

= and 7', conneeting vertices ay and by are deformable, by the method of Theo-

rem 3, into paths g 71 and a ry respectively, where ¢ and 7 descend to a
r r - . . . . . '

vertex as , oy and 7y to ba ; and if & stands for “is deformable into,” — 7 4+ 1~

] ’ ' .

r .
gs — 712, and —ay 4 ) ¥ 02 — 72, Where g2, 72, g2, 72 are descending paths,

the first two to as , the second two to h_-, . In this way ]I:I!ll.‘- (i % and T, llv‘it'l'lllli!l'.',
toa,.;,and o, and 7, to b, , are defined for every n.  If an infinity of different
paths descending from @, eould be made from the o, , 7;, o, and 7, an infinity
of them would necessarily contain one or other of ¢y , o1 , say oy : and of these
an infinity would contain one or other of ¢, os, <ay o2 ; and so on. The
descending path oy + gs + - - - 50 constructed would have an infinity of different
paths as subsets, and would therefore be infinite, contrary to the postulated
property of X, The number of different paths must therefore be finite.

’

It follows that for some m, 0 = 7w = 0m = ™wa = 0; i.e.

' r r o ’ r
Wi gy = T T ™ Oy P Ty ™= T T Ty — O = U,
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7

To establish our second eriterion, we suppose that I is the sum of two sub-
complexes,” L and R, and shall use the terms “L-cell,”” “R-path,” ete., in an
obvious sense. “xAy” and “xpy” shall mean that there is a cell 2y in L or B
respectively, and wLy and xRy that # > yin L or B. (In diagrams the positive
L- and R-cells will slope down towards the left and right respectively.) We
denote by Q the following property of Z.

(Q) If xxy and xpz there exists a vertex w such that zLw, and either y = w or yRw.
{We require zLw, which is not necessarily implied by 2 = w. The possibility
that y = z iz not excluded.)

Tureorexm 4. If, in a complex with the property Q, all L-paths are fintie, then

Fic. 2

if xLy and xRz there exists a vertex w such that zLw and either y = w or yRuw.
If all L-paths are finite, then, in property (Q), z # w.

It is sufficient to prove the theorem when ¥y, the general case then following
by induction. Let n be an L-cell from 2z to y, and {¢]z an R-path from z to 2.
Let o be — 9 + [T, and suppose, inductively, that a path =, from y to 2 has
already been defined. :

If 7. has no peak .4y is not defined; otherwise let ¢ be the last peak on x,,
from y towards z.  We assume, inductively, that in proceeding from y towards z
the direct (“downward”) cells of 7, are in B and the reversed cells in L,—an
assumption evidently satisfied for r = 1. The part vy - - - z of =, is of the form
[wly — o where [w], is a descending R-path and ¢ a descending L-path. ¢ may
be null, but ¢ # 0 since vy is a peak. Let & be the predecessor of w; in m,,

8 This always means “‘indexed subcomplex,”’ the positive direction in each 1-cell agreeing
with that in Z.
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(and therefore an L-cell). Assuming inductively that £, is defined, for some
m = ¢, as an L-cell with the same initial vertex as w,, , let ¢, and o';, be the R-
and L-paths which, by (Q), descend from the final vertices of £, and w, to 4
common vertex. Then o, is not null, and we define £m41 to be its first cell:
say Om = Ems1 + 7m. The path 7,41 is now defined to be the result of substi-
tuting oy — 11 + 02 — 72 + -+ + @, — cr; for —& + [w],. It evidently has
the property that reversed cells are in L and direct cellz in R, and the inductive
definition of m, is therefore completed.

If v, is the final vertex of w,, and —or is the portion v, ++- z of 7, o is a
descending L-path from z.  The corresponding portion of —m, ., is of + o;_
with at least one more cell.  Since all L-paths are finite it follows that the ])1'0('.95_;-
of constructing paths =, terminates after a certain number, k, of steps, i.e.
has no peaks and is therefore a descending (possibly null) R-path from y to a

Fra, 3

vertex w, followed by an ascending (non-null) L-path from w to z. Thus yRw
ory = w, and zLw.

Conrorrary 4.1. If (Q) is strengthened by excluding the possibility y = w,
Theorem 4 may be strengthened in the same way. (Obvious from the method of
proof.)

Conorrary 4.2. A descending [-path and a descending R-path have al most
one commaon vertex. 1f the two paths have their initial and final vertices, ¢ and b
in common, i.e. if al.b and aRlh, there is a vertex ¢ such that bLe and bRe (the
alternative b = ¢ being impossible in this case); and a vertex d such that cLd
and ¢Rd; and so on. The patha ---b ---¢---d --- is an infinite descending
L-path.

