
 
 

 

  
Abstract— This paper proposes an age artificial immune 

system (AAIS), for optimal order pickings in an Automated 
Storage and Retrieval System (AS/RS) with multiple input/ output 
stations. A mathematical model is presented to describe the 
characteristics of the AS/RS. It is optimized with the proposed 
algorithm, which is based on the clonal selection principle and the 
aging concept. Unlike conventional algorithms for artificial 
immune systems, the proposed algorithm consists of antibodies 
whose abilities to be cloned and to survive depend on their ages, 
and adopts a mutation scheme based on randomized rankings. To 
further improve the performance of AAIS, a crossover operator is 
also included in the algorithm to form the AAIS_CX algorithm. 
The performance of both algorithms is tested with the problems of 
optimal order pickings in an AS/RS with multiple input/output 
stations. Comparison of the results obtained by using AAIS_CX, 
AAIS, the techniques of nearest neighbor heuristics, genetic 
algorithms and ant colony systems clearly shows that AAIS_CX is 
superior to the other algorithms. Suggestions for future work are 
also included. 
 

Index Terms— Artificial immune system, AS/RS, clonal 
selection, order picking.  

I. INTRODUCTION 
  Many computational intelligence methodologies are inspired 
from natural phenomena, such as evolution and biological 
processes in human bodies. Artificial immune system, which 
has received much attention in recent years, is inspired from the 
immune system in human bodies. The technique is capable of 
learning and using memory to enhance the utilization of the 
available information, and is also well known for its easy 
adaptation to a changing environment. It has been applied to 
solve problems in a wide range of areas, such as pattern 
recognition, vehicle routing, and job shop scheduling.     

 
Mak, Lau and Wang [1] have introduced the concept of 

aging in genetic algorithms for the design of virtual cellular 
manufacturing systems. They have assumed that the survival 
and birth rates of the chromosomes are age dependent, and that 
the chromosomes are discarded when their ages have exceeded 
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a certain value. It has been shown that the aging concept is 
effective in preventing the search process from premature 
convergence. In this paper, an age artificial immune system 
(AAIS) based on the clonal selection principle and the aging 
concept is proposed. Unlike conventional algorithms for 
artificial immune systems, the proposed algorithm consists of 
antibodies whose abilities to be cloned and to survive depend 
on their ages, and adopts a mutation scheme based on 
randomized rankings. To further improve the proposed 
algorithm, a crossover operator is also included to form the 
AAIS_CX algorithm. Both algorithms are used to solve an 
order picking problem for an AS/RS with multiple input/output 
(I/O) stations. The results are compared with those of other 
metaheuristics like genetic algorithm (GA) and ant colony 
system (ACS).  

 
This paper is organized as follows. Section 2 gives the 

literature review on the related topics. Section 3 describes the 
proposed algorithms and explains how they differ from 
conventional ones. Numerical experiments of optimizing the 
ones counting problem and the order picking sequence for an 
AS/RS with multiple I/O stations are presented in sections 4 
and 5. The conclusion and suggestions for further research are 
given in Section 6. 

II. LITERATURE REVIEW 
Artificial immune system (AIS) is inspired from the human 

immune system. It forms an identification mechanism which is 
capable of identifying and combating dysfunction antigens 
from one’s cells and infectious microorganisms. Antigen 
presenting cells (APC) are present in the immune system to 
ingest and digest harmful antigens found. They fragment the 
antigens into antigenic peptides which form major 
histocompatibility complex (MHC) molecules. The molecules 
are then recognized by T cells. T cells are activated to divide 
and secrete chemical signals to mobilize other components of 
the immune system, e.g. B-cells, to combat the antigens. B-cells 
have receptor molecules of a single specificity on the surface. 
They then divide and differentiate into plasma cells which 
secrete antibodies, and the antibodies can neutralize antigens. 
In order to response to different antigens, a wide diversity of 
B-cells is needed and achieved by frequent mutation and 
editing of genes [2]. Besides, there are different receptors on 
the surface of an antibody. They are responsible for binding 
and destroying antigens. Each antibody can only carry one kind 
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of receptors. Receptors are hypermutated when B cells secret 
antibodies, resulting in different kinds of antibodies. It is 
suggested in [3] that occasionally B lymphocytes are found that 
have undergone receptor editing. The immune system practices 
molecular selection of receptors in addition to clonal deletion to 
avoid self-reactive cells. 

