
 
 

 

  
Abstract—The crossed cube is considered as one of the most 

promising variations of the hypercube topology, due to its 
ability of preserving many of the attractive properties of the 
hypercube and reducing the diameter by a factor of two.  In this 
paper, we show the robustness capability of the crossed cube in 
constructing a Hamiltonian circuit despite the presence of 
faulty nodes or edges. Our result is optimal in the fact that it 
constructs the Hamiltonian circuit by avoiding only faulty 
nodes and edges in a crossed hypercube of dimension n. Our 
algorithm can tolerate up to 2n-3 faults with the restriction that 
each sub cube CQ3 has at most one faulty node. 
 

Index Terms—Embedding, Hamiltonian circuit, crossed 
cube, cycle, fault-tolerance, hypercube. 

I. INTRODUCTION 
Parallel architectures based on the hypercube topology 

have gained widespread acceptance in parallel computing.  
The hypercube offers a rich interconnection topology with 
large bandwidth, logarithmic diameter, simple routing and 
broadcasting of data, maximally fault-tolerance, recursive 
structure that is naturally suited to divide and conquer 
applications, and the capability to simulate other 
interconnection networks with minimum overhead. The 
hypercube has been the focus of many research activities. 
Extensive work has been done to show that the hypercube is 
a powerful architecture capable of simulating other 
interconnection networks such as rings, meshes, trees, stars, 
and others with minimum overhead [1]-[3].  In addition, it 
has been shown that the hypercube architecture is robust 
and has the ability to simulate, route, and reconfigure itself 
despite the presence of either faulty links or nodes [4]-[12].  

Hypercube based topologies are becoming more popular 
due to many of their attractive features in parallel computing 
[1], [13]-[15]. The crossed cube that was introduced by Efe 
[13] is considered as one of the most attracted variations of 
the hypercube, due to its attractive properties. Preliminary 
studies indicate that the crossed cube preserves many of the 
attractive properties of the hypercube and more importantly 
reduces the diameter by a factor of two. The crossed cube 
has been the focus of many recent researches. Some 
researchers studied the topological properties of the crossed 
cube compared with other hypercube-like topologies [16]-
[17]. Various researchers have gone to great length to 
demonstrate the ability of the crossed cube to simulate other 
interconnection networks [18]-[20]. Other researchers have 
shown the robustness and fault-tolerance of the crossed 
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cube, focusing on its ability to route, compute, and 
reconfigure itself despite the presence of faulty nodes or 
edges [21]-[22].   

Many important computational problems in parallel 
processing can be formulated as graph embedding problems. 
Many variations of embeddings in interconnection networks 
have been studied in the literature. These variations differ 
principally in the optimization measures used in the 
embeddings.  The problem of embedding one 
interconnection network into another is very important in 
the area of parallel computing for portability of algorithms 
across various architectures, layout of circuits in VLSI, 
mapping logical data structures into computer memories, 
and mapping task graphs into parallel machines. The 
problem of embedding rings or cycles into other 
interconnection networks has been studied by many 
researchers. It is well known that rings can be embedded 
into hypercubes using cyclic gray codes [3].  Latifi and 
Zheng [23] generalized the cyclic Gray code method to 
embed rings into twisted cubes. Many researchers have 
addressed the problem of embedding rings into hypercubes 
in the presence of faults.  Provost and Melhem [12] have 
given distributed algorithms despite single, double, and 
multiple faults wasting up to 50% of the non-faulty 
processors in the worst case.  Chan and Lee [6] improved 
the previous result by wasting only one processor for every 
faulty processor with some restriction on the number of 
faulty processors. Abuelrub [4] presented a recursive 
technique to embed a ring in a hypercube in the presence of 
faults that wastes a non-faulty processor for every faulty 
processor and can tolerate up to 2n-3 faults. On the other 
hand, other researchers addressed the problem of embedding 
rings into fault-free and faulty topologies [4], [9]-[10], [12], 
[18], [21], [23]-[28] or the Hamiltonicity of such structures 
in fault-free and faulty environments [7], [10], [20], [29].   

