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3 Existence

In this section we reduce the problem (5)-(8) to an equiv-
alent problem of solving a linear integral equation of
Volterra type for C(s). For this purpose we first consider
following free boundary problem:

uxx = ut for 0 < x < s(t), t > 0, (10)

u(0, t) = C(s) where C(s) ≥ 0, t > 0, (11)

u(x, 0) = ϕ(x) where ϕ(x) ≥ 0, 0 < x ≤ b,
(12)

and ϕ(b) = 0, b > 0,

u(s(t), t) = 0 for t > 0, and s(0) = b, (13)

ux(s(t), t) = −ds(t)
dt

for t > 0, (14)

x = s(t) is the free boundary which is not given and is to
be found together with u(x, t).

Definition. We say that u(x, t), s(t) form a solution of
(10)-(14) for all t < σ, (0 < σ ≤ ∞) if (i)∂2u

∂x2 and ∂u
∂t are

continuous for 0 < x < s(t), 0 < t < σ; (ii)u and ∂u
∂x are

continuous for 0 ≤ x ≤ s(t), 0 < t < σ; (iii)u(x, t) is con-
tinuous also for t = 0, 0 < x ≤ b, and 0 ≤ lim inf u(x, t) ≤
lim supu(x, t) < ∞ as t −→ 0, x −→ 0 (if ϕ(0) = f(0)
then u is required to be continuous at x = t = 0); R
(iv)s(t) is continuously differentiable for 0 ≤ t < σ, and
(v)the equations (10)-(14) are satisfied.

Theorem. Assume that C(s) (0 ≤ t < ∞) and ϕ(x) (0 ≤
x ≤ b) are continuously differentiable functions. Then
there exist a unique solution u(x, t), s(t) of the system
(2.0.10)-(2.0.14) for all t < ∞. Furthermore, the function
x = s(t) is monotone nondecreasing in t and the function
u(x, t) we find for following integral representation.

u(x, t) =
∫ t

0

uξ(s(t), t)G(x, t; s(τ), τ)dτ (15)

+
∫ t

0

C(s)Gξ(x, t; 0, τ)dτ +
∫ b

0

ϕ(ξ)G(x, t; ξ, 0)dξ

Where G(x, t; ξ, τ) is Green’s function for the half-plan
x > 0 and

G(x, t; ξ, τ) = K(x, t; ξ, τ)−K(−x, t; ξ, τ),

where

K(x, t; ξ, τ) =
1√

4π(t− τ)
exp{− (x− ξ)2

4(t− τ)
}.

Proof. See [10].

We shall now reduce the problem of solving (10)-(14) to a
problem of solving an integral equation. By introducing

υ(t) = ux(s(t), t), (16)

and suppose that u, s form a solution of (10)-(14) and
ϕ(0) = C(s)|t=0, we can reduce the problem of solving
(10)-(14) to a problem of solving an following integral
equation [10],

υ(t) = 2
∫ b

0

ϕ′(ξ)N(s(t), t; ξ, 0)dξ (17)

−2
∫ t

0

C ′(s)N(s(t), t; 0, τ)dτ

+2
∫ t

0

υ(τ)Gx(s(t), t; s(τ), τ)dτ,

and by (14),(16), we have

s(t) = b−
∫ t

0

υ(τ)dτ. (18)

Where

N(x, t; ξ, τ) = K(x, t; ξ, τ) + K(−x, t; ξ, τ).

Thus for every solution u, s of the system (10)-(14) for
all t < σ, the function υ(t) defined by (17) satisfies
the nonlinear integral equation of Volterra type (17) (for
0 < t < ∞), where s(t) is given by (18) continuous for
0 ≤ t ≤ σ.
Suppose conversely that for some σ > 0, υ(t) is a contin-
uous solution of the integral equation (17) for 0 ≤ t < σ,
with s(t) given by (18). We prove that u(x, t), s(t) then
form a solution of (10)-(14) for all t < σ , where u(x, t)
is defined by (15) with uξ(s(τ), τ) replaced by υ(τ), [10].