  
By mimicking human’s immune system, AIS can be applied 

to cases with no prior knowledge [3]. According to [3], there 
are 3 main categories of AIS. They are clonal selection 
principle based AIS, GA-aided AIS and immune networks. 
Clonal selection principle describes how the antibodies with 
higher affinity are selected, cloned and mutated, such that the 
population of antibodies can recognize and combat the present 
antigens better. CLONAGE [4] is one of the most popular 
algorithms based on this principle, which does not include any 
crossover operation among antibodies. GA-aided AIS makes 
use of the crossover operator in GA to form new antibodies on 
top of the clonal selection principle. Algorithms based on 
immune networks are inspired by the network principle among 
cells. It is suggested that B-cells are stimulated by antigens, and 
suppressed by other similar B-cells at the same time. This 
improves the diversity of cells and makes the algorithms more 
adaptable to a changing environment. 

 
The proposed AAIS is based on the clonal selection 

principle. In AAIS, mutation is the only process which changes 
the antibodies, thus determining the efficiency of the algorithm. 
However, too much mutation may lead to loss of good 
antibodies. The difficulty can be overcome in some cases by 
including tailored made mutation schemes in the algorithms. 
For example, two tailor-made mutation processes, division 
processing with Simulated Annealing and escape processing 
were introduced in [5] for creating and integrating sub-tours 
among solutions to solve n-TSP problems. It was shown that 
the resulting algorithm is better than GA in terms of solution 
quality and computational time. Another clonal selection 
principle based algorithm called opt-IA was proposed in [6], 
which is a modification of CLONAGE [4]. The pseudo code of 
opt-IA is detailed in figure 2. In such an algorithm, B-cells are 
selected without duplication from the cloned population to 
form B-cells of the next generation. The remaining slots in the 
new population are filled up by randomly generated new 
B-cells. Unlike AAIS, the aging concept is not applied to the 
cloning and survival of antibodies in opt-IA. A B-cell is simply 
erased from the population at a particular age under the static 
strategy, or is erased with a probability governed by the 
equation, ( ) ( )BeP Bdie

ττ /2ln1 −−=  where Bτ  is the age of an 
antibody. To test the performance of opt-IA, the algorithm is 
applied with different hypermutation operators to solve trap 
functions and a protein structure prediction problem [6]. It is 
shown that opt-IA performs better than CLONAGE. Although 
opt-IA is parameter sensitive, the performance of the algorithm 
can be improved by simultaneously using different mutation 
schemes. In [7], the performances of CLONAGE and opt-IA 
are tested and compared by solving the ones counting problem, 
trap functions, numerical functions, and the protein structure 
prediction problem. However, no test is conducted for common 

NP hard problems, like traveling salesman problems and 
vehicle routing problems. 

In AAIS, the age concept is introduced to AIS. It was firstly 
applied in Age Genetic Algorithm (AGA) in Mak, Lau and 
Wang [1]. The authors have introduced a more comprehensive 
age concept to enhance diversity in the population. The 
survival and birth rates of individuals in a population depend on 
their ages. Age-group l+1 of the new population is generated 
from age-group l according to the survival rate of the 
individuals. Individuals are selected as parents from different 
age groups according to their birth rates to give birth to new 
individuals. From the results reported in [1], AGA performs 
better than conventional GA. Compared with opt-IA, the age 
concept introduced in [1] is more comprehensive and brings 
larger effect on the search process. 

 
Based on the clonal selection principal and the aging concept 

described above, the proposed AAIS is used to solve an order 
picking problem for an automated storage/ retrieval system 
(AS/RS) with multiple input/ output (I/O) stations. Since the 
introduction of AS/RS 50 years ago, different models of the 
system have been widely used in different industries. AS/RS do 
not only minimize human efforts in handling materials, but also 
increases the capability of handling heavy cargoes and allows 
computerized control to achieve optimal efficiency. Its 
advantages have been reported in many studies [8]. The order 
picking problem of an AS/RS has also been widely studied. 
Han [9] has shown that using dual command cycle in order 
pickings, the throughput of an AS/RS can be increased by 
10-15%. Kanet [10] has detailed the cost related to the 
operations of an AS/RS and uses integer programming to 
determine the optimal operation sequence for retrieval of 
orders. Chetty and Reddy [11] have proposed a GA to solve the 
retrieval order sequencing problem for an AS/RS and have 
compared the algorithm with heuristics rules such as FCFS and 
NNB. The same problem has also been studied by Yin and Ran 
[12] using multiple pass GA. Lee and Schaefer [13] have 
presented both static and dynamic approaches to solve the order 
picking problem for an AS/RS with single I/O station. In the 
static approach, the optimal retrieval order sequence for a block 
of orders is determined. Once the orders have been completely 
processed, another block of orders is selected and its optimal 
retrieval order sequence determined. Berg and Gademann [14] 
have also applied a static block sequence approach to solve the 
order picking problem for an AS/RS with the I/O station 
located at an arbitrary position. They have modeled the 
problem as a transportation problem. Ghamai and Wang [8] 
have proposed a genetic algorithm to sequence retrieval orders 
for an AS/RS with multiple stock locations and shown that their 
algorithm performs much better than enumeration in terms of 
computational speed. However, the problem of optimizing both 
storage orders and retrieval orders simultaneously for an 
AS/RS with multiple I/O stations has received very little 
attention, although its solution has a profound effect on the 
operation of the system. On the storage racks in an AS/RS, 
some of the racks are connected with conveyors or other 
transport systems to transport the cargoes into or out of the 
racks of AS/RS, and these racks become input/output stations 
to the system. It is common that the cargoes which go into the 

