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Abstract—In this paper, an iterative technology-mapping tool
called IMap is presented. It supports depth-oriented (area is a
secondary objective), area-oriented (depth is a secondary objec-
tive), and duplication-free mapping modes. The edge-delay model
(as opposed to the more commonly used unit-delay model) is used
throughout. Two new heuristics are used to obtain area reductions
over previously published methods. The first heuristic predicts
the effects of various mapping decisions on the area of the final
solution, and the second heuristic bounds the depth of the mapping
solution at each node. In depth-oriented mode, when targeting
five lookup tables (LUTs), IMap obtains depth optimal solutions
that are 44.4%, 19.4%, and 5% smaller than those produced
by FlowMap, CutMap, and DAOMap, respectively. Targeting the
same LUT size in area-oriented mode, IMap obtains solutions that
are 17.5% and 9.4% smaller than those produced by duplica-
tion-free mapping and ZMap, respectively. IMap is also shown to
be highly efficient. Runtime improvements of between 2.3× and
82× are obtained over existing algorithms when targeting five
LUTs. Area and runtime results comparing IMap to the other
mappers when targeting four and six LUTs are also presented.

Index Terms—Circuit optimization, circuit synthesis, design
automation, field programmable gate arrays, logic design.

I. INTRODUCTION

THE PROCESS of field programmable gate array (FPGA)
technology mapping converts a circuit composed of sim-

ple gates into a circuit composed of lookup tables (LUTs)
suitable for implementation on an FPGA. The mapping proce-
dure attempts to reduce area, delay, or a combination of area
and delay in the final LUT network. Recent work has also
considered the reduction of power during the mapping process.

Most of the existing literature [1] on technology mapping
uses the term depth to refer to delay, and we adopt the same
terminology in describing our own work.

Technology mapping is often treated as a covering problem.
For example, consider the process of technology mapping as
illustrated in Fig. 1. Fig. 1(a) illustrates the initial gate level
network, Fig. 1(b) illustrates a possible covering of the initial
network using four-input LUTs, and Fig. 1(c) illustrates the
LUT network produced by the covering. In the mapping given,
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Fig. 1. Technology mapping as covering problem. (a) Initial netlist.
(b) Possible covering. (c) Mapping produced by the covering.

the gate-labeled x is covered by both LUTs and is said to be
duplicated. Techniques that map for depth use large amounts
of duplication to obtain solutions of reduced depth, while
techniques that map for area limit the use of duplication as it
often increases the area of the mapped solutions.

The problem of mapping for depth can be solved optimally
in polynomial time using a dynamic programming procedure
[2], [4]. However, the area-minimization problem was shown to
be nondeterministic polynomial-time hard (NP-hard) for LUTs
of size three and greater [5]–[7]. Thus, heuristics are necessary
to solve the area-minimization problem. Early work considered
the decomposition of circuits into a set of trees, which were
then mapped for area [8]–[10]. The area-minimization prob-
lem for trees is much simpler and can be solved optimally
using dynamic programming. However, real circuits are rarely
structured as trees, and tree decomposition prevents much of
the optimization that can take place across tree boundaries.
In a duplication-free mapping, each gate in the initial circuit
is covered by a single LUT in the mapped circuit. The area-
minimization problem in the duplication-free mapping can be
solved optimally by decomposing the circuit into a set of max-
imum fan-out free cones (MFFCs), which are then mapped for
area [3]. Although the area minimal duplication-free mapping
is significantly smaller than the area minimal tree mapping, the
controlled use of duplication can lead to further area savings.
In [13], heuristics are used to mark a set of gates as duplicable.
Then, area optimization is considered within an extended fan-
out free cone (EFFC), where an EFFC is an MFFC that has been
extended to include duplicable gates.

0278-0070/$20.00 © 2006 IEEE
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Area-minimization heuristics are typically used in concert
with techniques that produce depth-optimal mapping solutions.
In FlowMap-r [3], following a depth-optimal mapping pro-
cedure, noncritical parts of the circuit are remapped with a
duplication-free mapper. In CutMap [11], two strategies are
used for selecting the gates covered by an LUT. Critical parts of
the circuit are mapped using a depth-minimizing strategy, and
noncritical parts are mapped using a cost-minimizing strategy
that encourages LUT sharing. A similar two-pronged strategy
is also used in PowerMinMap [12], where power, rather than
area, is minimized on the noncritical parts of the circuit.

