

Abstract—Mobile application development belongs on the

complicated, but quite regular software development environment

that includes many different solutions possibilities in the

development. The experiences from the mobile card game

development lead to the development process that covers many

distribution channels (different client platforms). Architecture and

the readiness to react changes that were caused by technology

requirement changes become one of the key points in successful

development. Changes that came during the application

development required quite clear architecture. By identifying,

standardizing, and naming general process models, same models

and code could be reused in several applications.

In this paper we go through mobile development process and

architectural structures and analysis of these with empirical

mobile application development. We used different architectural

views for analyzing mobile architectures and architecture role in

development. The architecture and architectures role on the

development has been studied in mobile application-and

multi-platform service development.

Index Terms— Mobile Application, Mobile Architecture,

Embedded Software, MDA (Model Driven Development), Model,

Frameworks, Embedded Development Process

I. INTRODUCTION

 Embedded software applications are typically more difficult

to design and build, both because of the problem domain and the

constraints placed on them by the target environment.

Embedded systems usually have limited memory and CPU

processing power; these constraints are likely due to size, cost,

power efficiency, and heat generation limitations. In addition,

studies have shown that many embedded projects either fail

altogether, or fail to meet the requirements set for them.

Embedded system design needs to model together application

and hardware architecture. For that a huge number of models are

available, each one proposing its own abstraction level

associated to its own software platform for simulation or

synthesis. To produce a co-design framework, we are obviously

obliged to support different models among all possible ones.

Heang-Kon Kim is with the Department of Computer Engineering, Catholic

University of Daegu KyungSan, Daegu, 712-702, Korea (corresponding author

to provide phone: 053-850-2743; fax: 053-850-2740;

 e-mail: hangkon@ cu.ac.kr).

“This research was supported by the MKE(Ministry of Knowledge Economy),

Korea, under the ITRC(Information Technology Research Center) support

program supervised by the IITA(Institute of Information Technology

Advancement)” (IITA-2008-(C1090-0801-0032))

Between these models we should produce automatic

transformations. Each time a new model is included in the

framework, we should develop a new transformation[1], [2]. To

improve transformation engine development, Model Driven

Architecture (MDA) techniques are useful. This approach

permits to define the transformations at the meta model level. It

guaranties to the framework the reuse of models and unifies the

definition of the transformation rules. Modeling is frequently

used in other engineering domains as a way to verifying design

decisions before committing large resources to constructing or

manufacturing a product. Models allow you to perform thought

experiments on a design, and to try different approaches to

solving the problem at a higher level of abstraction than the raw

medium of the constructed product. In software this is not

typically the case: although modeling tools have been around

for decades, the desire, capability, and modeling tool maturity

have not been sufficient. This is no longer the case, and using

models -- not only to think about the problem but also to drive

the design and construction of software -- is a reality. MDD

tools can take models at a high level of abstraction and generate

executable and efficient source code. Models (in particular

visual ones) provide rich information on the structure and

behavior of the system. Sharing and working with models on a

software development team is now more efficient and less

error-prone than working only in source code.

Embedded systems vary in size and complexity, and might

include such divergent things as[3], [4]:

 Small applications embedded in a microcontroller

running the interior lights in a car

 Large, multiprocessor telephone switches requiring

millions of lines of code

Although the use of models is beneficial to both types, there

are certain trade-offs required when using MDD on such

systems. Small and resource-constrained systems may have

such limited memory that using a Real-Time Operating System

(RTOS) becomes prohibitive. In such cases, operating system

services like threads, processes, or tasks are not available.

Modeling tools that provide MDD capabilities need to take

these diverse requirements into account. This article discusses

the use of MDD techniques on various resource-constrained

embedded systems, and looks at the trade-offs required in order

to make MDD beneficial.

In this paper, we propose a framework of development

process for the mobile embedded software, which is shows good

Frameworks of Process Improvement for

 Mobile Applications

Haeng-Kon Kim

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

Fig. 1. Model Driven Approach for Mobile Applications

development utilization and filtering efficiency as well. The

proposed process for embedded software uses multiple domain

applications and achieves small number of the efficient real

practices. In order to evaluate the productivity and quality of the

proposed process development method, several experiments are

conducted on the SPIC 2008 benchmark data[5]. The results of

the experiments clearly show that we can decide a suitable

process for the mobile devices and the proposed methods are

also expected to be important technology for the mobile

embedded development to be wide used recently.

