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Noetherian term rewriting systems are finding increasing

applications in computer science and mathematics. These

applications includelfinding decision procedures for

equational theories [Knuth&Bendix 707, [Lankford&Ballantyne 77A,B,C],
[Stickel&Peterson 77, automatic deduction [Guard et al. 69],

[Huet 77], [Knuth 707, [Lankford 757, [Lankford&Ballantyne 79],
[Lankford&Musser 787, [Nevins 747, [Slagle 747, [Winker 75],

proof of open problems in mathematics [Degano&Sirovich 79], ¢

[Guard et al1. 697, [Knuth 707], [Winker 797, program
verification [Boyer&Moore 75], [Courcelle 79], [Goguen&Tardo 787,

[Good-London-Bledsoe 75], [Guttag-Horowitz-Musser 787,
[Huet&Lang 787, [Musser 787, [Rosen 737, [Sethi 74],
algebraic manipulation systems [Moses 707, and symbolic

integration [Moses 70A7. We have made no attempt to include
a complete bibliography of applications of Noetherian term
rewriting systems, but hope we have captured the flavor of
those applications in the references above. Also, not all
of the term rewriting systems mentioned above are of the
kind discussed in this article, but they are all similar
enough so that many of the properties discussed below

carry over.

1. complete unification procedures [Fay 79]




A set T of terms is defined as follows. There is a

countably infinite number of yariable symbols vy, Vo1 V3o

and a finite number of function symbols Tyo ooy Iy o

Associated with each function symbol fj is a non-negative

integer dj called the number of arguments of fj .
Function symbols fj which satisfy dj = 0 are called

constant symbols. The set T of terms is defined by

(1) wvariable symbols are terms, and (2) if Tyo eee 0 By
are terms, then fj(t1""'td.) is a term. (Purists mighg
want to add that no other strings are terms. Also, some
might insist on a separate case for constant symbols, but
we consider that the degenerate case (2) above.) We will
take the usual liberties with notation, often writing terms

in infix rather than prefix form, and using other symbols f

the variable and function symbols.

A term rewriting system (also called a set of rewrite rules

or a set of reductions, and elsewhere called a set of

simplifiers [Slagle 747]) is a finite set of expressions

L —> R where L and R are terms, and each variable
symbol which occurs in R also occurs in L . (The
assumption about variable symbol occurrence is made because
term rewriting systems without it are not Noetherian.
Moreover, term rewriting systems without the variable
symbol occurrence property can be transformed into a system

with the property by introducing new function symbols.)

2 sometimes called degree ., .. .. ¢,
2




Term rewriting systems will be denoted R . we say that

u 1is an immediate reduction of t relative to ﬁ in case

there is some L —> R in R and some substitution ©
such that u is the result of replacing one occurrence
of L6 in t by Rée . (The notion of substitution we
have in mind is the notion introduced by [Robinson 65].
Thus substitutions are denoted by Greek letters, and are

finite sets of substitution components, expressions of the

form t/v where t is a term and v is a variable symbol.)
We denote that u is an immediate reduction of t by

t —> u . A term rewriting system is called Noetherian

iff there is no infinite sequence t, > t, -~ t3 —_— e
of immediate reductions. (Sometimes for "is Noetherian" we

use has the finite termination property, abbreviated FTP.)

In general, it is undecidable if a term rewriting system is
Noetherian [Huet 77A7] (also announced by [Lipton&

Snyder 77]). However, potentially useful Noetherian tests are
given by [Dershowitzé&Manna 787, [Knuth & Bendix 70],

[Lankford 75], [Manna&Ness 70], and [Plaisted 78].

The results presented in this article are a combination of
the approaches of [Knuth&Bendix 70] and [Manna&Ness 70] which
generalizes both of those approaches. We also show how these
generalizations apply to equivalence class term rewriting

systems, like [Lankford&Ballantyne 77A,B,C7], [Stickel&Peterson 77].