In this paper, we show the robustness capability of the 
crossed cube in constructing a Hamiltonian circuit despite 
the presence of faulty nodes or edges. Our result is optimal 
in the fact that it constructs the Hamiltonian circuit by 
avoiding only faulty nodes and edges and can tolerate up to 
2n-3 faults. The remainder of this paper is organized as 
follows.  In section 2, we establish a few definitions and 
notations.  Section 3 describes our scheme to construct a 
Hamiltonian circuit of size 2n into a fault-free crossed cube 
of the same size.  Section 4 addresses constructing the 
Hamiltonian circuit in the presence of faulty nodes.  Section 
5 concludes the paper and discusses future possible work. 
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II. DEFINITIONS AND NOTATIONS 
In this paper, we use undirected graphs to model 

interconnection networks.  Each vertex represents a 
processor and each edge a communication link between two 
processors. The embedding or mapping of a guest graph G = 
(VG, EG) into a host graph H = (VH, EH) is an injective 
mapping f from VG to VH, where VG, EG and VH, EH are the 
vertex and edge sets of G and H, respectively, and where 
⏐VH⏐≥⏐VG⏐. We consider a cycle with 2n nodes, denoted 
C2n, as the guest graph and a crossed cube with 2n nodes, 
denoted by CQn, as the host graph.  A hypercube of 
dimension n, denoted by CQn, is an undirected graph 
consisting of 2n vertices labeled from 0 to 2n-1 and such that 
there is an edge between any two vertices if and only if the 
binary representation of their labels differs by exactly one 
bit position.  

Next, we define a crossed cube as follows. Let G be any 
undirected labeled graph, then Gb is obtained from G by 
prefixing every vertex label with b.  Two binary strings x = 
x1x0 and y = y1y0, each of length two, are pair-related if and 
only if (x, y) ∈ {(00, 00), (10, 10), (01, 11), (11, 01)}.  
Now, we define a crossed cube of dimension n, denoted 
CQn, as an undirected graph consisting of 2n vertices labeled 
from 0 to 2n-1 and defined recursively as following: 
1. CQ1 is the complete graph on two vertices with labels 
0 and 1. 
2. For n > 1, CQn consists of two copies of CQn-1 one 
prefixed by 0, CQ0

n-1, and the other by 1, CQ1
n-1.  Two 

vertices u = 0un-2...u0 ∈ CQ0
n-1 and v = 1vn-2...v0 ∈ 

CQ1n-1 are adjacent, if and only if: 
a. un-2 = vn-2, if n is even, and 
b. For 0 ≤ i < ⎣(n-1)/2⎦, u2i+1 u2i and v2i+1 v2i are 
pair-related. 
Fig. 1 shows a hypercube and a crossed cube of dimension 
3. CQn is constructed recursively based on the construction 
of CQn-1 by pasting together a copy of CQ0

n-1 and the mirror 
image of CQ1

n-1, then adding the appropriate links between 
the two copies according to the pair-related relationship.  
For clarity, we view the crossed cube CQn as a [2 x 2n-1] 
grid.  If the grid is partitioned horizontally into two equal 
parts, then all nodes above the horizontal line have a 0 as a 
prefix while all nodes below the horizontal line have a 1 as a 
prefix. An upper node is a node that lies in the upper part of 
the crossed cube, its right most significant bit is a 0.  A 
lower node is a node that lies in the lower part of the 
crossed cube, its right most significant bit is a 1.  An upper 
link is a link that connects two upper nodes and a lower link 
is a link that connects two lower nodes.  A cycle of size n, 
denoted Cn, is an undirected graph consisting of n vertices 
labeled from v1 to vn, such that node vi is a neighbor with 
node v(i+1)mod n, 1 ≤  i ≤ n. A path (vo, v1, v2, …, vn-1) is a 
sequence of nodes such that each two consecutive nodes are 
adjacent. A path in a graph G is a Hamiltonian path if all its 
nodes are distinct and they span G. A cycle or a circuit is 
called a Hamiltonian circuit if it traverses every node of G 
exactly once. The vertex Hamiltonicity of a graph G, 
denoted Hv(G), measures the performance of the 
Hamiltonian property of a graph in the presence of faulty 
nodes. Hv(G) is defined to be the maximum integer k such 
that G-F remains Hamiltonian for the set of faulty nodes F 
contained in V(G) with⏐F⏐≤ k if G is Hamiltonian, and 
undefined if otherwise [29]. As the number of processors in 