This paper describes the IMap technology-mapping tool,
which incorporates several novel features. First, it uses iter-
ation as a method of gathering data to guide the mapping
process. Second, it introduces two heuristics to solve the area-
minimization problem. The first heuristic, which is called area
flow, approximates the area of a mapping solution and can be
optimized using a dynamic programming formulation. Area
flow is similar to the area-measurement techniques presented
in [13] (applicable to MFFCs) and [25] (applicable to standard
cell mapping). The second heuristic determines a depth bound
that must be met by each LUT used to cover the initial circuit in
order to meet some depth requirement in the mapped circuit. An
area-efficient depth-bounded mapping solution can be obtained
by selecting LUTs that meet the depth bound requirement while
minimizing area flow. Finally, in the interest of generality,
IMap uses the edge-delay model of [15] rather than the more
common unit-delay model. In the edge-delay model, arbitrary
delay values can be assigned to each branch of a net. These
delay values may reflect an estimate of placement and routing
delays or, in the case of a remapping procedure such as in [16],
may reflect actual delays from a placed and routed circuit.

The heuristics used by IMap have also proven to be quite
flexible. Following the initial description in [26], subsequent
work has employed the heuristics within an integrated map-
ping environment capable of targeting both standard cells and
FPGAs and able to optimize for delay, area, power, and place-
ment [27]–[29].

II. PRELIMINARIES AND PROBLEM DEFINITION

The combinational portion of a Boolean circuit can be repre-
sented as a directed acyclic graph (DAG) G = (V (G), E(G)).
A node in the graph v ∈ V (G) represents a logic gate, primary
input or primary output, and a directed edge in the graph
e ∈ E(G) with head u = head(e) and tail v = tail(e), which
represents a signal in the logic circuit that is an output of gate
u and an input of gate v. The set of input edges for a node
v iedge(v) is defined to be the set of edges with v as a tail.
Similarly, the set of output edges for v oedge(v) is defined
to be the set of edges with v as a head. A primary input (PI)
node has no input edges, and a primary output (PO) node has
no output edges. An internal node has both input and output
edges. The set of distinct nodes that supplies input edges to v is
referred to as input nodes and is denoted as inode(v). Similarly,
the set of distinct nodes that connects to output edges from v is
referred to as output nodes and is denoted as onode(v). A node
v is K-feasible if |inode(v)| ≤ K. If every node in a graph is
K-feasible, then the graph is K-bounded.

Fig. 2. Graph G.

Each edge e has an associated delay denoted delay(e). The
length of a path is the sum of the delays of the edges along the
path. At a node v, the depth depth(v) is the length of the longest
path from a primary input to v, and the height height(v) is the
length of the longest path from a primary output to v. Both the
depth for a PI node and the height for a PO node are zero. At
an edge e, the depth depth(e) is the length of the longest path
from a primary input to e, and the height height(e) is the length
of the longest path from a primary output to e. Both the depth
and the height of an edge include the delay due to the edge
itself. The depth or height of a graph is the length of the longest
path in the graph.

Fig. 2 presents a graph G that will be used as a running
example to illustrate the notions defined in this section. On the
graph, edges are labeled with e, PI nodes are labeled with i, PO
nodes are labeled with o, and internal nodes are labeled with v.
The inputs and outputs of node v3 are

iedge(v3) = {e2, e7}
oedge(v3) = {e10, e11}
inode(v3) = {i2, v1}
onode(v3) = {v5, v6}.

Every node has two or fewer inputs, thus the graph is two
bounded. The delay of each edge is specified on the graph,
which is separated from the edge’s label by a colon. These
delays can be used to determine the depth and height of the
nodes and edges in the graph as indicated in Table I. The depth
(or height) of the graph is six.