II. RELATED WORKS

A. MODEL and REUSE-DRIVEN APPROACH

Their efficient development requires the Two approaches

have emerged to tackle the use of techniques that can model

entire families variability problem in the embedded world: the

rather than just individual applications. model-driven and the

reuse-driven approaches. With the former approach (see Figure

1), the application The non-functional challenge has long been

requirements are expressed in a modelling recognized. It is

addressed by several research environment that is capable of

automatically generating the application code. The prototypical

example of such an environment is the Matlab tool suite. The

increase in efficiency arises from the fact that the software

design and implementation phases are automated and that the

control engineer can take direct control of the software

development process without having to resort to the

intermediary services of a software engineer.

In a reuse-driven approach instead (see Figure 2), the

application code is built by configuring and composing a set of

pre-defined software building blocks. The increase in efficiency

now arises from the possibility of reusing existing software

artifacts (modules, components, code fragments, etc.).

Traditionally, the reuse-driven approach was implemented by

developing libraries of reusable modules. More recently,

Fig. 2. Reuse Approach for Mobile Applications

software product families (Bosch, 2000) and software

frameworks [6], [7] have emerged as more convenient reuse

vehicles that allow reuse to take place at architectural as well as

at the code level.

The problem for control engineers is that their applications

tend to be multi-domain. A complete control application does

not simply cover implementation of control laws. In fact, in

most cases, the implementation of control laws is only a small

fraction of the total control software. Most of the software

normally is concerned with functionalities such as management

of external sensors and actuators, management and generation

of housekeeping data, management and processing of

commands from some supervisory unit, implementation of

failure detection and identification logic, implementation of

failure recovery actions. A reuse approach may then be more

appropriate. The cost of developing reusable building blocks is

lower than the cost of developing model-driven tools and a

reuse-driven approach is therefore affordable even for niche

products – as most industrial control systems are. The reusable

blocks can moreover be more easily targeted to the specific

needs of their users and can therefore more easily match the

often idiosyncratic needs of control applications.

B. Modeling Concurrency in UML

UML 1.x did not provide an easy way to represent a

composite object (that is, one that contains other objects in a

containment relationship). Real systems are typically made of

smaller subsystems, and these subsystems are connected

together in a unique way in order to satisfy the system

requirements. UML 2.0 has addressed this by providing

structured classes. UML 2.0 provides a powerful building block

for system design through structured classes. In particular, the

structured class concept can be specialized to model active

objects -- with their own thread of control -- that communicate

with other active objects, asynchronously, using message

queues. These active objects address a key need of the

embedded and real-time developer: the ability to model

complex and concurrent objects (such as interfaces and devices)

in the problem domain.

Contained parts of a structured class communicate via ports.

Ports allow for two-way communication between objects that

consist of required (incoming) and provided (outgoing)

interfaces. Ports are wired together using a connector; once

wired together, objects can communicate via the defined

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

Fig.3. The active pattern for Mobile Application

interfaces. Ports also allow objects to be decoupled and plugged

in anywhere a compatible set of connections is available. Active

objects, furthermore, extend this capability by formalizing the

communication. The message "format" that is used by ports on

active objects is defined using protocols, which are the signals

that are accepted (required) by and sent (provided) on a port.

The use of signals is analogous to events in the modeled

system, and therefore useful for modeling the event-driven

domain of embedded and real-time software.

Active objects have their own thread of control: they have an

encapsulation boundary that protects the inner behavior and

state and an external interface defined by ports (see Figure 3).

This approach is similar to hardware design, where engineers

build systems from components (for example, logic chips,

ASICs, or micro-controllers) that have established interfaces

(pin outs), and connect them together on a schematic diagram.

III. MOBILE EMBEDDED SOFTWARE DEVELOPMENT PROCESS

MES(Mobile Embedded Software) can be considered as a

particular case of embedded systems. MES design covers a lot

of different viewpoints including as much the application

modeling by the aggregation of functional components, as the

assembly of existing physical components, as the verification

and the simulation of the modeled system, as the synthesis of a

complete end-product integrated into a single chip. As a rule a

MES includes programmable processors, memory units

(data/instructions), interconnection mechanisms and hardware

functional units. These components can be generated for a

particular application; they can also be obtained from IP

(Intellectual Property) providers. The ability to re-use software

or hardware components is without any doubt a major asset for a

codesign system. We propose the MES development process as

in figure 4.

