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A Theorem on the Manipulability of Redundant
Seria Kinematic Chains

B.Tondu

Abstract—The concept of ‘manipulability’ is particularly
important to characterize the ability of a serial kinematic chain —
artificial manipulator or natural limb — to move quickly its
end-effector in any direction of its operational space in response to
given joint velocities. Yoshikawa’s manipulability definition has
shown its benefit for robotics. According to him the robot
manipulability can be measured, in any joint configuration g, by

det[J(q)JT(q)] where J(0) denotes the robot Jacobian matrix.

From this specific manipulability criterion an original theorem is
derived which helps to express in closed-form the manipulability
of a redundant serial kinematic chain in resolving it into
manipulability factors associated to non-redundant subrobots of
which the redundant original robot consists. The proposed
approach is suitable for robotics but also for the analysis of
naturally redundant biomechanical Kkinematic systems as
illustrated in the study of a redundant 4R kinematic model
defined as being the regional structure of a 7R anthropomorphic
robot-arm.

Index Terms—Manipulability, Redundant
Biomechanical kinematic systems.

manipulators,

|I. INTRODUCTION

The development of advanced industrial robot-arms as
humanoid robots leads robot designers to consider more and
more spatial redundant robot limbs kinematic structures i.e.
with more d.o.f than necessitated by the task. For example, the
recent Mitsubishi PA-10 has 7 d.o.f. asall upper limbs of actual
humanoid robots; some of them have even 9 d.o.f. to mimic the
shoulder complex mobility and generating human-like gesture.
This d.o.f. number defines the dimension of the robot joint
space we will note ‘n’. The end-effector of the robot limb
performs its task in a m-dimensional operational space. In
redundant case —i.e. n > m — the robot Jacobian mxn matrix
J(g) — g denotes the robot joint vector — expressing the robot
end-effector velocities in operational space as afunction of the
joint velocities is not a square matrix. A problem occurs in
consequence to determine the inverse relationship necessary to
the robot control in its operationa space. The Moore-Penrose
inverse J°(g) gives an elegant solution to this problem in the
form:

I@=3" @B@I" @™ (1)
so long as the matrix J(q)J(q)" is not singular.
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Consequently \/det[J(q)JT ()] can be regarded as the distance

of any redundant configuration from singular ones. Y oshikawa
[1], [2] has proposed to call manipulability this criterion
denoted by w (Q).

A zero-manipulability configuration — i.e. a singular
configuration — expresses the impossibility for the robot
end-effector to be moved in any direction of its working area,
whereas anon-zero manipul ability expresses the possibility for
the robot end-effector to be moved in any direction of its
working area with task velocities more higher for given joint
velocities as the manipulability criterion is high.

Manipulability analysis can be very useful to specify the
kinematic possibilities of a given robot, particularly in
comparison with simplified non-redundant versions it comes
from. However, it is well known in redundant arms robotics
that the matrix product J(q)J"(q) is often so complex that its
inverse can be determined only by numerical computation. In
particular the look for a closed-form expression of J(g)J"(q)
even hel ped by symbolic computation software, can be difficult
to obtain for n > 3. Nevertheless a closed-form expression
written in a simple way would be particularly interesting to
found the robot manipulability analysis. In order to help its
search for we propose in the framework of this paper an
original resolution theorem of the manipulability criterion. This
manipulability theorem presented in section 2 is the
consequence of afundamental resolution formulaof det(JJ");
it isfollowed in section 3 by its application to a manipul ability
analysis of the a 4R redundant kinematic model of the regional
joints of a 7R anthropomorphism robot upper limb.

II. A THEOREM ON REDUNDANT ROBOT LIMB
MANIPULABILITY RESOLUTION

The proposed theorem is based on an important property of
theory of determinants which, according to us, has been less
used in robotics and particularly in the framework of robot
manipulability theory : the Cauchy-Binet formula. This
formula can be expressed as follows (Cauchy, 1815 [3]): let us
consider two mxm matrices A=[AA,...A] and

B=[BB,.... B,Jwith A, B, vectors of the n-dimensional

real space (naturally m<n) and let us define A and

Heilyy

B, . asthe mxm matrices formed by rows g,...,7,, of A and

ll....lln

B respectively; we get :
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det(A’B) = >

1<ij<io<.<ipm<n

det(A,; )det(B, ; ) @

n

where the summation is over the (
m

J m-combinations of

{1,2,..,n}. Besides the original proof given by Cauchy [3],
similar proofs can be found in classic algebra books [4], [5]. If
A=B, the Cauchy-Binet formulacomesto :
T 2
det(A"A)= > det(A ) ®)
1<ip<ig<..<ip<n

which is aso called Lagrange's identity [5]. This identity
founds the generalization of the Pythagorean theorem [6]-[7] :
in the n-dimensional real vector space the square of the volume
of a m-dimensional parallelepiped can be determined as the

sum of the sguares of the volumes of its projections on the (nJ
m

m-dimensional coordinates planes.