In particular a cell cannot be both an L- and an R-cell. This does not mean
that the condition (Q) could be weakened in Theorem 4 by adding “if y # 2"
at the beginning. That this would make the theorem untrue is shown by the
example in Fig. 3, where segments sloping down towards the left and right
belong to L and R respectively, and the cells marked b,e are in both L and R.
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The condition (Q) is satisfied for pairs with y > z, and no descending L-path has
more than two cells; but ¢ and @ have no lower bound.

Theorem 4 also fails if the alternative “z = w” is allowed in (Q). This is
seen by omitting the vertices b, in Fig. 3 so that cach a,c becomes a single R-cell
{but net now an L-cell).

8

We return to the consideration of indexed l-complexes in general. A set of
(positive) cells, E,, 1s at xr if x is the initial vertex of every member of E, .
(The null-set is at every vertex.) We suppose that if £ is a cell xz, each cell 4
at x has a finite set of cells at 2, called 7 | £, assigned to it as its &-derivate.’
The g-derivate, E, | £, of a set E, is the logical sum of the &derivates of members
of E.. {(An appearance of the symbol E, & implies that ¢ isat ) If risa
descending path from x, E, =, the devivate of E, by continuation along =, is
defined inductively by the equation

Erjlr+8 = E:\m§

andif risnull, £, = = F,. We usually write &/ (z + §) without brackets:
E | x4 £ 'The path [E., is a development of E-if, for 1 £ 71 S m, & e E, | (£
The development is complcte if E, (£ = 0, partial if not.

The letters C1) are used as an abbreviation for “complete development.”
We postulate the following conditionz on the derivates:

(A) 7w, & s nedl ifand ondy if, n = &

(A) f 9= ¢ (5N K8 =0

(Ag) if nand ¢ are distivet cells at x, there cxist devclupments k, and x¢ of 9| ¢

and ¢ n respectively, with a common final verter w.

(A with the notation of (A3), & {9 + we) = & ({ + &), for any & at x.

It follows from (3. by summation, that the devivates of any set E; by con-
tinuation along 5 + &; and ¢ + &, ave the =ame. A further consequence is that
&, and & ave complete developments of 7 ¢ and ¢ g respeetively.  For

(nz(_)("ri = Uii’*i-h’y,
=7{n+x=0
From (1) it follows by induction on the length of = that if E} 0 E} is null,
(E;, m) N (ES | 7) is also null.

Lemya 1. If o is a development of Ey , and B> | 7w & E,| =, then E. C E..

Let = be (£l . Let j be the least integer such that E2 | [£]; © EL{{¢);.  If the
lemma is false j = 1, and E2 | (£];.1 contains a cell ¢ not in E; | [¢];.,. Hence
¢ # &;, and ¢ &, is a non-null subset of E: | [£]; not contained In E.|[£];, con-
trary to the hypothesis.

In particular if EX | = = 0, E; C E; .
It 1s assumed, further, that a relation J holds between certain of the pairs of

§ For an illustrative example of derivates see §13.
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colls at a vertex, and a set E, is defined to be a J-set if £y and 9J¢ for every
distinet pair £, pin E, . (Thus all sets with less than two members are J-sets,)

Jy) If EJn, £ q has precisely one member.

J) Ifmed Cand naeds O and if §JE or & = &, then pdna or gy = s .
It follows from J. that if E i a J-set, E {, and more generally £ ' 7, is a J-set.
From J; it follows that for no < does E;E

It i now agreed that a set denoted by E, £, , ete., shall be finite. (A CD of
anyv =et i= finite by definition.)

Lexiia 2.0 If the J-set E has I members, all CD’s of E have k cells and the same
final vertex, and all partial developments are parts of CD’s.

f pand £ are in £, n & has one member if  # ¢, and none if n = £ Thus
[ lfarein £, n £ 1 | fn#¢ and noneif n = £ Thus
£ &isaJ-=et with £ — 1 members, and the development comes to an end after
I8 steps.

let 7+ 6 and ¢ + 7 beany two CD's of E, ending at y and 2 respectively;
and let g = & By Jp and A; the sets 3 ¢ and ¢ | 9 are single cells, " and ¢,

with & common final vertex, w. By A, E 9 4+ " = F | + 7', a set with
ko= 2 members.  Let 7 be a CD of this set, ending at «. By an inductive
hyvpothesiz ¢ + mand o, being CD's of E | 5, a J-set with L — 1 members, have
the same final vertex: v = y. Smmilarly w z, and so y = z.

LeaMa 3. If E. is a J-sel, and K, any sct at the same vertexr x, all derivales
.a__f ]‘, _r'._.',' continvation r."-.rlr.!.] C1)'s uf !',b_. are vlentical.