parallel machines becomes larger, models without faults are 
becoming increasingly unrealistic.  A fault is a processor or 
a link that fails.  We use a strong model where a faulty node 
can neither compute nor communicate with its neighbors.  A 
node fault will completely destroy the node and all links 
incident to it.  We model a faulty link by making one of the 
nodes incident to the link faulty. 

The quality of an embedding is often guided by some 
constraints that may differ from one application to another.  
The most common measures are dilation, expansion, edge 
congestion, and load factor.  If u and v are two nodes in G 
then the distance from u to v, d = (u, v), is the length of the 
shortest path from u to v.  The dilation D is the maximum 
distance in H between the images of adjacent vertices of G, 
D = max {d(f(u), f(v)),  where u-v ∈ EG}.  The expansion E 
is the ratio of the cardinality of the host vertex set to the 
cardinality of the guest vertex set, E = ⏐VH⏐/⏐VG⏐. There 
is a trade off between dilation, which measures the 
communication delay, and expansion, which measures 
processor utilization, such that one can achieve lower 
expansion at the cost of greater dilation and vice versa.  
Another cost measure is congestion, which is the maximum 
number of edges of the guest graph routed through a single 
edge of the host graph.  Edge congestion is a measurement 
of possible degradation due to communication delay.  If a 
particular link in the host network is needed for several 
different communication messages, then the messages will 
suffer some delay time since the link can't pass more than 
one message at a time. In embeddings that are many-to-one 
maps, an important measure is load factor, which is the 
maximum number of guest processors to be simulated by a 
single processor in the host interconnection network. An 
unbalanced processor load will degrade the simulation time, 
as lightly used processors must wait for heavily used 
processors to finish their tasks. Our embedding of the cycle 
into the faulty crossed cube in this paper is unit dilation, 
expansion, edge congestion, and load factor. 

 
 
 
 
 
 
 
 
 

Fig. 1:   Hypercube and crossed cube of dimension 3. 
 

III. HAMILTONICITY OF A FAULTY-FREE CROSSED CUBE 
Given a cycle C2n with 2n nodes, consider the problem of 

assigning the cycle nodes to the nodes of the crossed cube 
CQn such that adjacency is preserved. Now, given any two 
adjacent nodes in the cycle, their images by this embedding 
should be neighbors in the crossed cube through some 
dimension i, where 1 ≤ i ≤ n.  We can view such an 
embedding as a sequence of dimensions crossed by adjacent 
nodes.  We call such a sequence the embedding sequence, 
denoted by ES = (d1, d2, ..., d2n), where di ∈ {1, ..., n} for 
all 1 ≤ i ≤ 2n. Fig. 2 shows two different embeddings of the 
cycle C23 into the crossed cube CQ3.  It is more convenient 
to view the embedded cycle as will as the crossed cube in 
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the way shown in Fig. 2.  The embedding sequence of C23 is 
ES = (1, 3, 1, 2, 1, 3, 1, 2).  For example, in Fig. 2-a, notice 
that nodes 000 and 001 are connected by a link through 
dimension 1, 001 and 111 are connected by a link through 
dimension 3, 111 and 110 are connected by a link through 
dimension 1, 110 and 100 are connected by a link through 
dimension 2, and so on.  The embedding sequence ES can 
be generated using Algorithm ES. 