(1) Capture User Requirements: The objective of this

phase is to elicit, agree and document the customer

requirements that the software system needs to fulfill. This

includes establishing a common understanding with the

customer on functional and non-functional requirements for

MES domain. This phase includes the following activities:

formalize the customer requirements in an MES Application

Model and derive an initial Application PIM for MES and an

initial functional requirements specification from the common

infrastructure of reusable assets for MES.

Fig.4. Mobile Embedded Development Process proposed

 (2) PIM Context Definition: The objective of this phase is

to clearly define the scope of the software system to be

developed. The result is an unambiguous definition of the

system, its objectives, and scope following a black-box

approach. Main activities are:

- Establish the system goals and business principles.

- Describe the external actors that interact with the system.

- Identify the high-level services offered by the system and

their key behavior.

- Define the business events, and exchanged business objects.

(3) PIM Requirements Specification: The objective of this

phase is to build a model of customer requirements clear and

complete and to have a unique requirements description that all

subsequent models will use. In order to model the system

functional and non-functional requirements, the main activities

of this phase are:

- Refine the PIM Context

- Identify services, events and business objects produced and

consumed by the system and the actors interacting with the

system

- Specify capabilities (use cases), forces (non-functional

requirements), and atomic requirements

- Identify and model the relationships between functional and

nonfunctional requirements.

(4) PIM Analysis: The objective of this phase is to model the

internal view of the system without any technological

consideration and maintaining the separation of concerns

between functional and non-functional aspects. The main

activities of this phase are:

- Describe the system functionalities: the objects (with

classes, attributes, packages, etc.), the functions (with

operations), the system boundary (with interfaces), the

behavior (with sequence diagrams), etc.

- Describe the system QoS aspects (refine the classes) and

their application to the functional elements of the model.

- Maintain traceability with the Requirements PIM.

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

Fig.5. Upper Layer in Mobile Embedded Development Process

 (5) Design: The objective of this phase is to model the

detailed structure and behavior of the solution (software

application) that fulfils the system functional and non-functional

requirements. This implies making decisions on how the system

will be implemented and which architectural style, patterns,

standards and platforms will be used. Following an MDA

approach, the design is performed in two steps:

- Specify and design a platform-independent solution (how)

for all the requirements (what). The PIM will be defined

with different elements depending on the architectural style

selected for the solution, e.g., for a Components Design

PIM the solution is expressed in terms of software

components (component, interface, port, connector).

- Specify and design the platform-specific solution by

refining the platform-independent solution. The PSM is

intended to be automatically derived from the PIM through

transformation engines. The PSM contains models specific

of the platform (e.g., CCM, EJB, .NET) and is detail and

complete enough to allow the codification and deployment

of the solution as in the figure 6.

(6) Coding & Integration: The objective of this phase is to

develop and verify the software code that implements the

software design fulfilling the software requirements. This phase

includes activities such as: develop the components and classes

(according to the models used as inputs), define the organization

of the code, execute unit tests, and integrate components and

subsystems. Following a MDA approach, the code is intended to

be automatically produced from the PSM through

transformation engines.

(7) Testing: The objective of this phase is to demonstrate that

the final software system satisfies its requirements. This phase

includes activities such as: plan tests, prepare test model, test

cases and test scripts, execute tests, correct defects and

document testing results. Test models are traceable to PIM

models (specially to PIM Requirements) and, following an

MDA approach, test models will be refined from the PIM and

test cases and test scripts will be automatically produced from

the test model through transformation engines.

Fig.6. Lower Layer in Mobile Embedded Development Process

(8) Deployment: The objective of this phase is to ensure a

successful transition of the developed system to the final users

(including resources, environment, schedule planning and

execution). This phase includes activities such as: create a

deployment plan (dates of installation, resources, etc.), create a

deployment model (derived from the PSM Deployment model

and adapted to the specific execution environment of the

customer), create the product manuals, maintain records of the

product that is being delivered to the client, and provide the

installation of the product in the client premises.