Engineering Letters, 16:1, EL_16_1_19
______________________________________________________________________________________

(Advance online publication: 19 February 2008)



 
 

 

AR/RS line up on the conveyor at the input stations at a 
first-come-first-serve basis, and the cargoes which go out of the 
system are moved away from the system with the conveyors 
once they are out of the AS/RS. When there is more than one 
input/output station, the order picking sequence is constrained 
by the position of cargoes at particular station. A graphic 
representation of an AS/RS with one input and one output 
stations are shown in figure 1. 

 
Fig. 1 Graphic representation of AS/RS with one input and one 
output stations. 

 

 
  Fig. 2 Pseudo-code of opt-IA [6] 

III. ALGORITHMS 

A. AAIS 
In the proposed AAIS, antibodies are assigned with an 

attribute called age. The algorithm differs from opt-IA in that 
the number of antibodies selected to enter the next generation 
and the number of clones produced from each selected antibody 
depend on the ages of antibodies. Both the clonal rate and the 
survival rate of an antibody increase initially and decline 
gradually as its age. Table 1 shows an example which indicates 
that the antibody reaches its golden age at age =2, and is 
eliminated from the body at age = 4. 
 
 
 

Table 1 Clonal and survival rates 
Age 0 1 2 3 4 
Clonal Rate 0.5 0.8 0.9 0.6 0.3 
Survival Rate 0.4 0.6 0.6 0.3 0 

 
The following notations are used to facilitate the presentation: 
t       iteration index (t= 0,1,2…) 
n       population size 
N       number of orders to be sequenced 
nf number of antibodies survived to iteration 

t+1 
nr number of new antibodies randomly 

generated for iteration t+1 
cri      clonal rate at age i 
sri       survival rate at age i 
m       parameter in determining MN(t, a) 
Ab(t)     the set of antibodies at iteration t 
Ab(t,a)     antibody a at iteration t 
CAb(t)     the set of cloned antibodies at iteration t 
CAb(t,a)    cloned antibody a at iteration t 
CAb(t,best)   the best cloned antibody at iteration t 
age(Ab(t, a))  age of Ab(t, a) at iteration t 
age(CAb(t,a))  age of CAb(t, a) at iteration t 
RAb(t,a) rank of the source of clones, Ab(t, a) among 

Ab(t) 
Aff(Ab(t,a))   affinity of Ab(t, a) at iteration t 
Aff(CAb(t,a))  affinity of CAb(t, a) at iteration t 
CN(t,a) number of clones created from selected Ab(t, 

a)at iteration t 
TCN total number of clones created in each 

iteration 
MN(t,a) number of mutation carried out for CAb(t, a) 

at iteration t 
Pb(CAb(t,a)) probability of CAb(t, a)  to be survived at 

iteration t 
 
The basic procedures of the proposed age artificial immune 
system are outlined below: 
 
Step 1: Set t =0, generate n antibodies randomly, and assign 
age(Ab(t,a)) = 0 for a = 1,2,3…n 
 
Step 2:  
a) Clone all the antibodies in Ab(t) to CAb(t,a). The number of 
clones created from Ab(t,a) is determined by: 

( )( ) ( )

( )( ) ( )
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b) Assign: age(CAb(t,a)) = 0 for a = 1, 2, 3. .. (TCN-nc) 
c) For x = 1, 2,…nc; a= (TCN-nc+1)… .(TCN-nc), copy Ab(t,x) 
to the CAb(t,a), set age(CAb(t,a)) = age(Ab(t,x)). 
 