 
 
 
 
 
 

 
 
 
 
 

(a) Node 000 initiating the embedding sequence. 
 
 
 
 
 
 
 
 
 
 
 

(b) Node 001 initiating the embedding sequence.  
Fig. 2:  The embedding sequence. 

 
 

Algorithm ES 
Let n be the dimension of the crossed cube and let the 
vertical bar be the concatenation operator. 
1. ES ← 1 
2. For i ← 3 to n do 

ES ← ES⏐i⏐ES 
3. ES ← ES⏐2⏐ES⏐2 
End 
 

The embedding sequence is generated by applying 
Algorithm ES on n, where n is the dimension of the crossed 
cube.  The number of nodes in the crossed cube is equal to 
the number of nodes in the embedded cycle, which is 2n 
nodes.  Thus, the embedding sequence of the cycle C24 is ES 
= (1, 3, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 1, 2) and the 
embedding sequence of the cycle C25 is ES = (1, 3, 1, 4, 1, 
3,1, 5, 1, 3, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 1, 5, 1, 3, 1, 4, 1, 
3, 1, 2).  The embedding sequence corresponds to the 
binary-reflected Gray code embedding of a cycle into a 
crossed cube [1].  The binary-reflected Gray code is the 
most common technique to embed a cycle into a fault-free 
cube, but it is not suitable in the presence of faults.  The 
embedding sequence will be generalized on the proceeding 
sections to embed a cycle into a crossed cube in the 
presence of faults.  Notice that the same embedding 
sequence may result in different embeddings of C2n into 
CQn depending on the crossed cube node that initiates the 
cycle construction.  Among all different embeddings, we are 

interested in two kinds. The first embedding is when the 
node that initiates the cycle construction in the crossed cube 
is the upper leftmost node, node with label 0. The second 
embedding is when the node that initiates the cycle 
construction in the crossed cube is the lower leftmost node, 
node with label 1. This will not violate the generalization of 
the technique since the crossed cube is node and vertex 
symmetric [13], which means that we can relabel the nodes, 
where any node can be labeled as node 0, and hence initiates 
the construction of the cycle.  In Fig. 2-a, the cycle is 
initiated by node 000, while in Fig. 2-b the cycle is initiated 
by node 001.  
 
Theorem 1: For every n, Algorithm ES will generate the 
embedding sequence to construct a cycle of size 2n in a 
fault-free crossed cube of dimension n. 
Proof:  We prove this by induction on the dimension of the 
crossed cube.  Our induction basis is CQ2, a cycle of size 4 
can be easily constructed in CQ2 using the embedding 
sequence ES = (1, 2, 1, 2).  Assume the theorem is true for 
the construction of a cycle of size 2n-1 in a crossed cube of 
dimension n-1.  We now prove that the theorem is true for 
the construction of C2n in CQn.  Let G be any undirected 
labeled graph, then Gb is obtained from G by prefixing 
every vertex label with b.  Consider the two crossed sub 
cubes CQ0

n-1 and CQ1
n-1.  By induction hypothesis, we can 

construct a cycle of size 2n-1 in both CQ0
n-1 and CQ1

n-1. Let 
their embedding sequence be ES = Sn-1⏐2⏐Sn-1⏐2, where, Sn 
is a sequence of dimensions recursively defined as follows: 
S2 = 1 and Sn-1 = Sn-2⏐n⏐Sn-2. Now, we combine two cycles, 
each of size 2n-1, to come up with a cycle of size 2n.  This is 
done by replacing the first link that goes through dimension 
2 of the first cycle and the second link that goes through 
dimension 2 of the second cycle by two links that go 
through dimension n.  The embedding sequence of the new 
cycle C2n is ES = Sn-1⏐n⏐Sn-1⏐2⏐Sn-1⏐n⏐Sn-1⏐2 =  
Sn⏐2⏐Sn⏐2, which is the same embedding sequence 
generated by Algorithm ES. � 

Next, we present Algorithm Fault-Free Hamiltonian 
Circuit (FFHC) algorithm uses a recursive divide and 
conquers technique to embed a cycle C2n into a fault-free 
crossed cube CQn. 
 