Every edge and node in the graph has an associated area flow
that represents an estimate of the area of the subgraph above
it. Area flow is denoted as af(·) and is defined recursively as
follows. The area flow at an edge e is given by

af(e) =
af (head(e))

|oedge (head(e)) | (1)
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TABLE I
DEPTH, HEIGHT, AND AREA-FLOW VALUES FOR NODES AND EDGES IN G

and the area flow at a node v is given by

af(v) = Av +
∑

I∈iedge(v)

af(i) (2)

where the area of a node Av is zero for primary input/output
nodes and is one for internal nodes. These equations treat the
area flowing into a node as the total area flowing in on the input
edges. The area flowing out of a node includes the area flowing
into the node as well as a component, which represents the area
of the node itself. Furthermore, the area flowing out of a node is
evenly divided among the outgoing edges. Column af in Table I
indicates the area-flow values for the nodes and edges in G.

A cone of v Cv is a subgraph consisting of v and some of its
nonPI predecessors, such that any node u ∈ Cv has a path to v
that lies entirely in Cv . Node v is referred to as the root of the
cone. The size of a cone is the number of nodes and edges in the
cone, and it is this parameter that determines the computational
complexity of operations on the cone. At a cone Cv , the set of
input edges iedge(Cv) is the set of edges with tail in Cv and
head outside Cv , and the set of output edges oedge(Cv) is the
set of edges with v as a head. With input and output edges so
defined, a cone can be viewed as a node, and notions that were
previously defined for nodes can be extended to handle cones.
Notions such as inode(·), onode(·), depth(·), height(·), af(·),
and K-feasibility all have similar meanings for cones as they
do for nodes. Fig. 3 highlights a set of cones in G. The largest
cone is rooted at v6 and consists of three nodes. Its inputs and
outputs are

iedge(Cv6) = {e1, e2, e7}
oedge(Cv6) = {e14}
inode(Cv6) = {i1, i2, v1}
onode(Cv6) = {o1}.

Table II presents the depth, height, and area-flow values for the
nodes and edges defined by the cones of Fig. 3. Each cone is
viewed as a node, and values for depth, height, and area flow
are derived accordingly.

Fig. 3. Set of cones in G.

TABLE II
DEPTH, HEIGHT, AND AREA-FLOW VALUES OBTAINED

WITH SET OF CONES IN G

A K-input LUT (K-LUT) can implement any K-feasible
cone. Thus, the technology mapping problem for LUTs is
reduced to the problem of selecting a set of K-feasible cones to
cover the graph in such a way that every edge is entirely within
a cone or is an output edge of a cone. In the depth-oriented
mapping problem, the length of the longest path through the
cones selected to cover the graph is to be minimized, and
in the area-oriented mapping problem, the number of cones
selected to cover the graph is to be minimized. The roots of
cones selected to cover the graph are said to be visible in the
mapping solution generated by the covering. The cones of Fig. 3
represent a potential mapping solution for G if K ≥ 3. Nodes
v1, v4, and v6 are visible in the resulting mapping solution.

For every nonroot node v ∈ Cv , if all of its output edges are
also in Cv , then the cone is termed duplication free (DF-cone).
A duplication-free mapping solution is one that uses DF-cones
exclusively. The cones illustrated in Fig. 3 are DF-cones, and
the resulting mapping solution is duplication free.

A cut (X,X) is a partition of the nodes in G, such that all
PI nodes are in X and all PO nodes are in X . Furthermore, the
cut is defined in such a way that any edge crossing the cut has
a head in X and a tail in X . The volume of a cut vol(X,X) is
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Fig. 4. Dashed line indicates cut in G, (X, X).

Fig. 5. High-level overview of iterative technology-mapping algorithm.

the number of internal nodes in X , and the area flow of a cut
af(X,X) is the sum of the area flows of the edges crossing the
cut. A dashed line in Fig. 4 indicates a cut in G, (X,X), where
X consists of the nodes v1, v2, v3, and v4, and X consists of
the nodes v5 and v6. Edges e1, e10, e11, and e12 cross the cut.
Both the volume vol(X,X) and the area flow af(X,X) of the
cut are four.