Step 3: Mutate the cloned antibodies by interchanging sections 
of the antibodies. The mutation scheme of interchanging two 
orders in the solution is applied here. The number of times of 
mutation performed is determined by: 
MN(t,a) =  round(RAb(t,a) × rand(0,1) ×  m) 

opt-IA (l, d, dup, Bτ , c, h, hm) 
 
t:=0 
P(t) := Initial_Pop() 
Evaluate (P(0)) 
While ( not Termination_Condition())do 
 P(clo) := Cloning (P(t), dup) 
 If (H is TRUE) then 
    P(hyp) := Hypermutation (P(clo), c,l) 
    Evaluate(P(hyp)) 
 If (M is TRUE) then 
    P(marco):= Hypermacro(P(clo)) 
    Evaluate(P(marco)) 
 Aging (P(t), P(hyp), P(marco), Bτ ) 
 P(t+1):= ( λμ+ )-Selection(P(t), P(hyp), P(marco)) 
 t:=t+1 
end_while 
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and no mutation is performed on CAb(t,a), for a= 
(TCN-nc+1)… .(TCN-nc) 
 
Step 4: Set t = t +1; generate the population by: 
a) Copy nr randomly created antibodies to Ab(t,x)  
b) Assign age(Ab(t,x)) = 0 for x = 1,2,.. nr.  
c) Select nf antibodies from CAb(t-1) to Ab(t) and assign them 

as Ab(t,x) for x =  nr+1, …, nr +nf. with the following 
probability 

( )( )

( )( )

TCNafor
sr

sr
atCAbPb TCN

i
itCAbage
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1
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,1
K==−
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−

−
  

d) Assign   age(Ab(t, a)) = age(Ab(t-1, a))+1 for a= 1,2…TCN 
e) Copy CAb(t, best) to Ab(t, n) 
 
Step 5: Check the pre-specified stopping condition. If it is 
satisfied, terminate the search process, and return the overall 
best solution as the final solution. Otherwise, go to step 2. 

 
In human bodies, it is unreasonable to assume that the 

mutation for antibodies with the same affinity is always the 
same. So, a mutation scheme is proposed based on randomized 
ranking in step 3. The number of mutation operations 
performed is defined as round(RAb(t,a)*rand(0,1)*m). A 
random factor is added to introduce variations in the mutation 
for the antibodies of same affinity. Meanwhile, the ranking 
among the selected antibodies is still used as a guideline to 
direct the search process to more promising areas, as more 
clones are produced from better antibodies. Different degree of 
mutation performed on duplicated antibodies allows different 
degree of exploitation and exploration from the same solution. 
This prevents the search process from being trapped in a local 
optimum easily. Besides, it is important to maintain the 
antibody representing the overall best solution so far. If an 
antibody is found to be better than the overall best antibody, it 
replaces the overall best antibody to become the new overall 
best antibody. This enables the search process to converge to 
the global optimal solution regardless of the initial population 
distribution. 

B. AAIS_CX 
To further improve the performance of AAIS, a crossover 

operator is incorporated into the basic algorithm of AAIS to 
form the AAIS_CX. The procedures of AAIS_CX are outlined 
as follows: 
 
Steps 1 – 3 are the same as steps 1–3 of AAIS. 
 
Step 4: Select a pool of candidate antibodies by: 
a) Copy nr randomly created antibodies to the pool, assign 

their ages = 0. 
b) Select nf antibodies from all the CAb(t-1, a) with the 

following probability: 
  ( )( )

( )( )
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c) Copy CAb(t, best) to the candidate pool 
 

Step 5: Select antibodies from the whole population and assign 
them to the parent pool by using the 2-antibodies-competition 
process: select two antibodies randomly, and assign the one 
with higher affinity to the parent pool. 
 
Step 6: Create children antibodies with crossover operations. 
The crossover operations used can be any conventional 
crossover operation, such as EAX and single point crossover.  
 

In this paper, a heuristics based crossover operator is 
proposed to solve the order picking problem. Its procedures can 
be illustrated in the following example and in figure 3. A 
random number r (0< r < N) is selected. The orders located in 
the sequence position r of parent 1 or parent 2 are candidates to 
be the first order to be picked in the child antibody.  Between 
these two orders, the one which is feasible and closer to the 
origin should be selected. Assuming that order A is the 1st order 
of the child antibody. The orders immediately following order 
A in parents 1 and 2 are compared. The one which is feasible 
and closer to order A is selected as the next picking order in the 
child antibody. If both orders are infeasible, a feasible order is 
then selected randomly. The process continues until the whole 
child antibody is formed.  
time for job A- job D = 10 units 
time to job A- job B = 12 units 
 
Parent 1 

B A D C E 
 
Parent 2 

A B C D E 
 
Child 

A   D    
Fig. 3 Heuristics based crossover operator (HX) 
 
Step 7: Build Ab(t+1) by using the following steps: 
Select antibodies from the candidate pool in accordance with 
their survival rate. An antibody can survive to the iteration t+1 
if the random number generated is smaller than its survival rate 
corresponding to its age,  

 
rand(0,1) <= sr age(CAb(t-1, a)).  