Algorithm FFHC 
1. Partition CQn into 2n-3 disjoint crossed cubes, each of 
dimension 3. 
2. Embed the cycle C23 into each sub cube using the 
embedding sequence ES = (1, 3, 1, 2, 1, 3, 1, 2). 
3. Connect the 2n-3 cycles, each of size 8, through the upper, 

or lower, links to come up with a cycle of size C2n.. 
End 
 
Theorem 2: For every n, Algorithm FFHC will embed a 
cycle of size 2n in a fault-free crossed cube of dimension n. 
Proof: We prove this by induction on the dimension of the 
crossed cube.  Our induction basis is CQ3, the embedding of 
a cycle of size 23 into a crossed cube of dimension 3 is 
shown in Fig. 2.  Assume the theorem is true for the 
construction of a cycle of size 2n-1 in a crossed cube of 
dimension n-1.  We now prove that the theorem is true for 
the construction of C2n in CQn. Consider the two crossed 
sub cubes CQ0

n-1 and CQ1
n-1.  By induction hypothesis, we 

can construct a cycle of size 2n-1 in both CQ0
n-1 and CQ1

n-1. 
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Now, we combine two cycles, each of size 2n-1, to come up 
with a cycle of size 2n.  This is done by replacing the first 
link that goes through dimension 2 of the first cycle 
constructed in CQ0

n-1 and the first link that goes through 
dimension 2 in of the second cycle constructed in CQ1

n-1 by 
links that go through dimension n. Note the use of the upper 
links of dimension n when the embedding sequence is 
generated by node 0, while the lower crossed links of 
dimension n are used when the embedding sequence is 
generated by node 1, as shown in Fig. 3. � 
 
 
 
 
 
 
 

(a) Using upper links when ES initiated by 000. 

 
 
 
 

 
 

(b) Using lower links when ES initiated by 001. 
Fig. 3: The recursive construction of the cycle C2n in a 

fault-free environment. 
 

IV. HAMILTONICITY OF A FAULTY CROSSED CUBE 
One of the special significant features of the crossed cube 

is its ability to simulate other interconnection networks in 
the presence of faults.  In this section, we are interested in 
answering the following question. Given that some nodes of 
the crossed cube are faulty, does it have the ability to 
construct a Hamiltonian circuit efficiently by excluding only 
faulty nodes? The crossed cube is maximally fault-tolerant, 
while even one faulty processor will degrade its overall 
performance; it is still capable of simulating cycles 
optimally by avoiding only faulty processors during the 
construction of the Hamiltonian circuit.  Next, we extend 
the Algorithm FFHC to handle a single faulty processor. 

The basic idea behind our technique to embed a cycle into 
a faulty crossed cube is to use some of the unused links to 
skip a faulty node.  As an illustration, in Fig. 1, CQ3 has 12 
links, 4 of them are not used in the construction of the cycle 
and might be considered spare links; the links between 
nodes 000 and 100 through dimension 3, 001 and 011 
through dimension 2, 111 and 101 through dimension 2, and 
110 and 010 through dimension 3 are unused links.  We can 
use these unused links to avoid a faulty node, and since the 
crossed cube contains odd cycles, we can avoid only the 
faulty processor by constructing a cycle of size 7 from a 
crossed cube of dimension 3 that contains a 8 processors 
with one of them faulty. Therefore, if node vi in a crossed 
cube CQn is faulty, a cycle C2n-1 can be constructed by using 
some of the unused links to skip only the faulty node 
without disturbing the construction of the rest of the cycle. 
A faulty node is either an upper node or a lower node. 