IV. EVALUATION

We propose the case study investigated possible

configurations, with each one targeted for specific platform

capabilities. The use of MDD for embedded systems is not an

all-or-nothing proposition. Models are still applicable for

resource-constrained devices if the use of models and

subsequent code generation can provide productivity benefits.

The case study illustrates the trade-offs needed to support

mobile application classes of embedded systems. The design

activities match a successive refinement process between each

domain according to various abstraction levels. The design

flows from the functional domain, to the structural domain,

finally to the physical domain, and so on while going down in

the abstraction levels. This abstract model illustrates the

interoperability requirements for different software applications

owned by the same or different enterprises that are expected to

interact with each other. It should be noted that the CIM model

is abstract enough to encompass any system architecture,

including both client-server and distributed approaches.

The use of MDA describes and represents interactions

between entities, and not the way in which they will be

implemented. The choice of architecture and components that

will be utilized is up to the next model level.

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

Fig.7. Lower Layer in Mobile Embedded Development Process

(1) Capture the user requirements: Small Mobile complex

embedded systems.

The best approach for designing large and complex systems

(with several hundred active objects) is to use Rational Rose

RealTime and C++ code generation, with a threaded runtime

system. The usage of C++ gives you all the benefits of classes

and inheritance (class, public, friend, and private), while the

model code generator can make use of these C++ features to

provide the most flexible modeling constructs (for instance,

dynamic structure and multiple containment). You can therefore

create abstract and derived objects, minimizing the design and

implementation effort. In this configuration, the use of active

objects, TargetRTS, and underlying RTOS allows the designer

to take full advantage of the MDD tooling.

The multiplicity of the abstraction levels is appropriate to the

modeling approach. The MES requirements with context model

are used with a different viewpoint for each abstraction class in

PIM level as figure 7. This information is defined only once in

a single model. The links or transformation rules between the

abstraction levels permit the re-use of the concepts for a

different purpose.

The external scheduler has control, and lets the Rational Rose

RealTime TargetRTS process events one by one (at whatever

time the scheduler decides). The model code contains all of the

event-driven applications that are designed in Rational Rose

RealTime. The scheduler shown above also calls external

application functions that are designed outside the toolset (if

applicable). An example of such an application could be a motor

control loop, which is actually more frequency-driven than

event-driven; the correct functioning depends on an exact

scheduling frequency (for example, once per two ms) rather

than a guaranteed maximum latency while reacting to an

asynchronous event as in figure 8.

Fig.8. Changing Thread of Control

(2) System Decomposition

When decomposing a system with active classes on

resource-constrained targets, you must find a balance regarding

the percentage of active classes in the system. Active classes,

although useful, do have memory and performance overhead

associated with their use. A number of system services and basic

applications at the bottom layers of a system model usually don't

have to be active at all. Most engineers design application

modules implementing the main functionality of a system,

which should benefit from active objects due to the improved

productivity from their use. Many of the details of concurrency,

data access, and communication are accomplished using this

paradigm. In Rational Rose RealTime, each state transition

trigger for an active object must be triggered by an

asynchronous event. Examples of such events, which are

typically sent from the bottom layers of your system model,

include:

 Action available

 End speed Mobile controller reached

 A simple external port became active

These events could arrive from other active classes, but also

from passive classes using the external port described earlier (as

shown in Figure 9). You should distinguish between active and

Fig.9. System decomposition example

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

Fig.10. Interaction scenario between active and passive

passive classes early in the system design. The advantage of

using passive classes is an improved memory footprint and

better performance, and that they can also use state machines to

describe their behavior. A common pitfall in using passive

classes, on the other hand, is the fact that you may need to

design some low-level services. For example a timer service is

provided by the TargetRTS for active classes, but it is not

available for passive classes. If a timing service for passive

classes were required, you would have to design it.

Using the scheme above, active and passive objects can be

combined in a single system. Figure 10, following, illustrates an

example message sequence chart showing the interaction

scenario.

V. CONCLUSIONS

Using software architecture gives quite good new concepts

like classes, interfaces, components, modules, sub-systems,

inheritance of classes, processes, messages, files, hardware

components, communication models etc. Architecture model

may concern either static structure of software like classes or

dynamic structures like objects. It may also concern static

relationships as well as dynamic behavioral models.