Otherwise, it is replaced by the children antibodies. 
 
Step 8: Check the pre-specified stopping condition. If it is 
satisfied, terminate the search process, and return the overall 
best solution as the final solution. Otherwise, go to step 2.  

 
Figures 4 and 5 show the flow of AAIS and AAIS_CX 

respectively. In general, the age concept is applied in the 
following areas: 

 
1. Cloning: Under the conventional clonal selection principal, 
a highly affiliated antibody could produce a relatively large 
number of clones, which causes an imbalance between 
exploitation and exploration of the search space, resulting in 
the trapping of the search process into a local optimum. When 
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the aging concept is applied to the cloning process, antibodies 
which have reached a certain age are discarded even though 
they possess high affinity, thus allowing less affiliated 
antibodies to be cloned. This results in a better balance between 
exploitation and exploration of the search space. 
 
2. Survival: The survival probability of an antibody depends 
on its age. The abandonment of old antibodies with high 
affinity will provide room for new antibodies to enter the next 
generation during the search process. This improves diversity 
and prevents premature convergence. 

IV. ONES COUNTING PROBLEM 
In order to show the convergence of AAIS and its 

effectiveness, it is tested on the ones counting problem. Ones 
counting problem is one of the most common toy problems 
used to test if an algorithm can converge to the optimum 
solution from a randomly created initial population [7]. The 
ones counting problem is simply aimed at maximizing the 
number of 1s in a bit string xi of length l:  

∑
=

=
l

i
ixxf

1
)(  

 
l is set as 100 here. The ones counting problem is a classical test 
to assess if an evolutionary algorithm is able to reach an 
optimal solution starting from a randomly initialized 
population.   
 

Antibodies are coded in binary numbers with a length of 100. 
In AAIS, the antibodies are subjected to cloning, mutation and 
selection. The performance of algorithms on this problem is 
measured by the “Success rate (SR)” SR is calculated as no of 
times reaching optimum/ total times of running. The SR and the 
average numbers of evaluated solutions to reach the best value 
obtained (AES) achieved by AAIS are compared with the best 
results of opt-IA reported in [7] in table 2. It is also reported in 
[7] that opt-IA is better than CLONAGE in terms of AES which 
is an indicator of the convergence rate of the algorithm, 
however, not in terms of SR. CLONAGE achieves SR of 0 to 
100 over different parameters. It is obvious that AAIS can 
perform better than both, as it can reach SR of 100 at a similar 
convergence rate. It improves opt-IA by helping the searching 
escape from local optimum. A sensitivity analysis is also 
conducted on two important parameters, the total number of 
cloned antibodies (TCN) and the age limit. The results are 
shown in table 3. AAIS can perform better than that of the 
opt-IA in [7] under nearly all the parameter settings. It shows 
that AAIS is more effective than opt-IA on this problem. 
 
Table 2 SR and AES of opt-IA and AAIS on ones counting 
problem 

Algorithm Avg SR (best SR) AES 
opt-IA 95 (97.5) 66520 
AAIS 100 (100) 83100 

 
 
 
 
 

Table 3 Sensitivity analysis of AAIS on the ones counting 
problem 

  AAIS opt-IA[7] 
TCN  50 100 150 50 100 150 
 Age 

limi
t 

SR AES SR AES SR AES 
SR  
 

 6 75(99.75) 69600 67(99.67) 61230 75(99.75) 71820 40  30 30 
 8 60(99.6) 71616 80(99.8) 85600 80(99.8) 75296 55 55 50 
 10 100 73200 100 83100 50(99.5) 79325 80 70 60 

V. SYSTEM  ANALYSIS 
This study seeks to determine the optimal order picking 

sequence for an AS/RS with multiple I/O stations at an air 
cargo terminal. An optimal order picking sequence is essential 
to enhance the operational efficiency of the following three 
processes: (1) inbound cargoes are unloaded from planes and 
stored in the AS/RS before they are retrieved for order breaking 
service or picking up by customers, (2) outbound cargoes either 
arrive at the terminal in containers or as bulk cargoes, which are 
then packed together and stored in the AS/RS until they are 
retrieved to be loaded on planes, (3) some cargoes are 
reshuffled to better utilize the warehouse space. At each input 
station, storage orders are handled in a first-come-first-serve 
basis, and retrieval orders are taken from the rack to a particular 
output station, while reshuffle orders are moved from one rack 
to another.  