For each function symbol fi' AN b fN let Fi' Sh FN
be functions from the positive integers to the positive
integers such that

(1) the number of arguments of each Fj is the same

as the number of arguments of the corresponding f jr

(2) Fj(xi..”,y,...,xd.) < Fj(xi,...,z,-..,xdj) M
J
when vy £ 2,

and let J-|| be the function defined on all terms by
(3) ”vj | is some fixed positive integer for all j ,
(4) Hfj(tl...-,tdj)” = FiClell,..., ntdju) .
Lemma 1 If (R is a term rewriting system and llLoll >

|Re|l for all substitutions © and all L —> R in

(R, then R is Noetheria.n.3

Proof See [Lankford 75A].

To use Lemma 1, functions Fl' sus @ FN are specified
satisfying (1) and (2), a positive integer is specified for
(3), and then a proof of

(55 llzell > |Iréll for all substitutions 6

andall L —>R in R

is attempted. For example, if 0{ consists of the single
rewrite rule -(x + y) —> (-x) + (-y) , then || vjn i
=39l = Hxll + Hlyll + 1, ana | -xl|=
3[xll 4+ 1 show that R is Noetherian. It should be

3. a similar (equivalent) lemma is stated by [Manna&Ness 70]
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noticed that when the Fj are polynomials, deciding
condition (5) amounts to solving Diophantine inequalities.

For the example given, the inequality is 3x + 3y + 4 >
XTIy A 3.

If the Fj are restricted to polynomials, then some
Noetherian rewriting systems will not be found [Stickel 76].
Moreover, if we defer the selection of the positive integer
in condition (3), then with polynomial Fj condition (5)
can be replaced by
(6) ﬂr’?in...’len T N T S
TEE T Wq;ﬂ ) where HETTI and ||RIl are

obtained by replacing ”ij] i Ilvjn'|

in ”L]’ and ”Rijby Xgp wee oy X respectively.
For the sentences of condition (6) to faithfully capture
Lemma 1, they must be considered to be sentences over the
integers. Unfortunately, methods used by [Davis 73] can be
used to show that there is no algorithm to decide sentences
of the form of condition (6). (A proof of this fact was given
by Martin Davis at Oberwolfach in January 1976.) Still, a
weaker realization of condition (6) can be obtained by
considering the sentences to be interpreted over the reals,
in which case decision methods of elementary algebra,
[Cohen 697, [Collins 75], [Seidenberg 547, [Tarski 517, can
be applied. A further weakening has been given by [Lankford 76].



For the remainder of the article, let the Fj be restricted

to polynomials. When the polynomials are all linear and
satisfy the form

(7) Fj(xl"”'xd.) = X4 ¥ wvw P Xy w5
then the approach of [Knuth&Bendix 707 is a generalization

of Lemma 1 as follows.

Lemma 2 Let the wj be non-negative integers, let wa. > 0

when d. = o? jet f s RPN . PN | e g e
J g IN J
imply ws > 0 (except when Jj = jg » in which case wy
may be 0), and let t > u iff (i)VO ltell > "u 9" or
(1i)¥s 1t @ll = |lu @]/ ana (ii)(a) the leading function
symbol of t 2> the leading function symbol of u or
(ii)(bp) the leading function symbols of t and u are the
sape, t = f(tl,...,tn) and u = f(ul,...,un) »and t, = u, ,
deaiy R e g A e o SN TR L R R
each L —> R in R y then R is Noetherian.

Proof See [Knuth&Bendix 70].

We now turn our attention to the primary purpose of this
article, which is to generalize Lemma 2 to include all
polynomials, not just those satisfying condition (7). Our

solution is also a generalization of Lemma 1.