With the notation of the ]-rl-'-.'inll- lemina,
7 + ¢ + =, (nductive hypothesis),
=E: |+ 0 + =, (),

= Bt anducetive hypo thesis).

I FY isa J-set, E, E! denotes the continuation of £, along a CD of E:.
By Lemma 3t is ilui:-[mwdmnl of the CD chosen. F. Ll —+= fl 4+ e L, 13
detined inductively to be (F. fl 3 A 2 1".‘_. 1:! i \1"’,-_.. fi -+ e 4 r‘l’;;_‘_}.

Thusif [Elisa CDof EL, E. ELand E. | [£]: are alternative notations for the
same =et,

We now come to the main results of the paper. All the conditions A and J
are purely local, and involve only a fixed number of given cells,

Tueoresm 5. Let wy and m be paths in a 1-complex with the properties J,_s and
A=Ay descending from a to vertices b and ¢. Then there exist paths w3 and =y
descending from b and ¢ to a common vertex d, such that if £, is a set at a,

E.lm+m = LEa|m2 + 4.

We first prove the following speeial case.
Levva 5.1, If E) and E; are J-sets, the CD's of E, | Ei and E; | E, have the
same final vertex, and if E, is any set at a, E, | Ey, + E; = E, | E; + E,.

Lk,
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(Since all sets called “E™, “E'”, etc., in the following proof are at a, the suffix
a will be omitted. ;

‘Casel. E'NE =0. Letn(E) denote the number of elementsin E. We
proceed by induction on m, = n(E' E%) + n(E* E'). Excluding the trivial
ease where one set E' ix null, the minimum possible value of m is 2. This
minimum is only attained if n(E") = n(E* = 1, and Lemma 5.1 then follows
from Azand A; . We may therefore assume that m > 2, and also that n(E") > 1
or n(EY) > 1, —say E' = E*U 5, where E* # 0.

The proof depends on the fact that if £isnot in E, n{E | £§) = n(E); and hence
if E7 and E? are J-sets satisfving E° N E? = 0, and E" € EY then n(E” | E") £
n(E? E%. Thus n(E°  E% £ n(E* | E") and n(E* | E*) < n(E'| E?). There-
fore, by the inductive hypothesis, CD’s of E*! E* and E*' E* have the same
final vertex, z. Since E'iz a J-set, 5 E’is a single cell, £, and

EE EY =19 E+ E =7 E+E  (by the inductive hypothesis)
= E + E,

since E* E'+ E* = E* E* + E° = 0. Thus there is a CD of E' | E* consist-
ing of a CD of E* E* followed hy a CD of ¢/ (E* E%. Since E'| E® is not
null it follows that ntg (£ E")) < n(E" E%), and since also (E*|E"Y) | ¢ =
E* E' the inductive hypothesis may be applied to the sets £ and E* | E® at 2.
The final vertices of CD's of (E* E*) ¢ ie. E° E', and of £ (K1 E®) are
therefore identical, and the latter =et has been seen to be the end portion of a
CD of E° E'. The first part of the induction is therefore complete. If E is
any set at a,

E E+E =FE E+E + 1,
=E E'+ E* 4 7, (by the inductive hypothesis applied to E* and E?)
=FE '+ g+ E°, (by the inductive hypothesis applied to ¢ and E* | E%
E.E'+FE.

(ase?2. AsCaselsavethat ENE*#0. Let E' = E°UE™ fori = 1,2,
where £° N E* = 0. By Cask 1, applied to E*| E” and E* | E°, E* | E° + E*
and E> E' 4+ E*have the same final vertex, and since E’ E® = 0 these two
sets avre £° E' + E'and E' ' E° + E',ie. E°|E' and E' | E°.

In the general case, to which we now turn, the result may be stated more
explicitly as follows, taking 7, and w2 to be [g]; and [¢]x .

LeMmya 3.2, If [g]; and [¢)e are any paths descending from a, to b and ¢ there
exist paths o,, and 7., (possibly null, r =1, ---, 7+ 1,8 =1, -+ , k + 1) such
that

(1) N = Ots, {r = Tr1,

(2) a,41,s and 7,511 have the same final vertezx,

7 This proof of Case 1 was suggested by Dr. J. H. C. Whitehead, in place of one based on
Theorem 4.
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3) onisaCDof Ev,, = e+ 100 + ¢+ + 7r10, and 1. of B5.. =
e S o e
(4) Jorany Ea, Ea 71 + niaa + o + 1jann = Eam + 00 + -+ +

Tijsl.k

Starting from the two given paths [n]; and [¢]. we add, one by one, the pairs
of paths e,.,, and 7, .., for the couples (r, 5) in the standard “triangular”
order (1, 1), (1, 2), (2, 1), (1, 3), ---. When the time comes for o,,;, and
7rs+1 to be added, the paths o, and 7., descending from a vertex z,,, and

corresponding to the earlier couples (r, s — 1) and (r — 1, s), have already been
construeted as CD'sof E!, and EI,. Hence by the cases of Theorem 35 already

settled, CD's EY, 7., and E, | ., i.0. Of E} .. and EI.,,. meet at a common
vertex,  These CD's are 7, .. and o,.4,; the induction is complete. (In the
limiting cases r = 1 and s = 1 the single cells n and e ]11;1)’ the parts of ]','Ill and
E in the earlier eases.)