In the case of aredundant robot, the robot Jacobian matrix J
to be considered isa mxn matrix with m < n. In consequence J”
isa nxm matrix and the Cauchy-Binet formula can be applied.
If we note J=[3,J,...3,]where J; ., designates the "

column of J, the rows Hyeers by of J' ae aso the

By--r By, COlUMNS O J. We get :

det(337) = >

Kip<ip<.<im<n
This relationship resolves the computation of det(JJ") into the
sum of the m-minors of J. Furthermore, the interesting
following corollary can indeed be deduced :

det(3137)=0 < V(i in...., i) m-combination of {1,2,...,n},

det(\]il,\]iz,....,\]im)=0 (5)

The robot in consequence becomes singular if and only if al
m-minors of J are equal to zero.

We are now going to adapt equ.(4) formula to the

manipulability notion in introducing an origina concept of
subrobot of a redundant robot.

2
det’(3;, J

e d

) 4

'm

A. Notion of subrobot of a redundant robot

Let us consider a n-d.o.f. robot limb whose axes are
numbered from 1 to . Let us now consider a m-combination of
{1,2.....,n } whose elements are numbered from the smallest to
the biggest 1< j<i,<...<iy<n and let us define the

kinematic structure derived from the n-d.o.f. robot whose
i, i...., iy, 8Xes are supposed to be mobile and the other ones
‘frozen’. We propose to call m-order subrobot such kinematic
structure derived from the original robot. When the original
robot is composed of » mobile link G ;.. defined by the

common perpendicular to axis i and i+1 — expected the
end-effector ¢, — the m-order subrobot is composed in

consequence of m mobile links resulting of the combination of
proximal links jointed by frozen axis. A given n-d.o.f. has

consequently (HJ m-order subrobots.
m

Furthermore, it iswell known that a given robot limb kinematic
structure can be entirely characterized by its Jacobian matrix
which constitutes its differential model. An important result in
industrial robotics gives a general expression of the robot

Jacobian matrix in associating a frame R;j to each robot link as
illustrated in Fig. 1.a

@

\ iis‘frozen’
i+1

zx0'P=2x0P

PeC
(b)

Fig.1. Kinematic analysis for determining the Jacobian matrix
components of a subrobot derived from a serial n-d.o.f. robot
limb, (a) Classical kinematic scheme of a serial n-d.o.f. robot
limb by associating to each link C; a frame R; placed on the
common perpendicular to axisi and i+1: according to R.Paul’s
notation [8] — preferred in this paper to J.Craig's notation [9] —
the frame R; is placed on the axisi+1 and the last frame whose
originisnoted P isattached to the end-effector C,,, (b) Effect of
‘freezing’ the axisi mobility : thelink C;jisnow rigidly fixed to
thelink Ci.; (seetext).

The robot Jacobian matrix associated to the point P of the
end-effector can be written in areference frame Rj as follows:
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jy—
J=\"zx Jogp 'z x Jopp 201X Jon4P (6)
J J J
20 n e 71

Let us consider the m-order sub-robot defined by the
combination (g, iy...., iy, ) - Thesamerelation (6) can be applied
to any considered subrobot. Let us assume, for example, that
the axis i is frozen. As illustrated in Fig.1.b, the frame R;
associated to link / joining axis i to axis i+1 must now be
considered asthe frame associated to ‘ link (i-1) + link i’ joining
axis (i-1) to axis (i+1) : the new 'z axisis the same but the new
origin — denoted O’; in Fig. 1.b — has shifted. Concerning the
robot Jacobian matrix the 'th column disappears and the *'th
column is now composed of the same’z component and a new

jz,xi_> component but this last one is equal to the original
X0 P
onesince m iscollinear to z asillustrated in Fig. 1.b. Let us

note J the Jacobian matrix of the considered

subrobot ifio...im

subrobot. It results that its determinant can be directly derived
from the knowledge of the corresponding J;,J;,. ... J;
column vectors of the J matrix as follows (since the robot
Jacobian determinant is independent from any frame choice no

reference frame is mentioned) :
detd s robotiy, i ...igy = 9 iy Jireenr Ji ) ™

In other terms, the determinant of any considered subrobot of
the original robot is the corresponding minor of the robot
Jacobian matrix.