III. ITERATIVE TECHNOLOGY-MAPPING ALGORITHM

A. Overview

A high-level overview of IMap’s iterative technology-
mapping algorithm is presented in Fig. 5. First, a call to
GENERATECONES generates the set of all K-feasible cones for
every node in the graph. Then, a series of forward and backward
graph traversals are started. The number of traversals is limited
by a user-specified maximum MaxI, which was set to 20 in the
experiments presented in Section V. Higher values of MaxI did
not produce significantly better results. The forward traversal
TRAVERSEFWD selects a cone for each node, and the backward
traversal TRAVERSEBWD selects a set of cones to cover the
graph. Iteration is beneficial because every backward traversal
influences the behavior of the forward traversal that follows it.
Finally, a call to CONESTOLUTS converts the cones selected
by the final backward traversal into LUTs.

The following sections examine the steps in the algorithm in
greater detail.

TABLE III
VALUES OF Mavg AND Mmax, AND TIME NEEDED FOR K-FEASIBLE

CONE GENERATION ON MCNC CIRCUITS

B. Generating All K-Feasible Cones

An algorithm described in [13] and [17] is used to generate
all K-feasible cones in the graph. This algorithm is reviewed
here. The K-feasible cones are generated as the graph is
traversed in topological order from primary inputs to primary
outputs. At every internal node v, new cones are generated by
combining the cones at the input nodes in every possible way.
Node v is added to every new cone that is generated. The new
cones are then tested for K-feasibility, and any cone that is not
K-feasible is discarded.

For large values of K, the generation of all K-feasible cones
consumes a significant portion of the total technology-mapping
time. The time consumed by cone generation is dependent on
the average number of cones per node Mavg and the number
of inputs to a cone K. A node with two inputs will generate
O(M2

avg)K-feasible cones, and any operation on a K-feasible
cone (such as copying or testing for uniqueness) takes O(K)
time. Thus, the generation of all K-feasible cones in a graph
of n nodes takes O(KM2

avgn) time. Table III summarizes the
values observed for Mavg and Mmax, the maximum number of
cones at any node for three different values of K when mapping
the MCNC [20] circuits (see Section V). The table also provides
the total time needed for cone generation on a 3-GHz Intel
Xeon processor and a ratio indicating the time spent in cone
generation as a fraction of the total time needed for technology
mapping.

C. Forward Traversal

The algorithm used for forward traversal is presented in
Fig. 6. During the traversal, the algorithm updates the depth
and the area flow for every node and edge encountered. First,
the algorithm initializes these values for PI nodes and edges at-
tached to PI nodes. Then, the internal nodes are examined in the
topological order generated by TSORT. This ordering ensures
that the depth and area-flow values for a node’s predecessors
have been determined before the node is processed.

At each internal node v, a call to BESTCONE(v) is used to
select a cone rooted at v to be used in covering v and some of its
predecessors in a mapping solution. This cone then determines
the depth and area flow for v and its output edges. The quality
of the mapping solution is determined by the cones selected by
BESTCONE. We now examine two possible ways of selecting
cones.
1) Depth-Oriented Cone Selection: In the depth-oriented

mapping mode, the cone with the lowest depth is selected, and
if cones are equivalent in depth, then the one with the lowest
area flow is selected.
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Fig. 6. Algorithm used for forward traversal.

Selecting the cone that minimizes the depth at each node
leads to a mapping solution that is depth optimal. This is a result
that is true for both the unit-delay model [2] and the edge-delay
model [15].

Although this selection strategy works well during the first
forward traversal, there is additional information present during
the subsequent traversals that can be used to reduce the mapping
area. It is assumed that the first forward traversal has established
the optimal mapping depth ODepth, and a preceding backward
traversal has established the height of each node. Using the
optimal depth and the height of a node v, a bound can be defined
on the depth of a cone Cv at v as follows:

depth(Cv) ≤ Odepth − height(v). (3)

Cones that meet the bound requirement are considered, and
among a set of cones that meet the bound requirement, cones
with lower area flows are preferred. This selection strategy
ensures that the mapping solutions will still achieve the optimal
depth, but the greater flexibility in cone selection when the
depth bound has been met leads to mapping solutions that are
smaller in area.