The proof just given provides a method of deforming m + =3 into = + =,
by a =eries of steps in each of which a path 7., + .41, is replaced by a path
a4 T . By Lemma 5.1 a set £, at the eommon initial vertex of o,
and 7., , when continued along either of these paths gives the same result, and
therefore the continuation of £, along the whole path is unaffected by a single
step.

Turoresm 6. Any two CD's of a (finite) set E. have the same final vertex.

If (9], and [, ending in b and e, are the developments then, with the nota-

tions of Lemma 5.2, <ince nae . [nl.1,
1 .
Vg el Mewr + 710 4 o il (s
)". r\ 1 T Tr e Tl s

and therefore ey + 62 + -+ is 2 :ln»\-l-lnlnm-m of E; ,\: 15 and in |):ll'ti('1|1:ll'
i1y + Oprape + -+ 15 2 development of E. | [¢]:, = 0, since [{]. 1s a CD.
Thus ¢ = o, and similavly b = d.

ConrorLary 6.1, Continuation of a set E, along any two CD's of a set E! gives
the same result.  This now follows from Theorem 35, =3 and =; being null.

Corollary 6.1 cannot be extended to give the general monodromy property,
“continuation of £, along any two descending paths from a to b gives the same
resuit.”  Consider the 1-complex in Fig. 5, in which the vertices marked z are
identical.  Derivates are defined by parallel displacement downward, except
that the derivates of ry and xz at z and y are zw and yw respectively. All sets
are J-sets,  The conditions A and J are satisfied in this complex, but continua-
tion of ab to x via b gives the null set, via ¢ the cell xz.

TueoreM 7. In a complex satisfying, J and A, all developments of a finite set
E. ar finite.

Every set is a sum of J-sets, namely its individual memabers. We proceed by
induction on the smallest number, k, of J-sets, Ef , whose sum is the given set
E.. (The case k = 1is Lemma 2.)
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There ‘s at least one CD of E,, namely [¢];, where ¢, is a CD of the J-set
E; | [o]l-—1. Suppose that {1 + {2 + --- is an infinite development of E, , and
let or, 7rs, Ero and E7, be as in Lemma 5.1, save that o, replaces 7.. Then
just as in Theorem 6, 7, + 7o, + --- is a development of E, | [¢].-1 . Since,
for i < k, E: is annihilated by continuation along o, E. | [¢c]oy = E% | fode—t .

n,

Fic. &

Thus 73z + 72 + - - - is a development of a J-set, and so 7. = 0 if r exceeds a
certain ¢. Therefore if r > ¢,

0=E%=¢(lont o + o

Now o4 + -+ + 0,41 is a development of H,, = (E;UE.U ... UE:™ |
[¢lr-1, and hence by Lemma 1, {; ¢ H,. Therefore the infinite path ¢, +
totz + -+ - is a development of Hyy,, a sum of (¢ — 1) J-sets,—contrary to the
inductive hypothesis.
CoROLLARY 7.1. There are only a finite number of different developments of E. .
If there are an infinity, some cell & of the finite set E; must come first in an
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infinity of developments; and some cell & of the finite set E; | £ must be second
in an infinity of these developments; and so on. The path & + &+ - is
an infinite development of E, , contrary to Theorem 7.

10

Theorem 7 is connected with the problem of “random reduction”. To g
“normal form” or “end-form” in a system with moves there corresponds an
end of =, and to a normal form of X an end connected by a path to a given
vertex x. It follows from Theorem 5 that there is a descending path from z
to the end, and that a vertex cannot he connected to two ends, i.e. that an
“object” in the corresponding system cannot have two different normal forms.
There remains, however, the possibility of an infinite descending path from a
vertex which is alzo connected to an end. It will now be shown that this possi-
bility is not realised in complexes satisfving the conditions A and J.

TaeorEM 8. If, in a complex satisfying the conditions A and J, there is a path
descending from x to @i end e of =, all descending paths from x are finite, and
all maximal paths end at c.

That all maximal descending paths from x end at e is obvious in view of
Theorem 5; only the {initeness remains to be proved.