 
All orders can simply be considered as of the same type but 

with different starting locations and destinations. It is assumed 
that the stacker crane is originally located at the origin, (0, 0), 
i.e. the bottom-left corner of the racks. Hence, the distance 
traveled in serving the first order is calculated as the sum of the 
distance traveled from the origin to the starting location of the 
first order and the distance traveled from the starting location to 
its destination. The distance traveled in serving any other order 
is calculated as the sum of the distance traveled between the 
destination of the preceding order to the starting location of the 
current order and the distance from the starting location to the 
destination of the current order. It is also assumed that the 
stacker crane will return to the origin after serving the last 
order. Therefore, the extra distance traveled after the last order 
is calculated as the distance traveled from the destination of the 
last order to the origin. The time to transfer containers between 
the crane and the racks is assumed to be negligible. Indeed, this 
problem can be formulated as a constrained traveling salesman 
problem (TSP). 
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Fig. 4 Structure and features of AAIS 
 

 
Fig. 5 Structure and features of AAIS_CX 

 
A. Mathematical Model 

The following notations are used in the development of the 
mathematical model.  
tβk  traveling time for the order βk 
tlast  traveling time of the extra distance traveled after all 

orders are finished 
βk  an order to handled by the stacker crane. {β1, β2, .. βN } 

is therefore a sequence of N orders to be handled.  
N   number of orders 

kgW β   horizontal distance traveled to the starting location of  

order βk  

kgH β   vertical distance traveled to the starting location of  

order βk  

kpW β
  horizontal distance traveled to the destination of order 

βk  

kpH β    vertical distance traveled to the destination of order βk  

Wlast  horizontal distance traveled after finishing the last order 
Hlast  vertical distance traveled after finishing the last order 

kwS β
  column index of the starting location of order βk 

khS β
  row index of the starting location of order βk 

kwD β
  column index of the destination of order βk 

khD β
  row index of the destination of order βk 

h  height of a rack 
w   width of a rack 
SPh   horizontal speed 
SPv    vertical speed 
IPx  The set of storage order from the input station x 

kxInd β  Index of storage order βk in the input station x, i.e. if 

order βk is the 1st order at input station x, then 
kxInd β  will 

be 1 
   

   

   

   

 

 
 
Fig. 6 Illustrations of 

kgW β
, 

kgH β
, 

kpW β
 and 

kpH β
 

 
The objective of the model is to minimize the time needed to 
handle all orders at the AS/RS, including storage, retrieval and 
reshuffle orders: 
Minimize {∑

=

n

k
k
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1
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Subject to  
b > a  if 

axInd β  <  
bxInd β  3,2,1,, =∀∈∀ xIPxba ββ   (12) 

 
Equation (1) shows that the objective function represents the 

total traveling time of the stacker crane, which consists of two 
parts: (1) the total amount of time required to handle orders 1 to 
N, and (2) the amount of time required to travel back to the 
origin after order N has been completed. Hence, minimizing 
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this objective function is equivalent to maximizing the 
throughput of the stacker crane which is defined as 3600/ 
(objective value /N). Equation (2) calculates the time required 
to handle one order. It is the summation of the time needed to 
travel the distance from the destination of the preceding order 
to the starting location of the current order and the distance 
from the starting location of the current order to its destination. 
As the stacker crane can move horizontally and vertically 
simultaneously, the time is measured as the maximum of the 
times needed to complete the horizontal movement and the 
vertical movement, respectively. Equations (3) and (4) 
calculate the horizontal (vertical) distance traveled by 
multiplying the width (height) of a rack with the differences of 
the column (row) indexes for the 2nd to the Nth orders. 
Equations (5) and (6) calculate the horizontal (vertical) distance 
for the 1st order when the column (row) indexes of the origin 
are zero. Equations (7) and (8) calculate the horizontal and 
vertical distances from the starting location of an order to its 
destination. Equation (9) calculates the time for the stacker 
crane to travel back to the origin after all orders are finished, 
which is the maximum of the time given by equations (10) and 
(11), of completing the horizontal movement and the vertical 
movement, respectively.  