Let us now interpret the notion of subrobot in the case of a
task performed by a n-d.of. robot in a m-dimensional
operationa space—i.e. atask needing only m of the n available

d.o.f. of the considered robot. In this case, (n] m-order

m
subrobots can be defined. We think that the existence of these
subrobots characterize in some way the robot redundancy. To
perform its m-dimensional task, the redundant robot can use
everyone of these sub-robots. Without trying to demonstrate it
rigorously we think that the optima character of
Moore-Penrose pseudo-inverse physically corresponds to
choose the ‘best’ subrobot minimizing at any time of the
redundancy control the velocity norm in the robot operational
space. The resulting non-cyclicity property would come from
this ‘blind’ choice of a non-redundant inverse kinematic
solution in the form of a subrobot choice independently of the
closed character of the performed operationa path. Inversely,
cyclic methods as Sergji’s configuration control method [10]
imposes in some way a given subrobot or a fixed subrobots
combination.

L et usgo back now to our manipulability problem. Thanksto
this subrobot notion, we are now able to derive from
fundamental relationship (4) an original theorem on redundant
robot manipulability.

B. Resolution redundant robot limbs

manipulability
Let us note by .,y the manipulability of the considered
redundant robot limb and by aiyopotiy i ..i,,, the Manipulability

theorem  of

of the sub-robot (3,5, ,....,i,,) . Since each of the considered
subrobots is non-redundant, we get :

@gbrobot i1i2...im:‘det‘]subrobot i1i2...ideet(‘Ji1’ Jigs s i )] (8)
The following relationship results in consequence :

wr20b0t= o Z _ wszubrobot i1i2...im=zwr%1—subrobot ©)
1I<ip<igp<.<im<n

In other terms, the manipulability squared of a redundant robot
limb in a m-dimensional operational space is equal to the sum
of manipulability squared of al m-order subrobots. Theequ. (5)
corollary can now be explained asfollows: aredundant robot is
singular in the performance of am-dimensional task if and only
if all its m-order subrobots are singular.

Beyond the meaning that this theorem opens about the
passage from non-redundancy to redundancy in robotics it
offersalso agreat practical advantage: it allowsto substitute to
the complex manipulability computation of a redundant
robot-limb a sum of factors much more simple to express in
closed form because they correspond to manipulability criteria
of non-redundant kinematic structures. In a one hand,
singularity analysis is indeed helped through the look for
singular configuration of each concerned subrobot; in a second
hand, the look for maximum manipulability configuration is
helped as follows. From

2
A opot = 2000t d@ropor (10)
we get indeed in all non-singular configuration the equivalence

da)rzobotzo & dggpe =0 (11)
The maximum manipulability configuration according to a
given joint variable g; can be in consequence determined from
the equivalence :

2 2
Iobot _ o o 9 jorobotigi...igy

dq; dq;
Thelook for the robot maximum configuration can so beled as
follows: ajoint variable is chosen and the value of thisvariable
maximizing the manipulability criterion can be determined
from relation (12). The corresponding optimal value is
integrated in general manipulability expression and the process
isrepeated until all optimal joint values have been obtained. In
a similar way, the optimization of the studied redundant
structure can be made in order to determine the specific robot
geometric  parameter ratios maximizing the robot
manipulability. Weillustrate now this approach in the case of a
4R redundant regional structure of a anthropomorphic upper
[imb mode.