Let [n].. be a deseending path from r to e, and (if possible) & + & + ---
an infinite deseending path from @, Let the paths o, and 1., and the sets
E'oand X be constructed as in Lemma 5.2, Since e is an end all the 7, 4
are null.  Let 7 be the largest number such that z,; i3 non-null for an infinity
of values of r, and /- a number such that 7, ;.4 = 0if r = k. Then E} ;11 of
which 7,21 is 2 CD, is also null, giving £, o,; = E} ;1 = 0. Since o,; is a
CD of Er; it follows (Lemuna 1) that, for r = k

22 sl ~1
E CQE =Byl + 0+ Trge

Thus 74, + 751, + -+ it a development of E;, and by Theorem 7 cannot
be infinite,~—contrary to the definition of j.

It follows that if a 2-complex =% is constructed as in §5, all its components
containing ends of X are simply connected.

11

The theorems that have been proved indicate that complications will arise
when the descending paths that join the “y” and “2” of condition (D) to “w”
have either more or less than one member each, and that the difficulties are of
a different kind in the two cases. In the foregoing group of theorems the second
possibility, (corresponding to £ |9 = 0 for £ ¥ 7), was excluded. The follow-
ing theorem allows this possibility, but is in other ways more special than
Theorem 5, and the meaning of the conditions imposed is less obvious. The
theorem is used in extending the Church-Rosser Theorem to an enlarged calculus.

We suppose that derivates are defined in =, and satisfy A,—A,, but that A
holds only in the weakened form

(AY) £|& = 0, and if £| 7 = O then nAg,
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where nA¢ stands for “either n = £ or 5 | £ has just one member”. The follow-
ing additional “J-condition” is imposed, 4 denoting “not A4”":

(Js) if £y and £J¢, then 3J¢.
(Condition J; does not imply the second half of Af, since £7£.)

Lemmas 2 and 3 remain true under these conditions, and are proved as before.
The notation E, | Ex + -+« 4+ E* may therefore be introduced for J-sets E. .

THEOREM 9. A complex with the properties AY, As-Aq and Ji—Js has the prop-
erty (A).

It is sufficient to prove the following special case, since the extension to the
general case then proceeds exactly as in Theorem 5.

Lesnts 9.1, If Eb and E. ave J-sets, and E, is any set at a, the CD’s of
E} 1 EZ and E*  E! have the same final vertex, and E, | Er+E*=F, | E: + EL.

Let [n]: and [{]x be CI’s of EL and E? | 4, and ¢; having final vertices b; and
ci. SELJED Y means “qJ¢ if neE, and ¢ e E;.” From J, it follows that if
EXJE: (EY OJ(E? &),

Case 1: EXJEL . We show further that in this case EL | = has j cells. First
let j = 1. If also &k = 1 the result follows immediately from J; and A;. For

Fra. 6

general k. we have (g ¢)J(E;  &1); and since gy | {1 is a single cell, and E] | ¢
has & — 1 cells, an inductive hypothesis shows that 7, | Ej is a single cell and
has the same final vertex ax a CD, o/, of (2! &) | (| 1), which by Ay isES | o +
¢1. Hence s isaCDof E} o, That E,| E; + E; = E. | E2 + E} is proved,
as in Theorem 3, by repeated applieations of Ay . Case 1 for general j is now

completed by applyving the case j = 1 successively to », and E. | [9],_1, for
r = 1,2, --.,7, and using the last part of the result for r — 1.
Case 2: Eb» K2 = 0. We show further that, in this case, E. | E} has k

members or less. If 7 = k = 1 the result is clear from J and A. Suppose that
j = 1, > 1. Then §'1:1 n, for if’ §'1A—m, by J3 and J2 (171 I §‘1)J(E2 l K-l), and
hence by Case 1 ny | E- 5 0, contrary to the hypothesis. Thus ¢ | n is a single
cell. By a k-induction applied to m | ¢ and E: | {1, (in place of E; and EJ),
all CD’s of EX | {1 + m have & — 1 cells or less, and end at ¢; . Since this set
is also E2 m + {1, the CD of EX | m is the cell &1 | m , followed by the & — 1
cells, (or less), of E;| ¢+ m. The final part follows by repeated applications
of A4 %
The extension to general j is as in Case 1.

&
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GENERAL CAsg. In view of Lemma 3 it may be assumed that if EX | B} = 0,
[7]; is chosen so that u1| E: = 0. A series of “zig-zag” paths, my, m, -+ ,
from b; to ¢, is constructed, m; being —[4]; + [{]x . Suppose =, already con-
structed,

7rr=70"‘(71+7'1_"'+7'm—1—0'm,

where o; and r; are CD’s of subsets, E; and EF, of E! | vs and E. | v: respec-
tively. The vy, are descending paths from a satisfying

(1) vm is [t

(ii) for any E, at a, Ea|vi + oi = Eo|via + 1o
This whole inductive hypothesis is satisfied by miif m = 2, 70 = 02 = 1 = 0,
oi=v =[], n="%=I[hk.