As an example of the use of depth bounds (DB), consider
two mapping iterations on the graph of Fig. 2. Assume that the
first iteration has established the mapping solution of Fig. 3, and
the heights have been determined as indicated in Table II. The
optimal depth is five, and the height of v4 is one; therefore, a
cone at v4 has bound depth(Cv4) ≤ 4. As long as this bound is
met at v4, a depth optimal mapping solution can be obtained.
Fig. 7 indicates an alternate mapping solution, which has a
depth of four at v4 and achieves the optimal depth of five.
2) Area-Oriented Cone Selection: In the area-oriented map-

ping mode, the cone with the lowest area flow is selected, and if
cones are equivalent in area flow, then the one with the lowest
depth is selected.

Although the area flow is minimized, it is unclear how this
relates to the actual area of the mapping solution. The next
theorem and an observation about duplication-free mapping can
be used to show that the area flow and the actual area of the
mapping solution are related.

Fig. 7. Alternate mapping solution for Fig. 2.

Theorem 3.1: For any cut (X,X) in G, vol(X,X) =
af(X,X).

Proof: The proof is by induction. In a cut of volume zero,
X contains PI nodes only. All PI nodes have an area flow of
zero; therefore, the cut has an area flow of zero. The relation is
assumed to hold for a cut of volume n. A cut of volume n + 1
can be obtained from a cut of n by moving a node v from X into
X . The directional constraint on the cut ensures that all input
nodes of v are in X and all output nodes of v are in X . Before v
is moved, none of its output edges cross the cut, whereas all of
its input edges cross the cut. After v is moved, all of its output
edges cross the cut; whereas, none of its input edges cross the
cut. By (1) and (2), the area flowing out of v on the output edges
includes the area flowing in on the input edges and the area
component of v, which is one. The relation holds as both the
area flow and the volume are increased by one. �

Observation 3.1: In a duplication-free mapping, a node’s
output edges are either covered by a single cone or not covered
by any cone.
Rationale: This observation follows directly from the defin-

ition of a duplication-free mapping.
Theorem 3.1 shows that area flow can be used as a way

of counting the number of internal nodes in a graph, while
Observation 3.1 shows that the number of output edges for
a node does not change under the duplication-free mapping.
Since the number of output edges is not changed, (1) still holds
and area flow can be used as a way of counting the number of
duplication-free cones.

Theorem 3.1 also suggests a way of optimizing the area flow.
When the graph is being traversed in topological order, the set
of nodes that has been examined (X) and the set of nodes
that has yet to be examined (X) form a cut (X,X). Every
internal node that is encountered during the traversal is thought
to move from X into X . If a cone with the minimum area flow
is selected for each internal node as it is added to X , then the
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Fig. 8. Algorithm used for backward traversal.

total area flow into the PO nodes and consequently the mapping
area will be minimized.

Under a general nonduplication-free mapping, the number
of output edges at a node will not be known until cones have
been selected for the node’s successors. Thus, the area flow
computed by (1) and (2) will not be equal to the mapping area.
However, area flow can still be a reasonably accurate predictor
of mapping area if |oedge(·)| in (1) is replaced by an estimate
|oedge(·)|est. During the first mapping iteration, |oedge(·)|est
is equal to |oedge(·)|, but during the subsequent iterations,
|oedge(·)|est is adjusted based on the number of output edges
observed during the preceding mapping iterations. Specifically,
the estimate of the number of output edges at v depends on the
previous estimate |oedge(v)|′est and the number of output edges
from the preceding iteration |oedge(v)| as follows:

|oedge(v)|est =
|oedge(v)|′est + α |oedge(v)|

1 + α
. (4)

This equation is essentially a weighted average of two com-
ponents where the contribution of the second component to the
final value is determined by α. Empirically, it was observed that
values of α between 1.5 and 2.5 produced the best area results.
Note that there will be several nodes that are not visible in a
mapping solution. These nodes will not have any output edges.
The best results were obtained when the number of output edges
for these nodes was assumed to be one.