4, We have already assumed that constants are interpreted
by positive integers, but restate that assumption to
show the connection between our approach and Knuth & Bendix.
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Lemma 3 Let the Fj be polynomials with non-negative integer
coefficients? let fji » > ij (J, 1is a bijection
between the first N positive integers), let dj = 1-imply
Fj(o) > 0 (except when j = Jj; , in which case Fj(o) may
he - 0); 'and Yet % > u -1 (i)vﬁ ”'l:B“ > “uB“ or
(11)¥e [te|[ = JJus) and (ii)(a) the leading function
symbol of t > the leading function symbol of u or

(ii)(p) the leading function.symbols of t and u are the

gsame, t = f(tl'”"tn) and u = f(ul,...,un) , and

Ty = Uy eee 5 T = uy, and tk+1> U aiq o

it dj = 0 implies F;] > 2,amd- L > R for éeach

L —> R in R , then R is Noetherian.

Proof First notice that without the assumption that
constant symbols are interpreted as 2 or greater, Lemma 3
does not hold. This can be seen by letting (R consist of
¢ —> f(e,c) , ordering ¢ > f , and letting |
and Ff(x,y) = Xy . (There may be alternate hypotheses,

but we have not examined the situation.)

Our proof follows the same form as the proof of Lemma 2 given

by [Knuth&Bendix 70]. A ground term (called a pure word by

[Knuth&Bendix 707]) is a term with no occurrences of variable
symbols. We will show that the set of all ground terms is
well ordered by the relation > . Then it follows easily

5. satisfying conditions (1) and (2)
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that (R is Noetherian. (Suppose t1 ey ho =iy 1:3 —_ ..
Then, because of the assumption that each variable symbol that
occurs in R also occurs in L , it follows that there is a

ground sequence g, > &, > &3 > ... (gotten by assigning

the variable symbols of ‘tj a constant symbol c¢ ).)

It can be shown by a somewhat tedious case analysis that
(B}t > u D>wv Soplites t > v and
(9) exactly one of the following holds:
B> u ot =m o 4N,

for any ground terms +t, u, and v .

It remains to be shown that
(10) & > & P &5 > ... cannot happen for
ground terms gd .
For any ground term g and any non-negative integer j 1let
n(j,g) denote the number of occurrences of function symbols
of degree j . (There is a typo in [Knuth&Bendix 70] relating
to this point.) It can be shown by induction that :
(11) nlo,.g) + n(1.8) + nl2,8) + ... =
1+ 0n(0;g) + In{l.8) +2nl2.,8)+ =ev
and because of the assumption that constant symbols are
assigned integers 2 or greater, it follows that
(12) |l gll > n(o0,g) for any ground term g .
Since condition (11) holds, it also follows that
(13) llg]l > n(x,g) when kx > 2.



if d.:l = 1 ‘iuplies FJ(O) > 0 , then it follows that
(14) gl > n(1,8) ,
and so the set {gl, Epr Eq _} would be finite, violating
conditions (8) and (9). '
The case when dj1= 1 and Fji(O) = 0 is like the case
in Lemma 2, i.e.,like the proof in [Knuth&Bendix 70], and so
6

is not given here. This completes the proof of Lemma 3.

Example 1 Consider the complete set of reductions for group
theory derived by [Knuth&Bendix 70].

KBli, xi —>» X

KB2. 1x —> x

KB3. x(x_i) —_ 1

KB4, (x"1)x —> 1

KB5. (xy)z —> x(yz)

x86. 1™ —> 1

kB7. (x1)™! — x

kB8. (xy)"! — (y"Hx™)

kB9. x((x"l)y) —>y

KB10. (x"1)(xy) —> ¥y

They show that the only ordering via Lemma 2 which shows that
KB1-KB10 is Noetherian is Woultiplication = 0 and w_, =0.
With Lemma 1 and Lemma 3 there are other solutions. With
Lemma 1, the following example due to Gérard Huet suffices

(13) P (xy) = =x(1 # 2y) , F ,;(x) = x2 , Fq = 2, and

[|variablel = 2 .