Let 7 have a peak at the join of ¢.,_; and 7,,_1, and let u be the final vertex
of 7m_1. Firstsuppose that By | 7m_y =0. By Case2aCD, 6, of Eay | omy
ends at u, and we define r,ytobe 79 ~ o1 + -+ + 72 + 0 — o, the new
', tms and o,_; being m — 1, 7m-s + 6 and ¢, . The v: up to ym_» are the
corresponding v; , and Ym—1 = vm . Since 8 is a CD of

Eri|on1 S E | Ymo1 + Ome
= B[ Ymes + Tm2,
Tm_2 + 61is a CD of a subset of E; | yn2. For any E, at a,
Eo|¥na + omo1 = By Ym + om
= E.|¥Ymat + T
=FEy|tma1+ oma+ 6 (Case 2)
= E,|yma + Thes .

Secondly let E,,_1| 7m_1 # 0. By Lemmas 2 and 3, if a CD of E,,_;, whose
first cell, £V, satisfies £V | 7y 5 0, is substituted for m-1, all the conditions
imposed on 7, remain satisfied, and it may therefore be assumed that ¢, itself
is such a CD. Let 71 be [w],, (p # 0 in view of the peak). We construct
successively, as in Theorem 5, for ¢ = 1, 2, - -+, p, pairs of descending paths
To_ayi and £ 4+ o 44, which are CD’s of w; l £ and £ | w; respectively,
and, by As, have a common final vertex. The notation “£“™" + on_14i”
implies that £ | w; 0, which is justified by £ | wiy # 0, derived ultimately
from £ | tmy # 0. If oy is £V + o9y, mry1 is defined to be

- E(p+1) — O e

To— 014 A Tmer — Gme Tt — - Tf,n—2+p —~ Omtin
Its final ascending part has at least one more cell than ¢,, . If vy is taken to be
'y;.forhuptom — 2, Ym1 + [Whempr + E P forh =m — 1tom 4+ p — 2,
and 'y,,,+,,_1 = v , all the conditions are fulfilled, the new “m” beingm + p — 1,
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the new “o,” om + £ + 6pipa. Condition (i) follows for the v/ im-
mediately from Ay except for ¢ = m + p — 1; and

{p+1) !
Ea l'Ym + om -+ EPTD + Om+p—~1 — Ea : Y m=1 + Tm—1 + E(pﬂ) + d:n+p._1

= Eo|Yma + (@1 + £ + Tmipes (&)

’ ’
= F, I Ymtp—2 T Tmyp-2,

as required.

It has thus been shown how, in all cases where w, has a peak, a path =, is
to be constructed having either one less peak or a longer final ascending portion.
Sinee this portion is a development of the finite J-set £, | {¢] , the second alterna-
tive can only occur a finite number of times.  Thereafter the number of peaks
decreases at each step until a path with no peaks is reached.

The extension to paths which are not CD’s of J-sets now follows as in
Theorem 3.

12

The theorems that follow Theorem 3, as far as Corollary 6.1, are proved
under the new conditions with only minor changes in the argument. Theorem
8 fails to survive, as may be seen by considering Fig. 1: all the conditions Af,
A=Ay . and Ji-J3 are satistied by taking the derivate of a,b at a,41 to be a, 1b,
and that of a,a,41 at b to be null; and a,bJa,a,41 but not a.a. 1 Ja,b.

Theorem 7 still holds but its proof needs some modification.

TuroreM 10. In a compler satisfying AY, da-2q and Jy-J; all developments of
finite sets are finite.

We proceed as in the proof of Theorem 7. As before it follows that =, +
7o + - - is a development of E, | [¢),1 and that for some p and ¢ the develop-
ment 7,010 + Tpyae + - of Exlfolymr + mig + -+ Toe, = Ei| 0p say, is
infinite, while 7, ;o; = 0if » > p. Since the ¢’s and 7’s are CD’s of J-sets it
follows from Case 2 of Lemma 9.1 that the number of cells in ¢, is (for r > p)
non-inereasing with increasing r.  If ¢, belongs to Ef | [{},—1, 7, is contained in
Elllihba +on+ -+ + 0, = E7| 6,21, ; by the last part of Lemma 9.1 the
path 0,4 is 2 CD of this set, and may therefore be chosen in the form 7., + o/,
and o,41,, to be or,. Thus 0,4, has less cells than o,, unless r,, = 0. If, for
T > 71y, 74 = 0 whenever ¢, € E3 | [¢1--1, Trg41,¢ + * - - is an infinite development
of the sum of the & — 1 J-sets E; | 8,,, ({ # ¢), contrary to the inductive hy-
pothesis. Henece the number of cells in o,, eventually diminishes to zero, and
from this point on the 7,, coincide with the 7, 43 and are null,—contrary to the
initial hypothesis.