D. Backward Traversal

The algorithm used for backward traversal is presented in
Fig. 8. Internal nodes of the graph are visited in the reverse
topological order generated by RTSORT. Although all internal
nodes are visited, only the nodes that are required to be visible
in a mapping solution are expanded. During the traversal, set
S keeps track of the visible nodes. Initially, set S contains
the nodes that connect to PO nodes as they are required to be
visible. Then, at every visible node v, the cone selected for v
during the preceding forward traversal Cv is used to expand S.

All input nodes of Cv are required to be visible, thus, they are
added to S.

During the backward traversal, the height of all internal
nodes is updated. It is assumed that before the algorithm is run,
the height of all nodes and edges has been set to zero. First, the
algorithm updates the heights of edges attached to PO nodes.
At an internal node v, the maximum height of the node’s output
edges h is used to determine the height of all nodes covered by
Cv . A node may be part of several cones, thus, the new height h
is only assigned to a node if it is higher than its previous height.
Similarly, an edge may serve as an input to several cones; thus,
the height of the path through Cv is only assigned to an edge if it
is higher that its previous height. The order of traversal (reverse
topological order) guarantees that the edge heights have settled
into their final values before they are actually used.

The height assigned to an internal node by the backward-
traversal algorithm may be lower than its actual height in a
mapping solution. Once again, consider the graph of Fig. 2.
A potential mapping solution for the graph was given in Fig. 3.
The backward-traversal algorithm determines the heights of
v6, v5, and v3 to be one. However, the height of one is only
valid for the root of the cone v6. A cone rooted at v5 will
have a minimum height of two, and a cone rooted at v3 will
have a minimum height of three. The heights determined by
the backward traversal are only valid for those nodes that
are visible in the mapping solution. The depth bound for a
cone is influenced by the height assigned to its root (3), and
when the depth bound is used to select cones during a depth-
oriented mapping, a decision that is thought to meet the depth
optimality requirement at a node may turn out to be incorrect.
However, the correct decision at the nodes that were visible in
the previous mapping solution ensures that the depth-optimal
mapping solution is not lost.

E. Converting Cones Into LUTS

The process of converting cones into LUTs is greatly sim-
plified by the existence of the set of visible nodes S, which is
generated by the preceding backward traversal. The conversion
process simply collapses the cone selected for each visible
node v Cv into an LUT that implements the functionality of
the cone.

F. Adding Randomness to Cone-Selection Procedure

There may be several cones, which achieve the lowest area
flow value at a node. Given a particular ordering for the cones
at the node and assuming that depth requirements have already
been met, the cone-selection procedure simply selects the first
cone that achieves the lowest area-flow value. Empirically, we
have observed that the addition of a small amount of random-
ness to the area-flow computation leads to smaller mapping
results. Specifically, area flow as defined by (2) is modified to
include a small random value ε

af(v) = Av +
∑

i∈iedge(v)

af(i) + ε. (5)



MANOHARARAJAH et al.: HEURISTICS FOR AREA MINIMIZATION IN LUT-BASED FPGA TECHNOLOGY MAPPING 2337

TABLE IV
EFFECT OF ITERATION ON TWO VERSIONS OF IMAP: ONE THAT USES DB

ONLY AND ANOTHER THAT USES BOTH DB AND FE (DB + FE)

We believe that this is because the randomness forces the cone-
selection procedure to consider alternative mapping solutions,
which have similar area-flow costs.

IV. EFFECT OF ITERATION

Each mapping iteration in IMap gathers data used by the
following iteration to determine a bound on the depth of the
cone selected at each node (3) and to estimate the fanout of
each node under mapping (4). Table IV presents the effect of
iteration on the largest MCNC circuit clma when IMap is used
in its depth-oriented mode. The table reports both the number
of four LUTs and the total area flow seen at the primary outputs
(af) for the mapping solutions produced by each iteration. For
this experiment, the area-flow randomization feature described
in Section III-F was turned off (we examine the effect of
randomization on area in Section V-A). Data for two versions
of IMap are reported. The first uses only DB and the second
uses both DB and fan-out estimation (FE) (DB + FE). Both
versions of IMap produce identical mapping results in the first
iteration. DB and fan-out estimates are not available during the
first iteration, thus, each node is mapped for minimum depth,
and area flow is computed assuming that a node’s fanout under
mapping is identical to its unmapped fanout. When DB become
available in the second iteration, significant area reductions are
made by both versions. However, the first version does not make
much progress in reducing area beyond the second iteration.
Area-oriented cone selection is guided by area-flow values
that are estimates of the actual mapping area. However, the
first version does not use fan-out estimates, and the area-flow
values it computes are never close to the actual mapping area.
These inaccurate area-flow values hinder its progress beyond
the second iteration. The second version, which uses fan-out
estimates, makes a steady progress beyond the second iteration
guided by increasingly accurate area-flow values.