-0 (12

m-—order subrobots
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I1l. APPLICATION TO MANIPULABILITY ANALYSISOF
ANTHROPOMORPHIC ROBOT UPPER LIMB

The 4R kinematic model of the upper limb regiona structure
illustrated in Fig. 2 isconsidered : the shoulder isreduced to a3
d.o.f. spherica joint and the elbow is a revolute joint; the arm
length is noted 4 and B the ‘forearm + hand’ length. From a
previous study about the kinematic modeling of a 7R
anthropomorphic robot upper-limb [11] whose the 4R
considered structure is the “regional structure”, the following
expression of the robot Jacobian in frame r4 isasfollows :

C,S5(AC,+B) C{AC,+B) 0 B

4 =| AC,Co-BS,S,+#BC,CC, —Sy(A+BC,) BS, O

AC,S,S, ACyS, 0 0
where 6 (0<6,<7) designates the  shoulder
abduction-adduction, 6, (-z/2<6,<z) the shoulder
flexion-extension, 6; (-w2<6;<z/2) the internal/external

armrotationand 6, (0<6,<z) theelbow flexion-extension. If

(13)

the concerned task consists in positioning the point P, the
operationa spaceisa 3-dimensional space when thejoint space
isa4-dimensional space.

Shoulder
abduction-adduction

Shoulder
flexion-extension

0,

A

Elbow
flexion-extensio

Fig.2. Kinematic model of the considered anthropomorphic
redundant 4R structure (the frame notations Ry, t0 R4 are
similar to the ones used in our study about the kinematic
modeling of a 7R anthropomorphic upper-limb robot [11]).

The manipulability of this redundant robot will be denoted
by o and we will note @iz , @iy , @iz and @y, the
corresponding 3-order subrobots manipulabilities. We get :

@3=0

4 = ABS,|Co(4+BC,) — BS,C55]
34 = AB°SZC,S]

o3y = AB*S}ICY

(14)

and :

(0, O, 6)) = Wyt g+ 05y (15)

A. Singularity analysis

The singularities of our redundant 4R kinematic structure
correspond to the joint configurations making zero the 4
subrobot manipulabilities. The first subrobot ‘123 is always
singular since the subset of mobilesaxes 1, 2 and 3isnot ableto
position the point P in a volumic area. The joint conditions
making zero each of three other subrobot manipulabilities can
be gathered in atable as the following one where each minor is
resolved into elementary factors (Tablel).

|minor| Factors
Winy Sa | Co(A+B Cy) — BS,C3S,
D34 Sa S3 | Cs
W34 Sa &

Table . Factors making zero each subrobot manipulability

A simple factor analysis leads to highlight two singular
configurations :

- 840 , corresponding to the well-known elbow
singularity occurring when the elbow isin full flexion
or extension ;

- (=0 and C3=0 , corresponding to a shoulder-type
singularity : arm and forearm are placed in the
horizontal plane (Opase , Xbases Ybese)-

Thisresult isin accordance with Kreutz-Delgado et alia classic
work on the kinematic analysis of 7R robots [12] but our
approach leads to a rigorous proof when the mentioned paper
deduces the 7R robot singularities from a qualitative study of
the robot Jacobian columns.

B. Manipulability analysis

We pursue our study by amore global analysis of the robot
manipulability in order to determine and quantify the
contribution of the redundancy. Let us start from the subrobot
‘124’ : it corresponds to the regional structure of the
fundamenta non-redundant anthropomorphic 6R robot. If we
put & =0 in a,4 expression, we get indeed the corresponding
manipulability expression of this 3R regional structure we will
denote xR :

®3(0, 60) = ABSJAC, + BCy| (16)

The two conditions making zero the 3R model manipulability
corresponds to the two well-known singularities [13] :
- elbow singularity, occurring when S, = 0 i.e. when the
elbow isin full flexion or extension ;
- shoulder singularity, occurringwhen (4C, + BC,,) =0
i.e. when the end point P islocated on the Yp.e axis as
indicated by the corresponding robot direct kinematic
model! :

(Advance online publication: 17 November 2007)
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Bir x =S((AC+BCyy)

Br y = AS3BSy

PR 7 =—GACy+BCy)
Let ustry now to determine the robot maximum mani pulability.
We start optimizing the 6, angle :

(17)

2
3%13(%94) =—24%BSZ(AC, + BC,,)(AS, + BS,,)
2

leading to the optimal relationship between & et 6, angles :
AS,+ BS,,=0.

