
 
 

 

 
Abstract--This paper deals with the applicability of 
Robust Adaptive Control to the attitude motion control of 
large spacecraft. Large spacecraft and space structures, 
such as large communication satellites and the ISS 
(International Space Station), have been constructed on 
orbit. However dynamic characteristics of these 
structures can not be fully verified on the ground because 
of their size, mass and flexibility. Therefore, some 
unmodelled dynamics, for example, truncated vibration 
modes, and/or unknown elements should be taken into 
account for the precise and stable control of attitude 
motion. Based on the above consideration the 
applicability of the Robust Adaptive Control was 
carefully examined and the results of numerical 
simulations are given. These showed good performance of 
the attitude control system. We also refer to the basic idea 
about the modal truncation.  
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I.  INTRODUCTION 

 
In recent years large spacecrafts and space structures have 

been constructed on orbit. In general, dynamic characteristics 
of these structures are not able to be fully verified by testing 
on the ground. Basically such space structures have infinite 
number of vibration modes because of its nature of distributed 
parameter system. Mathematical modeling by the Finite 
Element Method (FEM) is used for the control system design 
and analysis, however, this model usually contains the errors, 
especially in higher order modes. Some additional 
considerations must be taken into account with compared to 
classical control synthesis. To some extent, truncation of the 
modes is inevitable to model the dynamics of the structure. 
The truncation error should be considered for the control 
system design to avoid the so-called spill-over phenomena. In 
order to realize this, the robust control design approach, such 
as H-infinity controller, has been studied. Although the results 
have been obtained, such as in reference [1], it is troublesome 
to establish weighting functions in the frequency domain to 
characterize the higher order dynamics of the vibration modes, 
that is, unmodeled dynamics by the truncation. This also 
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includes trial and error operations to optimize the control 
performance. 

Based on the above considerations the authors propose an 
application of the Robust Adaptive Control, which has not 
been tried yet for the spacecraft  attitude control. In the 
control synthesis it is not required to define those weighting 
function, instead, a few parameters, which is not directly 
related to unmodeled dynamics,  have to be incorporated in 
the control algorithm. This is much simpler and easier than the 
H-infinity optimization process. 

In this paper, based on the usual MRACS (Model 
Reference Adaptive Control System), robust adaptive control 
law is synthesized.      The    -modification method was 
adopted among some methods. The effectiveness of this 
approach was verified by numerical simulations using a 
spacecraft model described below.     

Fig.1 shows a typical large spacecraft, Japanese 
Engineering Test Satellite VI (ETS-VI), which was launched 
from Tanegashima Space Center in 1994 for advanced 
satellite communication experiments. It weighs about 2000kg 
at the initial orbit and the span of both solar arrays is almost 
30m. Several antennas were deployed on orbit and the largest 
one is 5m in diameter. These are flexible appendages attached 
to the center body of the spacecraft. We will discuss an 
applicability of the Robust Adaptive Control using this 
ETS-VI model. 

 
 

II. MATHEMATICAL MODEL OF  ETS-VI 
  

A mathematical model of the spacecraft including flexible 
appendages is expressed in the following modal equations: 
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 where i , i and i  are the i-th modal coordinate, the i-th 
modal frequency and the i-th modal damping, respectively. 

i  is the i-th mode shape and   is an attitude angle of the 

spacecraft. Control torque is given by pu . And these 

variables have appropriate dimensions. 
From the above equations we obtain the transfer function 

from pu to   (hereinafter, replaced by py ) as follows. 
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In this study we take the first and second modes, i.e., 2,1i , 
into account as a known model and two higher  modes will be 
incorporated as unmodeled dynamics. These modes are  
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  Fig.1 Configuration of ETS-Ⅵ 
 

considered to be truncated modes in which modeling errors 
might be larger than the lower modes as pointed before. 

Further higher modes are completely neglected in this study. 
We also briefly refer to a rationale about this truncation of the 
higher modes as follows. Basically the contribution of the 
higher modes to the spacecraft attitude motion, i.e., torque 
generated by these mode vibration, becomes smaller with 
compared to the lower modes. If this is not true, then, the 
usual truncation does not make sense. We can further state 
that the damping of the higher modes is usually much larger 
than that of the lower modes. This is because the modal 
shapes of  higher modes are much complicated. Especially, 
the structure of late years is made of composite  materials and 
then,  the matrix and the adhesive make the damping much 
larger. And at the same time the oscillation of higher modes 
decays rapidly in a short time. These ideas are summarized in 
Fig.2.  
   In this chart frequency range is divided into three categories, 
low, high and higher. Low frequency modes are usually 
incorporated in the control design. Also a portion of high 
frequency modes and higher modes will be truncated.. As 
noted above, higher frequency modes essentially have large 
damping and rapid decay, therefore, their effect dissipates 
very quickly.  Based on our experience usually 5 or 6 modes 
were verified by FEM  analysis and by ground  testing like 
modal survey. Nevertheless modal parameters of the high 
frequency modes will be not accurate, and this is ‘the state of 
the art’. 
 
 

Low Frequency        High Frequency       Higher Frequency 
 
 
              Modeled 
                                                    Truncated 
 
                                                            Small Torque 
                                                            Large Damping 
                                                            (Modal Shape) 
                                                            Rapid Decay 
 

Fig.2 Mode Classification 
 
 

III. ROBUST ADAPTIVE CONTROL LAW 
  
The   ‘Actual Plant’ is modeled as follows. 

papp ussGy  ))()((                      (4) 

where )(sG p  is given below and represents the known 

model portion of the plant. 
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)(),( sRsZ pp  are monic polynomials with the order of 

pp nm , , respectively. And pk is a constant, which is called 

high frequency gain. )(sa  is additive, unmodeled 
dynamics of the plant. 