Now, we present the concept of blocks and cubes that are 
fundamental to the construction of the Hamiltonian circuit in 

the presence of faults. A block is a set of  four nodes in a 
crossed cube that form a cycle of size 4 that has the 
embedding sequence ES = (1, 2, 1, 2). A cube is a sub crossed 
cube of dimension 3, CQ3, that consists of two adjacent 
blocks. Notice that crossed cube of dimension n, Qn, contains 
2n-3 cubes and 2n-2 blocks.  A cycle of size 8, C23, can be 
embedded into a cube by the embedding sequence ES = (1, 3, 
1, 2, 1, 3, 1, 2). Our technique is based on identifying the 
faulty node and the sub cube CQ3 that contains it, and then 
avoids the faulty node by using the unused links.  Fig. 4 
shows all possible locations of a faulty node within the sub 
cube CQ3 and the links that need to be used to avoid it in the 
process of constructing the Hamiltonian circuit. The location 
of the sub cube that contains the faulty node might be the 
first, the last, or some where in the middle.  Our technique 
works for all three cases by using the appropriate links.  Next, 
we present Algorithm Faulty-Node Hamiltonian Circuit 
(FNHC) that embeds a cycle C2n-1 into a crossed cube CQn in 
the presence of a faulty node. 
 
Algorithm FNHC 
1. Partition Qn into 2n-3 disjoint cubes. 
2. Locate the cube that contains the faulty node and identify 
whether it is an upper or a lower node. 
3. If the faulty node is an upper node then 

a. Choose the appropriate embedding from Fig. 4-a. 
b. Embed the cycle C23 into each of the fault-free 

cubes using the embedding sequence ES = (1, 3, 1, 
2, 1, 3, 1, 2) that is initiated by node 001 in the sub 
cube CQ3. 

c. Connect all the cycles, one of size 7 and the rest of 
size 8, using the lower links to come up with the 
cycle C2n-1. 

Else {the faulty node is a lower node} 
a. Choose the appropriate embedding from Fig. 4-b. 
b. Embed the cycle C23 into each of the fault-free 

cubes using the embedding sequence ES = (1, 3, 1, 
2, 1, 3, 1, 2) that is initiated by node 000 in the 
cube CQ3. 

c. Connect all the cycles, one of size 7 and the rest of 
size 8, using the upper links to come up with the 
cycle C2n-1. 

End 
 
Theorem 4:  For every n, Algorithm FNHC will embed a 
cycle of size 2n-1 into a crossed cube of dimension n in the 
presence of a faulty node. 
Proof: The theorem can be proven easily by induction by 
extending the proof of Theorem 3. � 

Next, we will generalize our technique to embed a cycle 
into a faulty crossed cube with multiple faults, and hence 
constructing the Hamiltonian circuit by avoiding only faulty 
processors. Now, we describe our technique to embed a 
cycle C2n-f, where f is the number of faults, into a crossed 
cube CQn in the presence of f faults such that each cube CQ3 
within CQn has at most one faulty node.  The maximum 
number of faults that can be handled by our technique is f = 
2n-3.  The idea is to generalize Algorithm Faulty Node 
Hamiltonian to handle multiple faults.  The following 
algorithm, Algorithm Multiple-Faults Hamiltonian Circuit 
(MFHC), embeds a cycle C2n-f into a crossed cube CQn in 
the presence of multiple faults and can tolerate up to 2n-3 
faulty nodes. 

2 
2 2 

24 
4 000000

2 2 
001

2 2

4 4

001

Engineering Letters, 16:3, EL_16_3_26
______________________________________________________________________________________

(Advance online publication: 20 August 2008)



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) Upper faulty node. 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Lower faulty node. 
Fig. 4:  All possible locations of faulty node within a cube 

CQ3. 
 

 
Algorithm MFHC 
1. Partition CQn into 2n-2 disjoint blocks, sub crossed cubes of 
dimension 2, CQ2. 
2. Identify the blocks with faulty nodes. 
3. Group each faulty block with the adjacent non-faulty block 

to its left to form a faulty cube of dimension 3, CQ3. 
3. Embed a cycle of size 7 into each of the faulty cubes CQ3 

by choosing an appropriate embedding from Fig. 4, and 
embed a cycle of size 8 into each of the non-faulty 
cubes. 