V. RESULTS

The MCNC circuits were used to study the performance of
IMap’s depth-oriented and area-oriented mapping modes. Each
circuit was first synthesized (SIS’s [21] script.rugged)
and decomposed into a network of two-input gates (SIS’s
speed_up command) before being technology mapped into
four LUTs (K = 4), five LUTs (K = 5), and six LUTs
(K = 6). Although four LUTs have the greatest area efficiency
[18] and are the most common type of LUT present in modern

TABLE V
COMPARING IMAP TO FLOWMAP, CUTMAP, AND DAOMAP WHEN

PERFORMING DEPTH-ORIENTED MAPPING (K = 4)

FPGAs, the five-LUT mapping problem is important because
some architectures allow two four LUTs to be combined into a
single five LUT [19]. Furthermore, a recent FPGA from Altera
[22] contains adaptive logic modules, which can be configured
to implement two four LUTs, two five LUTs, or a single
six LUT.

A. Depth-Oriented Mapping

We compare the area of IMap’s depth-oriented mapping
solutions to those produced by three other mappers, FlowMap
[2], CutMap [11], and DAOMap [14]. All three mappers pro-
duce depth-optimal mapping solutions, and two of the mappers,
CutMap and DAOMap, contain several heuristics that reduce
the area of the depth-optimal mapping solutions. While IMap
uses the edge-delay model, FlowMap, CutMap, and DAOMap
use the unit-delay model. To produce comparable results, IMap
assumes that every edge in the input graph is of unit delay.

Tables V–VII present the number of LUTs produced by
each mapper when K = 4, K = 5, and K = 6, respectively.
Although the tables highlight the results obtained for the 20
largest MCNC circuits, the total area and mapping time (on a
3-GHz Intel Xeon Processor) at the bottom of the table are for
the entire set of MCNC circuits (202 circuits). When K = 6,
DAOMap crashes while mapping circuit i10. Thus, the totals
at the bottom of Table VII do not include the area for i10 or the
time needed to map it. The optimal depth for each circuit, which
is achieved by all three mappers, is indicated in the second
column (depth) of each table.

FlowMap produced solutions that are 36.2% (K = 4), 44.4%
(K = 5), and 42.8% (K = 6) larger than those produced by
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TABLE VI
COMPARING IMAP TO FLOWMAP, CUTMAP, AND DAOMAP WHEN

PERFORMING DEPTH-ORIENTED MAPPING (K = 5)

TABLE VII
COMPARING IMAP TO FLOWMAP, CUTMAP, AND DAOMAP WHEN

PERFORMING DEPTH-ORIENTED MAPPING (K = 6)

IMap. FlowMap’s primary objective is depth optimization, and
very little is done to reduce the area. Although its area results
are not as good as those produced by the other mapping
algorithms, it uses a highly efficient procedure for finding cones
that minimize mapping depth. For FlowMap, the time needed

TABLE VIII
EFFECT OF VARIOUS HEURISTICS ON THE SIZE

OF THE MAPPED CIRCUIT (K = 5)

TABLE IX
EFFECT OF POSTPROCESSING OPERATIONS ON AREA

to map all MCNC circuits is similar regardless of LUT size.
For K = 6, FlowMap is the fastest mapping algorithm and is
approximately 25% faster than IMap. For the other values of K,
IMap is significantly faster than the other three mappers with
the second fastest mapper, DAOMap, being 2.3 times slower.

In addition to being the slowest mapper in the experiments,
CutMap produces solutions that are 17% (K = 4), 19.4%
(K = 5), and 20% (K = 6) larger than those produced by
IMap.