The reference model is defined as below: 
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where r is the reference input. Eqs. (4)- (6) are assumed to 
satisfy the following conditions[2],[3]. 
 
1) )(sa  is strictly proper transfer function, 

2) high frequency gain pk  in )(sG p  is known, 

3) the relative order of )(sG p , pp mnn  , is known 

and the relative order of )(sWm  is equal to that of )(sG p , 

and 
4) )(sG p  and )(sWm  are minimum phase system.  

 
The above assumptions are the same as in the usual 

MRACS and an adaptation mechanism makes the plant output 
follow that of the reference model.  

Fig.3 shows the block diagram of the adaptive control 
system which includes the unmodeled dynamics in the 
unknown plant. 

The adaptive controller is illustrated in Fig.4.  
The additive unmodeled dynamics is represented by a 

block diagram as shown in Fig.5. 
The adaptive control law is given by 
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and )()()( 0 sZss m is the )1( pn th order stable 

polynomial. 
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Fig.4 Robust Adaptive Controller 

 

 
A robust adaptive law is shown below. For the generation 

of parameter vector 0 , the  modification was adopted. 
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where 0)( 1*
0  andycusWz ppm  are 

adaptive gains, and 00 00   and are design 
parameters.  

These have to be specified in the controller design 
procedure and some tuning would be required in order to 
optimize the controller performance. 

The auxiliary input au  is given by the following. 
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where 0  is a design parameter. )(sC is called a model 
error compensator and specified to make the auxiliary input  

au   smaller as the tracking error 1e  becomes smaller. The 
above adaptive law assures the robust stability in the case that 
the plant has unknown element. 

 
 

 IV. CONTROLLER DESIGN 

 
A known plant is represented as follows. 
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In this study 22,4 *  nandmn pp are assumed for 

the design of adaptive control law. The 3 rd and 4 th vibration 
modes are assumed unmodeled dynamics. In the ETS-VI 
model the 1 st mode is  a rigid body mode, and 2 nd, 3 rd and 
4 th modes are out-of-plane vibration modes of solar array 
panels. 
   Then additive unmodeled dynamics is given by the 
following summation of 3 rd and 4 th modes. 
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Modal parameters used here are shown in Table 1. Also 
modal shapes are illustrated in Fig.6 
 
 

Table 1. Modal Parameters[1] 

 Rigid 
Body 

1 st 
OoP* 

2 nd 
OoP 

3 rd 
OoP 

frequency 
[Hz] 0 0.196 0.834 2.196 

Damping ― 0.005 0.005 0.005 
*OoP: Out of Plane 
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Fig.5 Representation of Unknown Plant  
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Fig.3 Block Diagram for Robust MRACS 
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Fig.6 Modal Shapes of Solar Array 

 
The transfer function given below is a reference model for 

our simulation study. 
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This consists of rigid body dynamics and the second order 
system which has a large damping ratio with compared to the 
actual plant.  

The design parameters in the control and adaptive laws are 
assumed to be the following numbers. 
  25.08535.0207.1)( 23  ssss  
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It is noted again that the design parameters selection is 
arbitrary under a few constraints, therefore, some design 
effort might be necessary to obtain the satisfactory 
performance. 
 

V. SIMULATION RESULTS 

 
 In this section numerical simulation results will be shown 
to verify the applicability of the robust adaptive control. 

As a reference input, pulse doublet, given by Fig.7, was used 
for simulations. This doublet torque is for the attitude control 
from rest to rest . 

Fig.8 shows the attitude motion of the spacecraft without 
control. An oscillation with slightly damping is maintained. 
 

  
  

Fig.7 Reference input [Nm] 

 
 

Fig.8 Attitude Motion without Control 
 

By incorporating the robust adaptive control,  output of   
the reference model, the actual plant and  tracking error are 
illustrated in Figs. 9～11. From the tracking error it is found 
that the output of actual plant follows the reference model 
output. Tracking error shortly converges and oscillatory 
motion is not observed.  Truncated higher mode effects are 
suppressed in the output.   
 
 

   
 
 
             Fig.9 Output of Reference Model [rad] 
 
 

    
 

 
 Fig.10 Output of Actual Plant [rad] 
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                Fig.11 Output of  Tracking Error [rad] 
 
 

VI. CONCLUSION 
 

Large spacecrafts have the flexibility with infinite number 
of vibration modes which must be taken into account in the 
control system design. And their damping ratio is so small that 
oscillatory motion has to be damped by an appropriate control 
method. Furthermore it is very difficult to precisely get the 
modal parameters, especially for higher modes, by ground 
testing and mainly we depend on modal analysis by FEM. 
However the error of modal parameters,  modal frequency and 
modal damping,  is inevitable. 

The robust adaptive control system was formulated and 
applied to the large spacecraft attitude motion control. By the 
numerical simulations the validity of this approach has been 
demonstrated. Some efforts might be required to specify 
parameters for the control algorithm.  

Although few applications have been reported so far, our 
approach would be one of the solutions to deal with unknown 
structural flexibility of spacecraft and large space structure. 
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