6. for that case, to the definition of t > u add
fj (...(i‘.l(v))...) >

1 J 9



With Lemma 3, the following example suffices
{16} Elnyy) &= a2 +3 1 , ¥ (x) 5 -3x + 1
P, = £, and \lvariable|] = 1.
In case (16) it seems that we may allow F1 = 1 , which
suggests a variation of Lemma 3 when the polynomials are

linear.

Here we should add a few remarks about solving the Diophantine
sentences that result from Lemma 3. In general, as we have
said, those sentences (at least the class of all sentences

of that form, the form of condition (6)) are undecidable.
However, if the polynomials are of small degree, and the
rewrite rules are sufficiently simple in structure, then

the Diophantine sentences can often be decided.

Sometimes it is just a matter of deciding j > k where

and k are particular positive integers. And in other cases,
it is often a matter of deciding if a polynomial is "eventually
positive" by deciding if each of the first partials with
respect to a variable occuring in the polynomial is
"eventually positive," see [Lankford 767]. This amounts to
constructing the partial derivative tree of a polynomial and
checking that the tips are positive integers (modulo some
additional mumbling). Improvements in this basic approach
can be had by checking that polynomials in one variable have

leading coefficient positive.
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Now we turn our attention to extending these results to
equivalence class term rewriting systems, a la [Lankford&
Ballantyne 77A,B,C], [Stickel&Peterson 77]. Let & be a
finite set of equations {pl = Qg 9 00 9y Py T qm} and let
G)\ be a finite set of E -equivalence class rewrite rules,
= [LIJ e %[le v oee o x[Ly] —> x[Ry] , where
txu iff -, t = u. We denote ~[t] by [t] where
no confusion is possible ( = everywhere). The concept of
immediate reduction is the obvious " jacking up" of the
ordinary concept, see [Lankford&:Ballantyne 7?B] and delete
the requirement they make for all equivalence classes to be

finite, and the concept of Noetherian is like before.

Lemma 4 Lemma 1 goes through with the additional requirement

that |lp;0ll = |lq;6| for § = 1, ... , M, and a11 6 .
Proof Like the proof of Lemma 1.

Example 2 Let us consider the the complete set of C + A
reductions for ring theory derived by [Lankford&Ballantyne 77C]]
(and independently by [Stickel&Peterson 77]).

Et. x & Yy = ¥ 4. X

E2. (x +y) + ¢ =x + (y + 3)

50 %Y = Y

el xy)e = xlye)

K1. [x + 0] —> [x]

11



R2. [x + (-x)] —> [0]

R3. [-0] —> [o]

Ry, [-(-x)] — [x]

Rs. [-(x+y)] —> [(-x) + (-y)]

R6. [x1] —> [x]

R7. [x0] — [0]

R8. [x(-y)] —> [-(xy)]

Ro. [x(y + 2z)] —> [(xy) + (xz)]

With Lemma 4, the following example suffices

(17) llvariablell = 2, F, =1, F = 2,

Pix] = 3x+1.F+(x.y)= S e [
F, (x,y) = xv ,

to show that R1- 89 is Noetherian.

We may relax the requirement in Lemma 4 that II LGH > ][RG“
for all [L]—-—-}[R] in R and a11 6 » to the case that

some members of (R satisfy the requirement, while the
remainder of the members of (K are Noetherian and

satisfy (el = lrell for a1y o6 .

Example 3 Consider the following example from [Degano&Sirovich ?9].
El: 2 +» vy =9y + X%

€2, (2 +¥) + 2 =x +(y + 2)

€3. xy = yx

E4. (xy)z = x(yz)

1

12



R1. [x + 0] — [x]
R2. [s(x) + y] —> [s(x + ¥)]
R3. [x0] —> [0]
Ry, [s(x)y] — [(xy) + ¥]
R5. [x(y + 2)] —> [(xy) + (x2)]
First (R 2 is shown to be Noetherian (without the presence
of the other members of (R ) by
(18) Fs(x) e e B0 (x,y) = F (x,y) = xy .
Then the entire set is shown Noetherian by
(19) || variablell = 2 , Fg = 1, F.(zsy) = x +3 + 1
P ixy) = =, Fs(x) e B e
When condition (19) is applied to R1- Rs5, a1l except X2
satisfy the inequality, while ® 2 satisfies the equality

and is Noetherian.