Now we consider the following Inverse problem . By
above verifying, we note that, if for some σ > 0, C(s) is a
continuously differentiable solution of the linear Volterra
integral equation of first kind (17) (forC(s)), where s(t)
is given, u(x, t) then form a solution of Inverse problem.
By (17), we can write

∫ t

0

C ′(s)N(s(t), t; 0, τ)dτ = h(t), (19)

where

h(t) =
∫ b

0

ϕ′(ξ)N(s(t), t; ξ, 0)dξ (20)

+
∫ t

0

υ(τ)Gx(s(t), t; s(τ), τ)dτ − 1/2υ(t),

where s(t), therefore υ(t) are given.
We want to solve the integral equation (19) where h(t)
is given by (20). For this purpose we write the equation
(19) as following form,

∫ t

0

u(τ)K(t, τ)dτ = h(t) t ∈ [0, b], (21)

where

u(τ) = C ′(s), K(t, τ) = N(s(t), t; 0, τ),
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and h(t) is given by (20).

Proposition. Assume the following :
a) The function K : [0, b]× [0, b] −→ R is continuous.
b)We define,

L = max
t,τ∈[0,b]

|K(t, τ)|.

c) We set X = C[0, b] and M = {u ∈ X : ‖u‖ < r} for
fixed r > 0.
Then, the original integral equation (21) has at least one
solution u ∈ M.

Proof. Define the operator

(Tu)(t) =
u(t)
h(t)

∫ t

0

u(τ)K(t, τ)dτ for all t ∈ [0, b].

Then, the integral equation (21) corresponds to the fol-
lowing fixed-point problem :

u = Tu, u ∈ M. (22)

We claim that the equation (22) has a solution. For this
purpose, we need to prove the following :
1) The set M is a bounded, closed, convex, nonempty
subset of Banach space X.
2) The operator T : M −→ M is compact.
Then, the Schauder fixed-point theorem tells us the equa-
tion (22) has a solution.

Lemma 1. The set M is a bounded, closed, convex and
nonempty subset of Banach space X.

Proof. The bounded and nonempty property subset of
Banach space M of X are clear.
We know that, the set M is convex iff u, v ∈ M and
0 ≤ α ≤ 1 imply αu + (1− α)v ∈ M .
Let u, v ∈ M and 0 ≤ α ≤ 1, then

‖αu + (1− α)v‖ ≤ ‖αu‖+ ‖(1− α)v‖
= α‖u‖+ (1− α)‖v‖
≤ αr + (1− α)r = r.

Hence, αu + (1− α)v ∈ M .

Now we want to show that the set M is closed. To this
end, let un be a sequence in M such that

un → u as n →∞.

By the definition of M , for each un, we have

‖un‖ ≤ r, n = 1, 2, ....

Thus we can write

‖u‖ = ‖u− un + un‖

≤ ‖u− un‖+ ‖un‖

≤ ‖u− un‖+ r = r,

as n →∞.
Hence, u ∈ M . Thus, the set M is closed.

Lemma 2. Let us consider the integral operator

(Tu)(t) =
u(t)
h(t)

∫ t

0

u(τ)K(t, τ)dτ for all t ∈ [0, b].

Where

b ≤ min{ 1
rL‖ 1

h‖
,
ε− (r‖ 1

h‖ε + k1(2r‖ 1
h‖))δ

r‖ 1
h‖ε + k1(2r‖ 1

h‖)
}.

Set

Q = {(t, τ, u) ∈ R3 : (t, τ) ∈ [0, τ ] and ‖u‖ ≤ r}

for fixed r > 0.
Suppose that the function

F : Q −→ R

F (t, τ, u) = u(τ)K(t, τ)

is continuous .
Set X = C[0, b] and M = {u ∈ X : ‖u‖ < r} for fixed
r > 0.
Then, the operator T : M −→ M is compact .