4. Construct a cycle of size 2n-f by connecting the cycles, 
either C7 or C8, using the appropriate links, either upper 
or lower links. 

 
Theorem 5: For every n, Algorithm MFHC will embed a 
cycle of size 2n-f into a crossed cube of dimension n, CQn , 
in the presence of f faulty nodes such that each sub cube 
CQ3 has at most one faulty node. 
Proof:  Without loss of generality and for clarity, we assume 
that the leftmost block has no faulty node. The existence of 
an adjacent non-faulty block to the left of any faulty block 
follows directly from our assumption that each cube has at 
most one faulty node. In the process of constructing the 
cycle C2n-f, any two adjacent cubes with a faulty node are 
one of the following cases: 
1. A cube with an upper faulty node followed by a cube with 

an upper faulty node.  
2. A cube with an upper faulty node followed by a cube with 

a lower faulty node. 

3. A cube with a lower faulty node followed by a cube with a 
lower faulty node. 

4. A cube with a lower faulty node followed by a cube with 
an upper faulty node. 

 
Fig. 5 shows all four cases in the process of constructing 

the Hamiltonian circuit. We use the crossed lower links with 
an upper faulty cube followed by either an upper or a lower 
faulty cube, and the upper links with a lower faulty cube 
followed by either a lower or an upper faulty cube. The way 
we grouped the faulty blocks with non-faulty blocks to form 
cubes always guarantee the existence of such links. The 
other cases are an upper or a lower faulty cube followed by 
a block, and a block followed by a block or a faulty cube. 
We use the crossed lower links with an upper faulty cube 
followed by a block and the upper links with a lower faulty 
cube followed by a block or a faulty cube. For the case of a 
block followed by a block or a faulty cube, we use the 
appropriate links, either upper or crossed lower links, since 
both are available. � 
 
 

 
 
 
 
 

(a) Upper faulty node followed by upper faulty node.  
 

  
 
 
 
 
 

 
(b) Upper faulty node followed by lower faulty node.  

 
 
 

 
 
 
 
 
 

(c) Lower faulty node followed by lower faulty node. 
 

 
 
 
 
 
 

 
(d) Lower faulty node followed by upper faulty node. 
Fig. 5:  All possible cases of faults in the process of 

constructing the Hamiltonian circuit. 
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V. CONCLUSIONS AND FUTURE WORK 
The recent advances in massive parallel architectures 

have also increased their complexities and thus the more 
need for reliability. As progress in VLSI has led to small 
size, low cost, and high performance processors, it has 
become practical to build parallel computers containing a 
very large number of processors.  A main concern in the 
development of such a system is fault-tolerance.  Since the 
probability of one or more processor faulting in such 
systems is quite large, it is desirable to build some fault-
tolerance features into them. The hypercube is emerging as 
one of the most effective and popular network architectures 
for massive parallel machines.  Hypercube based topologies 
are becoming more popular due to many of their attractive 
features in parallel computing. The crossed cube is 
considered as one of the most attracted variations of the 
hypercube, due to preserving many of the attractive 
properties of the hypercube and reducing the diameter by a 
factor of two.   

This paper presented efficient techniques for constructing 
a cycle into a crossed cube with fault-free nodes, single 
faulty node, and multiple faulty nodes. We show the 
robustness capability of the crossed cube in constructing a 
Hamiltonian circuit despite the presence of faulty nodes or 
edges. Our result is optimal in the fact that it constructs the 
Hamiltonian circuit by avoiding only faulty nodes. Our 
method constructs the Hamiltonian circuit C2n-f within the 
crossed cube CQn despite the presence of f ≤ 2n-3 faults.  Our 
algorithm can tolerate up to 2n-3 faults with the restriction 
that each sub cube CQ3 has at most one faulty node. A good 
problem will be to generalize the algorithm to work for 
multiple faults with no restrictions and to adapt the same 
technique on other interconnection networks. 
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