When the equations of &, are commutative-associative pairs,
the polynomials which satisfy the equality condition of
Lemma 4 are very limited, at least in the linear and second
degree cases. The only polynomials that we have found have
one of the following three forms

(20) o , OXy  © % X + ¥ 4 . A%y .
We conjecture that these are the only forms that such

polynomials can have?

7. G. Huet claims to have found others

13



CONCLUDING REMARKS

Many researchers who derive complete (and incomplete) sets
of reductions use human interaction to order the rewrite

rules. It is only ex post facto that they prove the rewrite

rule system is Noetherian, if at all. Not proving finite
termination is very risky, especially for sets of rewrite
rules claimed to be Church-Rosser since the Knuth and Bendix

Church-Rosser algorithm demands that the rewrite rules be

Noetherian.

The methods of this article and appendix provide a modest,
systematic approach to proving finite termination for some
term rewriting systems by some polynomial norms. Of course,
the approach is still more an art than a science, and likely
to remain that way because of undecidable problems on all
sides. However, it still seems possible to extend these
results in a number of useful directions. We are especially
interested in efficiently deciding sentences of the form of

condition (6) over the real numbers.

14
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APPENDIX TO '"ON PROVING TERM REWRITING SYSTEMS ARE NOETHERIAN"

One of the bothersome things about the approaches to proving that term
rewriting systems are Noetherian by the polynomial methods discussed in
this article is that there is no general way to specify the polynomials
a priori. We suspect that in general it is undecidable whether there
exist polynomials such that a finite set of equations can be arranged into
set of rewrite rules which can be shown Noetherian by those polynomials.
However, when the polynomials have the form of condition (7),

F(xl,...,x ) = xl+...+xd Ve s
then it is dec1da’gle whether there is a choice of the wf's , an
ordering f, '>> o> f , and a choice for [lvariable|| which

can show (R is Noetherian

This can be seen as follows. There are finitely many choices for fj >>
> 2 f , so in the following discussion, the permutation jk of
{1 P N} is assumed fixed. In addition, for n equations, there
re 2 potential sets ﬂ{ , SO we may assume d{ is fixed. Because
@ is finite, there is a finite conjunction of inequalities to be

decided. Thus we are faced with deciding
awl : 3 ar k['vxkl... {(x.k1> rA...Axk > r)
= _ll_}_hll > r |
v O It il = IR A LFs(L) > LFS(R))
VCOIL = URedl A & =u A - A
tj o= A tj+1> uj+1)J i
where LFS(t) is the leading function symbol of ¢t .

Since the negation of the above formula is equivalent to a universal

Presburger formula, it is decidable by algorithms like [Bledsoe 74_] .
[Shostak ?'}] 2 (**% with the obvious hypotheses about the

. d 's
constant o' Wuua,ry function )
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For the ten group reductions, Example 1, there are six
orderings of the function symbols. One of those orderings
and the associated Presburger formula is given below.

We should remark that the method of the appendix works for
any linear polynomial with positive cj

Ff(Xl'onl,xn) - clxl + LI B + Cnxn + Wf

when the c¢. are specified a priori and the We are left
unspecifiedg If the' c are left unspecified,” then we are
up against Hilbert's 10th Problem, or so it seems.

Postscript 10/19/1979 I now have some doubts about some of

what is said in this appendix. That may only be an anxiety
attack, but I suspect it is because of my incomplete understanding
of some concepts from logic. Until now, time has not

permitted me to carefully reexamine the appendix.

Bledsoe's Presburger algorithm established
the above example.
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