Proof. Since Q and R are normed spaces and F : Q −→
R is a continuous operator on the compact set Q, hence,
F is uniformly continuous on Q. This implies that, for
each ε > 0, there is a number δ > 0 such that

|F (t, τ, u)− F (t′, τ, v)| < ε, (23)

for all (t, τ, u), (t′, τ, v) ∈ Q with |t− t′|+ |u− v| < δ.
We first show that the operator u : [0, b] −→ R is contin-
uous. In fact, if u ∈ M , then the function u : [0, b] −→ R
is continuous, and |u(τ)| ≤ r for all τ ∈ [0, b] and
h : [0, b] −→ R is continuous and h(τ) 6= 0 for all
τ ∈ [0, b]. Hence the function Tu : [0, b] −→ R is also
continuous.
Let

‖u− v‖ = max
0≤τ≤b

|u(τ)− v(τ)| < δ

implies
‖Tu− Tv‖ =

max
0≤t≤b

|u(t)
h(t)

∫ t

0

u(τ)K(t, τ)dτ − v(t)
h(t)

∫ t

0

v(τ)K(t, τ)dτ |

= max
0≤t≤b

(| 1
h(t)

||
∫ t

0

(u(t)u(τ)− v(t)v(τ))K(t, τ)dτ |)

= max
0≤t≤b

(| 1
h(t)

||
∫ t

0

(u(t)u(τ)− u(t)v(τ)

+u(t)v(τ)− v(t)v(τ))K(t, τ)dτ |)

= max
0≤t≤b

(| 1
h(t)

||
∫ t

0

(u(t)(u(τ)− v(τ))
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−v(τ)(u(t)− v(t)))K(t, τ)dτ |)

≤ ‖ 1
h
‖ max

0≤t≤b

∫ t

0

(|u(t)||(u(τ)− v(τ))K(t, τ)|

+|v(τ)||(u(t)− v(t))K(t, τ)|)dτ

≤ 1
‖h‖ (rε + rε)b = 2rbε

1
‖h‖

by (23). Hence, T : M −→ M is continuous.
We now show that T (M) ⊆ M .
If u ∈ M , then

‖Tu‖ = ‖u(t)
h(t)

∫ t

0

u(τ)K(t, τ)dτ‖

≤ ‖u‖‖ 1
h
‖ max

0≤t≤b

∫ t

0

|u(τ)||K(t, τ)|dτ

≤ r2‖ 1
h
‖Lb ≤ r,

for b ≤ 1
rL‖ 1

h‖
.

Hence, Tu ∈ M . Thus T (M) ⊆ M for b ≤ 1
rL‖ 1

h‖
.

We now show that T : M −→ M is compact.
Since the set M is bounded, it suffices to show that the
set T (M) is relatively compact. By the Arzela-Ascolli
theorem it remains to show that T (M) is equicontinuous.
Let |t− t′| < δ and t, t′ ∈ [0, b]. Then by (23)

|(Tu)(t)− (Tu)(t′)| =

|u(t)
h(t)

∫ t

0

u(τ)K(t, τ)dτ − u(t′)
h(t′)

∫ t′

0

u(τ)K(t′, τ)dτ |

= |
∫ t

0

[
u(t)
h(t)

F (t, τ, u)− u(t′)
h(t′)

F (t′, τ, u)]dτ

+
∫ t′

t

[
u(t)
h(t)

F (t, τ, u)− u(t′)
h(t′)

F (t′, τ, u)]dτ |

= |
∫ t

0

[
u(t)
h(t)

(F (t, τ, u)− F (t′, τ, u))

+F (t′, τ, u)(
u(t)
h(t)

− u(t′)
h(t′)

)]dτ

+
∫ t′

t

[
u(t)
h(t)

(F (t, τ, u)− F (t′, τ, u))

+F (t′, τ, u)(
u(t)
h(t)

− u(t′)
h(t′)

)]dτ |

≤ (r‖ 1
h
‖ε + k1(2r‖ 1

h
‖))b + (r‖ 1

h
‖ε + k1(2r‖ 1

h
‖))δ ≤ ε

for

b ≤ ε− (r‖ 1
h‖ε + k1(2r‖ 1

h‖))δ
r‖ 1

h‖ε + k1(2r‖ 1
h‖)

.