DAOMap, the newest of the three mappers we compared,
produces solutions that are 3%, 5%, and 4.6% larger than those
produced by IMap. The results produced by these two mappers
are close because they share several characteristics. First, they
both generate all cones at each node and select the best cone
according to a cost function. Second, they are both iterative
algorithms. Finally, they both use similar methods of bounding
the depth at each node.

Although most of the mapping solutions found by IMap are
smaller than those found by the other three mappers, IMap finds
a solution for bigkey that is significantly larger (978 LUTs)
than the one found by DAOMap (585 LUTs) when K = 6.
A large number of nodes need to be duplicated to find the
best solution for bigkey, but IMap’s area-flow heuristic, which
encourages the sharing of nodes with several output edges,
prevents many of the duplications from taking place.

Table VIII presents the effect that each heuristic in IMap
has in reducing the area of the resulting circuits. The second
row indicates that a version of IMap that is limited to a single
iteration and uses area flow to estimate mapping area produces
mapped circuits that are 12.5% larger than the best version
of IMap. The remaining rows present the effect of multiple
iterations, DB, FE, and randomization on the resulting area.

The rapid system prototyping (RASP) package [23] con-
tains two postprocessing operations called mppack [24] and
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TABLE X
COMPARING OPTIMAL AREA-FLOW MAPPING SOLUTION TO AREA-OPTIMAL DUPLICATION-FREE MAPPING

flowpack [2], which can be used after technology mapping to
reduce area even further. Table IX presents the effect that these
postprocessing operations have on mapping area. Area results
obtained before (w/o pp.) and after (w/ pp.) the application of
the postprocessing operations are presented. The reduction in
area (change) as a result of the postprocessing operations is
greatest for those algorithms that are further away from the
results obtained by IMap. Both DAOMap and IMap obtain
area reductions of between 0.6% and 1.0% as a result of the
postprocessing operations.

B. Area-Oriented Mapping

Although the problem of finding an area-optimal mapping
solution is NP-hard, an area-optimal duplication-free mapping
solution can be found in polynomial time. Thus, duplication-
free mapping is often used as a heuristic for minimizing map-
ping area [3], [13].

When IMap is used in its area-oriented mapping mode, it
finds a mapping solution that minimizes area flow. Table X
compares the optimal area-flow mapping solution (AFlow) to
the area-optimal duplication-free mapping solution (DFree).
The duplication-free mapping solutions were also produced
by IMap. When IMap operates in its area-oriented mode and
uses duplication-free cones exclusively, it produces an area-
optimal duplication-free mapping solution. The area-flow map-
ping solution is also compared to the solutions produced by
ZMap [23], an area-oriented technology mapper found in the
RASP package. Once again, the table highlights the number
of LUTs for the 20 largest MCNC circuits, but the totals at
the bottom are for all MCNC circuits. The duplication-free
mapping solutions are 9.7%, 17.5%, and 27.4% larger than the
area-flow mapping solutions for K = 4, K = 5, and K = 6,

respectively. Additionally, in none of the 202 MCNC circuits
was the area-flow mapping solution larger than the duplication-
free mapping solution. Solutions produced by ZMap are 9.4%
larger for K = 4 and K = 5 and 10.7% larger for K = 6.
Depending on the value chosen for K, ZMap’s runtimes are
between 3.69 times and 4.88 times slower than those of IMap.

VI. SUMMARY

We presented an iterative technology-mapping tool called
IMap. Iteration was used in conjunction with two heuristics
to produce area efficient mapping solutions. The first heuristic,
which is called area flow, is an estimation of the actual mapping
area and can be optimized using a dynamic programming
formulation. The second heuristic is a method of bounding
the depth of cones selected at each node; any extra flexibility
specified by the bound can be used in selecting cones that
reduce mapping area.

When mapping for depth, IMap produced solutions that were
between 3% and 44.4% smaller than solutions produced by
FlowMap, CutMap, and DAOMap. When mapping for area,
IMap produced solutions that were between 9.4% and 27.4%
smaller than the optimal duplication-free mapping solutions
and the solutions produced by ZMap. Runtime improvements
of between 2.3× and 82× over existing algorithms were also
demonstrated for K = 4 and K = 5.
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