CororLarY 10.1. U'nder the same conditions, the number of different develop-
ments of E, is finite. (Compare Corollary 7.1).
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13. Application to the conversion calculus

The formalism first considered is that of Theorems 1 and 2 of Church and
Rosser (1], but modified in two ways,—first by the adoption of the simpler
bracketing of Church (1] secondly by the entire exclusion of “singular” formulae,
i.e. those having “‘accidental” coincidences between the bound variables® The
WTFT'x are therefore rows of the symbols X, variables, and round brackets, built
up according to the following rules: (1) x is a WFF, (2) if M is a WFF con-
taining x as a free variable, (A\xM) is a WFF, (3) if A and B are WFF’s whose
common variables are free in both, (AB) is a WFF. (A variable is bound in
any row of symbols in which one of its occurrences immediately succeeds a A,
otherwise free.)

The allowed transformations that concern us are

I. To replace each specimen of a bound variable x in X by y, a letter not

oceurring in X,

The result, ¥, of any series of applications of I to X will be called an adjusted
copy of X, and X conv.-1Y.

II. To replace a part ((AXM)N) of X by the result of substituting adjusted

copies of N for the specimens of x in M, the new bound variables being all

different from cach «ther and those of X,

It ix agreed that a WFE denoted by one of the letters U, V, is of the form
((AxM)N), and we accordingly speak of “the move U on X, or ‘‘the move
(X, U),” if U is a part’ of X, meaning the application of Rule II in which U is
the part operated on. IfY i the WEF that thus replaces X, we write (X, U) -Y
and X conv.-II Y. If a series of moves I that turns X into Y turns its part U
into V, (Y, V) is an adjusted copy of (X, U).

To define the residuals of a part V of X after the move ((AxM)N), suppose
that each pair of brackets in M is provided with a numerical suffix, which is
left unchanged in applying rule 11, and that V is enclosed in the pair 1( ). If
the move (AxM)N) turns X to Y, then

(a) if V.= ((AxM)N), V has no residual in Y;

(b) if Vis a part of N its residuals are the corresponding parts of the adjusted

copies of N that replace x in M;

{¢) in all other cases the residual of V is the part i( ) of Y.

The complex T te which our general theorems will be applied has as a typical
vertex the class [X] of all adjusted copies of a WFF X. A positive 1-cell is the
class [(X, U)], or briefly (X, U], consisting of (X, U) and all its adjusted copies;
and its initial and final vertices are [X] and [Y], where (X, U) —»Y. If Visalso
a part of X, the [X, Ul-derivate of [X, V] consists of all the cells [Y, V], where
the V; are the residuals of VinY. Finally “[X, UlJ{X, V]” means that (i) neither

8 Cf. Newman [2] §3. After the general theoretical work the calculus may be extended,
for practieal convenience, by re-admitting the singular formulae and resuming the original
rules I and II; and it can be shewn without difficulty that (1) every singular WFF X conv.-1a
non-singular X', and (2) if X conv.-I1 Y, X conv.-I X', Y conv.-1 Y’ in the extended calculus,
X’ and Y’ being non-singular,then X’ conv.-I-IT Y’ in the restrieted caleulus.

¢ Defined as in Chureh [1].
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U nor V is a part of the other, and (i1) the free variables of U and V are the
same. Thus J is a symmetrical velation, and is independent of the WFF chosen
to represent [X].

With these definitions the conditions Jy , Js and A—As are sotisfied. (J;): no
comment is necessary. (Ju): let gy and 7 be determined by the parts V; and V,
of X, and £ by U, = (OxM)N). If V, = V., distinct members of | § are
determined by different adjusted copies of V,, and evidently satisfy (i) and (ii).
If Vi and V, are not identical they are mutually exterior, and a residual of V,
could only be a part of a residual of Vs if V; were a part of N, and V, a part
of M containing x. This contravenes the condition (ii) for Vy and V. since x
is free in M and cannot oceur in N, A part of X and its residuals in Y have the
same free variables, except that x is replaced at all oceurrences by adjusted
copies of N. Hence if Vi and Vi have the same free variables their residuals
in Y have also.

In considering the conditions A, let £, 4, ¢ be determined by the moves U;
on X, (7 = 1,2, 3), where U; = ;((Ax;M,)N,), and (X, U;) —»Y¥,;. Thus U;is
the part « ) of X.