Where
k1 = max

t,τ∈[0,b]
|F (t, τ, u)|.

4 Numerical Results

In this section we apply the Collocation method to some
examples in order to compare numerical solution with
exact solution.

Example 1. In Inverse problem, suppose that s(t) = t.
Then we obtain the following integral equation :

∫ t

0

C ′(s)
exp{− t2

4(t−τ)}√
t− τ

dτ =
√

π

2

+
1
4

∫ t

0

1√
t− τ

[exp{τ − t

4
} − t + τ

t− τ
exp{− (t + τ)2

4(t− τ)
}]dτ

with exact solution C(s) = et−1. Suppose that t ∈ (0, 1).
The result of applying Collocation method with 12 nodes
of interval (0,1) and with 12 base functions ϕj(t) = tj , j =
0, 1, 2, ..., 11 for above integral equation is in the following
form:

Ccollo(s) =
417660

12
t12 − 441640

11
t11 − 77870

10
t10

+
145570

9
t9 − 5320

8
t8 +

12360
7

t7 − 18730
6

t6

+850t5 +
170
4

t4 − 130
3

t3 + 10t2,

which the right hand integral is approximated by Gaus-
sian three points rule.
Comparing of numerical solution and exact solution is
given in figure1.

Example 2. For s(t) = t3/2, we obtain the following
integral equation :

∫ t

0

C ′(s)
exp{− t3

4(t−τ)}√
t− τ

dτ = 3/4
√

πt

+3/8
√

t

∫ t

0

1√
t− τ

[
t3/2 − τ3/2

t− τ
exp{− (t3/2 − τ3/2)2

4(t− τ)
}

− t3/2 + τ3/2

t− τ
exp{− (t3/2 − τ3/2)2

4(t− τ)
}]dτ.

With exact solution

C(s) = −5103
6800

t20 − 716607
409600

t18 +
380593737
11468800

t16

+
449377571
5734400

t14 +
38271457
5160960

t12 +
2221627
1290240

t10

+
4251
2240

t8 +
7
10

t6 +
5
4
t4 +

3
2
t2.
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Figure 1: (—) exact solution, (*) approximated points
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Figure 2: (—) exact solution, (*) approximated points
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Figure 3: (—) exact solution, (*) approximated points
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Suppose that t ∈ (0, 1). The result of applying Collo-
cation method with 12 nodes of interval (0,1) and with
12 base functions ϕj(t) = tj , j = 0, 1, 2, ..., 11 for above
integral equation is in the following form:

Ccollo(s) =
537.3
12

t12 +
34.5
11

t11 − 200.8
10

t10

+
1621

9
t9 − 769.6

8
t8 +

586.3
7

t7 +
410.9

6
t6

−39.5
5

t5 +
7.6
4

t4 +
7.1
3

t3 +
1.3
2

t2 + 0.7t,

which the right hand integral is approximated by Gaus-
sian three points rule.
Comparing of numerical solution and exact solution is
given in figure2.

Example 3. Suppose that s(t) = t2, then we obtain the
following integral equation :

∫ t

0

C ′(s)
exp{− t4

4(t−τ)}√
t− τ

dτ =

t
√

π + 1/2
∫ t

0

t√
t− τ

[(t + τ) exp{− (t + τ)(t2 − τ2)
4

}

− t2 + τ2

t− τ
exp{− (t2 + τ2)2

4(t− τ)
}]dτ,

with exact solution

C(s) =
4

14175
t30 +

301
113400

t27 +
1157
90720

t24

+
131
2016

t21 +
3059
15120

t18 +
323
630

t15 +
13
12

t12 +
11
6

t9

+
7
3
t6 + 2t3.