 
Constraint (12) states that storage orders βa and βb, waiting at 

the same input station with order βa precedes order βb, should be 
handled in a first-come-first-serve manner. As shown in figure 
7, it is because the stacker crane cannot access order βb before 
order βa has left the station. Hence, if  

axInd β  <  
bxInd β   , order 

βa precedes order βb, its position in the entire order sequence 
must be larger than that of order βa, and if 

axInd β >1, order βa 

cannot occupy the first position of the entire order sequence.  

 
Fig. 7 Graphical Representation of the constraints at the 

Input station 
 
B. Experiments 

The proposed AAIS and AAIS_CX are used to determine the 
optimal order picking sequence for an AS/RS. To evaluate the 
algorithms, their performances are compared with that of 
nearest neighbor heuristics (NNB), genetic algorithm (GA), ant 
colony system (ACS). To obtain a fair comparison with 
AAIS_CX, an ant colony system is also added with the same 
heuristics based crossover operation (ACS_CX) to solve the 
problem. The pseudo code of ACS_CX is shown in figure 8. In 

order to satisfy constraint (12), special heuristics is embedded 
in the procedures of GA, ACS, ACS_CX, AAIS and AAIS_CX 
to ensure that every solution remains feasible throughout the 
search process.  

 

 
Fig. 8 Pseudo code of ACS_CX 

 
In the AS/RS, there is only one aisle, with 16x9 storage racks 

on each side of the aisle. There are 3 input and 3 output stations 
located on different floors. The output stations are located at the 
racks (3, 5), (3, 7) and (3, 9), while the input stations are located 
at the racks (6, 1), (6, 3) and (6, 7). 18 randomly generated test 
cases are used in the experiments.  The cases consist of 20, 50 
and 100 orders. The percentage of storage, retrieval and 
reshuffle orders are 35%, 55% and 10%, respectively.   

 
In the experiments, ACS and ACS_CX algorithm runs 1000 

iterations with 10 ants for cases with 20 and 50 orders, and only 
500 iterations for cases with 100 orders to keep the 
computation time at a reasonable level. As suggested in the 
literature [15], the parameters qo and 

oτ are set as 0.9 and 
1/CNNB, respectively,  β  is chosen from the range [2, 5], and 
both ρ  and ξ  are chosen from the range [0.1, 0.9]. GA runs 
100 iterations with a population size of 100 for test cases with 
20 and 50 orders, and 200 iterations for cases with 100 orders to 
achieve better results. AAIS and AAIS_CX run 500 iterations 
with a population size of 100, and a clone size of 200 
respectively. All the algorithms are programmed in JAVA and 
run on a Pentium IV 3.2 GHz computer with 512M Ram. 
 
C. Results and Discussion 

Tables 4 - 6 summarize the best and the average of the best 
solutions obtained by running each of the algorithms 10 times, 
as well as the average of the corresponding computation time 
needed to achieve the best solutions. Figures 9 and 10 show the 
convergence behavior of the search processes of GA, ACS, 
AAIS and AAIS_CX in one typical run. 

 
The results show that, when the number of orders is 20 or 50, 

AAIS performs better than ACS and GA in 5 out of 10 test 
cases. However, when the number of orders has increased to 
100, it has better performance in all test cases. In addition, 

Procedure ACS_CX 
begin 
  Initialize the pheromone matrix; 
  While not (terminate condition) do begin 
  Perform ACS; 
  While not (children_pop_size) do begin 
      Random selection of parents; 
      Heuristics based crossover operations; 
      Mutation operations; 
      If better than the best solution then 
          Replace the best solution;  
End while 
Global update pheromone; 
End while 
End 
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AAIS achieves the “optimal” results in the shortest time in most 
cases. The results also show that AAIS_CX has the best 
performance among all six algorithms in all test cases, even 
though it needs longer computation time to derive the “optimal” 
results when compared with other algorithms. However, the 
differences become smaller as the number of orders increases. 
Moreover, it can be seen from figures 9 and 10 that both AAIS 
and AAIS_CX have better exploration ability in searching for 
the “optimal” solution. The aging concept prevents the search 
process of both algorithms from premature convergence, while 
the clonal selection process keeps exploring areas with 
promising results. Hence, both AAIS and AAIS_CX are 
efficient methodologies for solving order picking problems, 
especially when the number of orders is large. 