(19)

If we reintegrate this relation inside the manipulability
expression, we can pursue the optimization process according
totheangle 6, . From

(18)

2% (6,) = ABS,y A% + B2 + 24BC, (20)
we get

F20pt 2
e (O _ 5 2525 j34BC2 + (42+BAC, - 4B] (21)

d6,

Solving the second order equation in C,4 leads to the following
maximum manipulability :

! = ABS 7| 4% + B*+ 24BC, with
(22)
Cy =[~(4%+BH+(42+B?? +124°B°)/64B
corresponding to the optimal configuration :
g,=atan2(1-C3, C) and 6, =atan(~BS,/(4+BC,)) (23)

It can be asked finally if a privileged A/B ratio can be selected.
Let us consider the A-ratio between 0 and 1 defined asfollows:
A= Al(4+B) (24)
The new manipulability expression function of Aisthen:
5/ (2) = (4+BY S A=A P+1-2)P+2A(1-A)C, (25)
A simple graphical simulation leads to determine the optimal
A-ratio : 4=0.5, which corresponds to a ‘forearm + hand’
length equal to the arm length. Fig. 3 illustrates the
manipulability variation in function of both the shoulder
flexion-extension angle and the elbow flexion-extension angle
(the A+B sum is normalized to 1 with numerical values for 4
and B equal to 0.5). The zero-manipulability sides correspond
to the bound elbow singularity when the middle ‘singular
valley’ bottom correspondsto theinternal shoulder singularity.
The tops of the ‘hills corresponds to the manipulability
maxima. Let us compare this surface with the corresponding
one derived from the redundant 4R kinematic manipulability
illustrated in Fig. 4.ain the case & = 0. The benefit of the
redundancy clearly appears : the 3R ‘singularity valley’ is now
markedly raised. The same manipulability simulation
performed with 6 = +/— /2 is given in Fig. 4.b : an interna
singularity re-appears corresponding to the double condition
previoudly highlighted : & = +/— /2 and 6; = +/— /2. These
two graphs emphasize in which way the adding of the
internal-external arm rotation (& angle) improves the
kinematic behaviour of the non-redundant arm : thanks to it,
and if we consider a human-like & joint range limited to

[-90°, + 90°] theinternal shoulder singularity isnow removed
at bounds of the robot workspace.

It can also be observed that, as in the non-redundant 3R
case, points of maximum manipulability exist in the redundant
case and, in consequence, an optimum A/B ratio optimizing the
manipulability in those points can be determined. Let ustry to
do it in comparison with the non-redundant case. Let us
privilege the case 65 = 0, which appears like a middle and
partic-

025 /.

2
= 02—
o] ;
8 15
= R >
> o)
3 2]
C —
2 0 150 & B
E K]
0.05— 0 Qsz] Q
QO W
5o
/ N
-50 0 50 100 150 0 OS\@
S1oulderﬂexion-extension &

(6,) angle (deg)

Fig.3. Manipulability of the fundamental non-redundant 3R
anthropomorphic kinematic structure.
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2 005 100Q52’ g
Q 2
0 0o XS
0 5_0 100 150 0 = )
S1ou|derﬂex|on-extension [§° e
;) angle (deg)
(b)
Fig.4. Manipulability of the considered redundant 4R

kinematic structure at constant & joint angle (4 = B =0.5), (a)
6= 0case, (b) 65 =+/- pi/2 case.

ularly favourable value of this joint and let us look for
corresponding optimal & and 6, values. We get first :

ang
and, in consequence, the same relationship (19) occurs between
& and 6, to maximize the manipulability function of & . It
results the final expression of the manipulability as a function
of

both 6, and the A-ratio:

0256y, 2) = (A B S A AN (1A 21 A) (- )7

(27

Fig. 5.aillustratesthe variation of thiscriterion in function of 6,
and A : it appears clearly that in the elbow flexion-extension
physiological-like range [0, +180°] and since 4 belongs to
[0,1] only one optima solution in 6, and A exists which
maximizes the robot manipulability. Because it also appears
difficult to solve in closed-form the search for the optimum 6,
configuration, we propose to do it numericaly, from the
graphical variation of the manipulability with 6, angle at
constant A —ratio, asillustrated in Fig. 5.b.

(26)

902
(6,,6:=0,6,) = ggﬁ (65,64

o
N
a

2 o2
o
B8 015
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S 005
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0.25 ‘ ; ; ; 45—t
I A=0.5 04
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5 AYAREE XN
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E // —09 \\\ \
E o005- e >
> ~
e
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('5 0 1 1 )
s 0 20 40 60 80 100 120 140 160 180

Hbow flexion-extension (6,) angle (deg)
(b)
Fig.5. Maximum manipulability in 6, of the considered 4R
redundant kinematic structure (for & = 0), (a) Manipulability as
a function of the elbow flexion-extension angle 6, and the A
-ratio, (b) Corresponding constant curves A -ratio.