Suppose that t ∈ (0, 1). The result of applying Collo-
cation method with 12 nodes of interval (0,1) and with
12 base functions ϕj(t) = tj , j = 0, 1, 2, ..., 11 for above
integral equation is in the following form:

Ccollo(s) = −2176.4
12

t12 +
2686.2

11
t11 +

233.3
10

t10

−51.1
9

t9 − 688.1
8

t8 − 590.3
7

t7 +
836.2

6
t6 − 193.5

5
t5

−7.2
4

t4 − 0.2
3

t3 +
1.9
2

t2 + 0.1t,

which the right hand integral is approximated by Gaus-
sian three points rule.
Comparing of numerical solution and exact solution is
given in figure 3 (left).
Also for s(t) = t2 by asymptotic approximation given in
[2], we can obtain upper and lower bounds for C(s) in
the following form:

exp{2t3} − 1 ≤ C(s) ≤ exp{3t3} − 1.

Figure 3 (right) shows that numerical approximation lies
between upper and lower bounds.

References

[1] Ablowitz M J and Delillo S,J. Phys.A: Math.
Gen.35(2003),1.

[2] Cannon, J.R.The One-dimensional Heat Equation,
Cambridge University Press, (1984).

[3] Colton D and Reemtsen R 1984 The solution of in-
verse Stefan problem in two space variables SIAM J.
Appl.Math.5 996-1013.

[4] D. D. ANG, A. PHAM NGOC DINH, D.
N. THANH, A bidimensional inverse Ste-
fan problem: identification of boundary value
J.Comput.Appl.Math.80 (1997) 227-240.

[5] D. D. ANG, A. PHAM NGOC DINH, D. N.
THANH, Regularization of a two-dimensional two-
phase inverse Stefan problem Inverse Probl.13
(1997) 607-619.

[6] D. COLTON, The inverse Stefan problem for the
heat equation in two space variables Mathematika
21 (1974) 282-286.

[7] Delillo and Salvatori M C, J. Nonlinear Math. Phys.
9(2002),446.

[8] Delillo , Salvatori M C and Sanchini G, Phys. Lett.
A310(2003),25.

[9] E. BOBULA, K. TWARDOWSKA,On a certain
inverse Stefan problem, Bull. POL.Acad.Sci.Tech.
Sci.33 (1985) 359-370.

[10] Friedman,A.Prtial differential equations of Parabolic
type. Prentice Hall, New Jersey.(1964).

[11] Gold’man N L 1997 Inverse Stefan Prob-
lems(Dordrecht:Kluwer).

[12] Jochum P 1980 The inverse Stefan Problem
as a problem of nonlinear approximation theory
J.Approx.30 81-98.

[13] Jochum P 1982 The numerical solution of the inverse
Stefan problem Numer. Math.34 411-29.

[14] M.B. STAMPELLA, D.A. TARZIA, Determination
of one or two unknown thermal coefficients of a semi-
infinite material through a two-phase Stefan problem
Int.J.Eng.Sci.27 (1989) 1407-1419.

[15] Reemtsen R and Kirsch A 1984 A method for the nu-
merical solution of the one-dimensional inverse Ste-
fan Problem Numer.Math.45 253-73.

[16] Tien R H and Geiger GE. A heat- transfer analysis
os the solidification of a binary eutectic systems, J.
Heat Trans ASME 1967;89;230-4.

[17] Voller V R, Development and application of a heat
balance integral method for analysis of metallurgical
solodification. Appl. Math. Model 1989;13:3-11.

Engineering Letter, 16:4, EL_16_4_03
____________________________________________________________________________________

(Advance online publication: 20 November 2008)