VI. CONCLUSIONS 
In this paper, an Age Artificial Immune System (AAIS) has 

been proposed. The aging concept is used to govern the cloning 
and survival of antibodies. To further enhance the performance 
of the algorithm, a crossover operator is added to AAIS to form 
the Age Artificial Immune System with Crossover 
(AAIS_CX). The algorithms have been tested by solving an 
order picking problem for an AS/RS with multiple input/ output 
stations. It is shown that the performance of AAIS_CX is better 
than that of AAIS, GA, ACS and ACS_CX in all test cases. 
Indeed, the proposed AAIS and AAIS_CX are efficient and 
effective means for optimizing order picking sequences. 

 
Although AIS has been shown to be efficient in optimization, 

the parameters of the algorithm, such as survival, clonal rates, 
and numbers of mutation, need to be fine-tuned for good 
performance. Therefore, future research can focus on designing 
algorithms in which the parameters change adaptively to the 
environment. In addition, the convergence behaviour of the 
proposed algorithms should also be investigated.  
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Fig. 9 Best-of-all solutions against time in the case 7 (50 
orders) for GA, ACS, AAIS and AAIS_CX  
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Fig. 10 Best-of-all solutions against time in the case 13 (100 
orders) for GA, ACS, AAIS and AAIS_CX 
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Table 4 Results of NNB, AAIS, AAIS_CX, ACS and GA in 
cases of 20 and 50 orders 
Case 
/order NNB AAIS AAIS_CX ACS GA 

    avg best time avg best time avg best time avg best Time 

1/20 436 371 370 1.1 349 345 9.4 359 356 0.9 359 350 5.6 

2/20 425 375 374 1.7 362 359 10.5 376 371 1.1 375 372 5.8 

3/20 488 395 394 0.9 383 382 13.4 394 386 1.2 387 383 7.1 

4/20 643 562 549 2.6 538 536 13.0 564 557 1.1 560 556 5.1 

5/20 579 517 512 0.3 506 503 8.3 522 517 1.2 517 512 8.1 

6/20 570 454 446 5.1 445 443 10.0 477 466 1.1 470 472 5.7 

7/50 1212 1080 1065 4.9 1063 1058 23.0 1117 1102 7.9 1092 1077 20.2 

8/50 1203 1096 1094 8.6 1070 1064 12.2 1144 1140 11.4 1099 1083 24.7 

9/50 1175 1043 1033 5.9 1017 1010 17.1 1060 1043 17.2 1036 1017 23.0 

10/50 1430 1375 1338 6.6 1324 1315 23.9 1356 1338 15.7 1339 1312 20.7 

11/50 1355 1259 1250 5.9 1230 1222 19.7 1278 1265 8.8 1258 1258 16.8 

12/50 1220 1171 1152 8.3 1124 1110 20.3 1160 1137 14.7 1143 1129 25.3 

 
Table 5 Results of NNB, AAIS, AAIS_CX, ACS and GA in 
cases of 100 orders 
Case 
/order NNB AAIS AAIS_CX ACS GA 

  avg best time avg best time avg best time avg best Time

13/100 2395 2155 2146 22.3 2139 2132 38.3 2297 2276 32.2 2263 2257 94.4 

14/100 2445 2206 2176 24.2 2162 2156 36.9 2303 2263 30.5 2292 2280 81.9 

15/100 2443 2231 2201 26.4 2192 2173 47.8 2364 2343 24.5 2337 2322 74.0 

16/100 2731 2561 2552 30.1 2524 2520 46.6 2660 2621 27.3 2621 2605 82.2 

17/100 2701 2469 2439 37.6 2431 2419 43.9 2577 2539 31.8 2529 2471 102.3

18/100 2698 2485 2479 36.4 2434 2427 42.7 2606 2566 33.7 2522 2508 73.9 

 
Table 6 Results of NNB, AAIS_CX, ACS_CX in cases of 50 
and 100 jobs 

Case/
job NNB AAIS_CX ACS_CX  

    avg best time avg best time 

7/50 1212 1063 1058 23.0 1078 1050 13.8 

8/50 1203 1070 1064 12.2 1079 1066 19.6 

9/50 1175 1017 1010 17.1 1027 1017 18.3 

10/50 1430 1324 1315 23.9 1325 1319 15.9 

11/50 1355 1230 1222 19.7 1257 1248 17.2 

12/50 1220 1124 1110 20.3 1126 1113 17.7 

13/100 2395 2139 2132 38.3 2248 2225 37.3 

14/100 2445 2162 2156 36.9 2271 2254 38.8 

15/100 2443 2192 2173 47.8 2293 2266 34.2 

16/100 2731 2524 2520 46.6 2605 2589 36.3 

17/100 2701 2431 2419 43.9 2462 2430 32.1 

18/100 2698 2434 2427 42.7 2509 2492 36.9 
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