For each value of the A —ratio it is possible to determine
the corresponding 6,-angle optimum value, from knowledge of
which the maximum manipulability can be deduced, as
illustrated in Fig. 6. First it appears (Fig. 6.8) that the optimum
A value maximizing the robot manipulability is now about 0.4
instead of 0.5 in the case of the non-redundant robot. It is
interesting to note that thisratio isrelatively well in accordance
with human biometric data. If we measure A4 like the distance
between the glenohumeral joint center and the elbow pivot, and
B like the distance between the elbow pivot and the hand center
of mass, we get from New Orleans's Naval Biodynamics
Laboratory data concerning a mid-size male aviators
population ([14], page 44) the following mid experimental
estimations of 4 and B and the corresponding A —ratio value :
Aeqp = 28.6CM, By, = 34.6cm, Aoy, = 0.45 (28)

A more accurate estimation of the optimal theoretical A-ratio
value would necessitate to take into account each specific joint
velocity performance. Thisisnot madein our analysiswhichis
essentially dedicated to highlight the potentiality of our
manipulability theorem.
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Fig.6. Determination and comparison of maximum
manipulabilities and  corresponding  optimal  elbow

flexion-extension (8,) angle of the non-redundant 3R kinematic
model and the redundant 4R kinematic model (for &= 0), (a)
Maximum manipulability versus A-ratio, (b) Corresponding
optimum 6, angle versus A-ratio.

If we pursue now our theoretical analysis, it results in the
case of our 0.4 optimum Avaue a 20 % manipulability
increase of the maximum manipulability in comparison with
the non-redundant 3R kinematic structure. Moreover it is
interesting to note that, due to the global bell-shape of the
maximum manipulability/A-ratio curve, the choice of the A4
value maximizing the maximum manipulability increases al
the ‘manipulability surface’ asillustrated in Fig. 7 determined
for 4=0.4, B=0.6 which can be compared with Fig. 4.a
determined for 4=0.5, B=0.5.

Furthermore, as illustrated in Fig. 6.b., the optimal elbow
flexion-extension angle maximizing the manipulability is close
to 80° when the corresponding 3R model optimal 6,
flexion-extension angle is close to 70°. It is interesting to
compare this result with the manipulability expression of the
very simple model of the human arm limited to shoulder and
elbow flexion-extension defining a end-point movement in the
vertical plane (Opases Xbaser Zbase) -

@ = ABS, = (4+B)2S,A(1-1) (29)

In this plane model, the elbow joint optimal value is evidently
equal to 90°; this value corresponds in appearance to our
day-life use of machine control lever or wheel. Now this value
surprisingly decreases to 70° in the non-redundant spatial 3R
model but the redundant 4R model leadsto amore‘ natural’ 80°
optimal value.
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S1oulderfle>aon-extension & =

©,) angle (deg)

Fig. 7. Manipulability of the redundant 4R kinematic structure
with ‘optimal’ A-ratio equal t0 0.4 (4 = 0.4, B = 0.6) determined
at 6;=0:incomparison with Fig. 4.agraph all points are raised
until 20%.

IV. CONCLUSION

We have proposed a new approach for helping the
manipulability analysis of redundant serial kinematic chains —
artificial manipulators as natural limbs. From a closed-form
resolution of the det(JJ") computation we have proposed to
interpret, according to Y oshikawa s manipulability notion, any
redundant » d.of. robot operating in a m-dimensiona

n

operational space (m < n) as the set of the ( Jnon-redundant

m
m d.o.f. kinematic chains obtained in freezing (n —m) d.o.f. of
the original redundant robot. If we call subrobots of the
redundant robot these subkinematic structures - whose
determinants of their corresponding Jacobian matrices are the
m-minors squared of (JJ") —the following theorem results : the
manipulability square of a redundant robot is the sum of the
manipulabilities squares of the subrobots constituting it. It is
then substituted to the n-dimensional manipulability problem

n

associated to a n d.o.f. redundant robot ( Jm-dimensional

m
manipulability problems associated to m d.o.f. non-redundant
robots. This substitution can largely help the manipulability
analysis of redundant kinematic serial structure in particular to
determine their singularities and the optimal geometric
parameters maximizing the robot manipulability.

(Advance online publication: 17 November 2007)
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