A1 @ no comment s neeessary. A2 @ suppose that Us = Uz, The residuals
are clearly distinet if they are determined by the original brackets, or one by
old and the other by new brackets.  The remaining possibility is that a residual
of U, is a part, U, of an adjusted copy of Ny, and a residual of U is either a
different part of the same copy, or part of a different copy,—in any case different
from Us. A : the condition is obviously satisfied unless one of U, , U, is part
of the other,—sayv U, of Uy. If U, is in M; the residual of U, in Y3, and of
U: in Y., are determined by their original brackets, and since N3 contains no
copy of x» (a bound variable of M), the order of performance of o( ) and 3( )
is indifferent. If U, is in Nj the final cffect is the same whether 5( ) is performed
first on Nj, followed by 3( ), or the residuals of 2( ) on the adjusted copies of
N:inY;. As: Let W be the final result of either series of moves on x: it has
been shown to be unique to within I-adjustment, and therefore determines a
unique vertex, w, of =. If U, (or Uy) is not part of either of the other U/s,
its performance, before or after U, (or Uy), does not affect the residual of U;.
We may therefore suppose that one of the U/s contains the other two. If Us
is not part of either Ny or Ny the residual of U; in W by either route is 1 ).
We therefore assume that U, contains both U, and U, and that U; is part of
either Ny or N, . Finally, if both U; and U, are in N; , the same residuals of Us
are evidently obtained whether Us is performed on Ny before Uy, or the corre-
sponding moves on the copies of N after U;. There remains only the case
where U is part of M , and Uj; of either, (o), Ny, or, (3), Na. (a): the residuals
of U; by either route are the corresponding parts of the adjusted copies of N;
that replace x; in the move ( ) on Y2. (B8): if the residuals of U; in Y, are
the parts enclosed in the brackets u( ), s2( ), - -+, the residuals in W by either
route are the parts enclosed in the same brackets.

The conditions for all the Theorems 5 to 8 are therefore satisfied, and we
obtain the following results.

{
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Cororrary 11.1.  If X conv.-I-11Y and X cone. I-11 Z, there isa WFF W su.
thatY conv. 1-I1 W and Z conv. I-11 W.

Corovrrary 11.2. There are only a finite number of different developments of
given set of moves 11 on a WFF X, Al of them are finite, and all end in adjuste
copics of the same WFE.

Cororrary 11.3. A WIF has (apart from T-adjustments) at most one norme
Jorm, and if one exists all series of moves 11 terminale in this normal form or a
adjusted copy.

14

Two generalizations of these theorems were given by Church and Rosser it
their paper. The fiest, to the formalism extended so as to include the d-symbol
i= of no interest in the present connection: it is easily shown that the original
conditions A and J arve still satistied, and henee that the Corollaries 11 hold.
The seeond generalization (of which the proof was not given by Church and
Raosser) is to the formalism in which (AxM) is eounted a WFF even if x does
not occur in M. The rules of procedure, and the definitions of derivates need
no modification, and the conditions A;-A; are proved to hold, just as before.
The second part (Conlv if") of condition A; now fails, but the condition Ar is
satizficd, The conditions J;-Jy are also satisfied if a different, more complicated,
1t l'1|:'t‘T:<.".;.n!'_ 1= given to J.

Let “U S V7 stand for “a free variable of U is bound in V." It implies that
U i= a proper part of V, and if U’ and V’ ave, for any W, W-residualz of Uand V,
U SV iimplies US V. Let “U Er V" stand for “neither U nor V is a part of
the other.”  Then, with the same notation, U’ Er V' implies U Ex V. We now
take [X, U] J [X, V], for any significant U and V, to mean

‘1) Uiz not a part of V, and (ii) there is no part W of X such that V.S W

and U Ex W.”

Jy 1= clearly satistied.

Jo . Let the notations be those of the previous discussion of J., and let Vj
and V. be distinet residuals of Vy and Va. If Vi S Vi and Vo Ex W', then
V. S Wand V. £ W, which is incompatible with g, = mormJ . iV, =V,
V, eannot be part of Vo. IfV; = Vs, the only possibility that V: be part of V.
is that V, be part of M, with x as a free variable, and V, be in N,—which in view
of g J m2 contravenes (ii).

Jy. Let n, & and ¢ be determined by U, V,, and V., where U iz (AxM)N).
Suppose that £ A pand nJ . Then V, is part of N and either U is part of V, or,
for some W, Vo, S Wand U Fx W. The first alternative gives V, part of V, ; the
second Vo S W and V, Ex W; and both contradict £ J ¢.  Hence

Tueorem 12, Corollaries 11.1, 11.2 and the first part of Corollary 11.3 hold
in the cxtended caleulus.

It is easily seen that the second part of Corollary 11.3 fails to survive.

CAMBRIDGE, [ExXGLAND
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