Architecture can be described either as abstract model, which

has not direct relation to software, or as concrete model. MDA

prescribes certain model artefacts used along system

development line, how those models may be prepared and their

relationship. It is an approach to system development that

separates the specification of functionality from the

specification of the implementation of that functionality on a

specific technology platform. Main MDA artefacts are platform

independent system models (PIMs), platform specific system

models (PSMs) and system code. There is a clear distinction

between PIM, PSM and system code although it depends on the

context, the development process and the details of the system

and target platform, where the border between PIM, PSM and

system code is to be placed. Within these three abstraction

levels, transformation techniques are used to translate model

parts of one abstraction level into model parts on another

abstraction level.

The idea of this paper is to suggest of development process to

improve the Mobile applications system development. We used

different architectural views for analyzing mobile architectures

and architecture role in development. The architecture and

architectures role on the development has been studied in

mobile application-and multi-platform service development.

ACKNOWLEDGMENT

“ This work was supported by the Korea Science and

Engineering Foundation (KOSEF) grant funded by the Korea

government (MEST) (No. R01-2008-000-20607-0) ”

REFERENCES

[1] C. Reichmann, P. Graf, K.D. Müller-Glaser, “GeneralStore - A

CASE-Tool Integration Platform Enabling Model Level Coupling of

Heterogeneous Designs for Embedded Electronic Systems,” 11th IEEE

Conference on the Engineering of Computer Based Systems 2004, Brno,

Czech Republic, May 2004.

[2] Telelogic, Doors tool, Available:

http://www.telelogic.com/solutions/alm/rdt/index.cfm.

[3] T. Bienmüller, U. Brockmeyer, G. Sandmann, “Automatic Validation of

Simulink/Stateflow Models, Formal Verification of Safety-Critical

Requirements,” OSC – Embedded Systems AG, 2004.

[4] M. Stonebraker, J. Frew, K. Gardels, J. Meredith, “The SEQUOIA 2000

Storage Benchmark,” Proc. of Int. Conf. on ACM SIGMOD, 1993, pp.

2-11.

[5] Doo-Hwan Bae et al., SPICS midterm report, Aug. 2007.

[6] Carnegie Mellon Software Engineering Institute. Software architecture

documentation in practice – Documentating architectural layers. 2002.

Available:

http://www.sei.cmu.edu/publications/documents/00.reports/00sr004.html

[7] Carnegie Mellon Software Engineering Institute. A Framework for

software product line practice – version 3.0. 2002. Available:

http://www.sei.cmu.edu/plp/framework.html, 2002.

[8] K.Y. Whang, R. Krishnamurthy, “The Multilevel Grid Files – a Dynamic

Hierarchical Multidimensional File Structure”, Proc. of Int. Conf. on

Database Systems for Advanced Applications, 1991, pp. 449-459.

[9] S. Shekhar, Y. Huang, J. Djugash, “Dictionary Design Algorithms for

Vector Map Compression,” Proc. of Data Compression Conf, 2002, pp.

471.

[10] OMG. Meta-Object Facility (MOF). version 1.4. Available:

http://www.omg.org/technology/documents/formal/ mof.htm

[11] OMG. Model-Driven Architecture. Available: http://www.omg.org/mda

Dr. Haeng-Kon Kim is currently a professor in the Department of

Computer Engineering and was a dean of Engineering College at

Catholic University of Daegu in Korea. He received his M.S and Ph.D

degree in Computer Engineering from Chung Ang University in 1987

and 1991, respectively. He has been a research staff in Bell Lab. in 1988

and NASA center 1978-1979 in U.S.A. He also has been reserched at

Central Michigan University in in 2000-2002 and 2007-2008 in U.S.A.

He is a member of IEEE, KISS and KIPS. Dr. Kim is the Editorial

board of the international Journal of Computer and Information

published quarterly by ACIS. His research interests are Component

Based Development, Component Architecture & Frameworks for

Mobile Applications and Components embedded systems .

Engineering Letter, 16:4, EL_16_4_13
__

(Advance online publication: 20 November 2008)

http://www.telelogic.com/solutions/alm/rdt/index.cfm
http://www.omg.org/mda

