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Real-Time Eye, Gaze, and Face Pose
Tracking for Monitoring Driver Vigilance

vigilance. The main components of the system consists of a remotely located video CCD

camera, a specially designed hardware system for real-time image acquisition and for
controlling the illuminator and the alarm system, and various computer vision algorithms for
simultaneously, real-time and non-intrusively monitoring various visual bio-behaviors that
typically characterize a driver’s level of vigilance. The visual behaviors include eyelid movement,
face orientation, and gaze movement (pupil movement). The system was tested in a simulating
environment with subjects of different ethnic backgrounds, different genders, ages, with/without
glasses, and under different illumination conditions, and it was found very robust, reliable and
accurate.

F I Y his paper describes a real-time prototype computer vision system for monitoring driver

© 2002 Elsevier Science Ltd. All rights reserved.

Qiang Ji' and Xiaojie Yang?

'Department of Electrical, Computer,

and System Engineering Rensselaer Polytechnic Institute,
Troy, NY 12180, USA.

E-mail: gji@ecse.rpi.edu

2Department of Computer Science,

University of Nevada, Reno, NV 85977 USA.

E-mail: xyang@cs.unr.edu

Introduction accidents are due to driver fatigue. It is the number 1
cause for heavy truck crashes. Seventy percent of
American drivers report driving fatigued. With the
ever-growing traffic conditions, this problem will further
deteriorate. For this reason, developing systems actively
monitoring a driver’s level of vigilance and alerting the
driver of any insecure driving conditions is essential to

prevent accidents.

The ever-increasing number of traffic accidents in the
US due to a diminished driver’s vigilance level has
become a problem of serious concern to society. Drivers
with a diminished vigilance level suffer from a marked
decline in their abilities of perception, recognition, and
vehicle control, and therefore pose serious danger to
their own life and the lives of other people. Statistics

show that a leading cause for fatal or injury-causing
traffic accidents is due to drivers with a diminished
vigilance level. In the trucking industry, 57% fatal truck
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Many efforts [1-9] have been reported in the literature
for developing active safety systems intended for
reducing the number of automobile accidents due to

© 2002 Elsevier Science Ltd. All rights reserved.
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reduced vigilance. Among different techniques, the best
detection accuracy is achieved with techniques that
measure physiological conditions like brain waves,
heart rate, and pulse rate [8,10]. Requiring physical
contact with drivers (e.g. attaching electrodes) to
perform, these techniques are intrusive, causing annoy-
ance to drivers. Good results have also been reported
with techniques that monitor eyelid movement and gaze
with a head-mounted eye tracker or special contact lens.
Results from monitoring head movement [11] with a
head-mount device are also encouraging. These techni-
ques, though less intrusive, are still not practically
acceptable. A driver’s state of vigilance can also be
characterized by the behaviors of the vehicle he/she
operates. Vehicle behaviors including speed, lateral
position, turning angle, and moving course are good
indicators of a driver’s alertness level. While these
techniques may be implemented non-intrusively, they
are, nevertheless, subject to several limitations including
the vehicle type, driver experiences, and driving condi-
tions [2].

People in fatigue exhibit certain visual behaviors
easily observable from changes in their facial features
like the eyes, head, and face. Typical visual character-
istics observable from the image of a person with
reduced alertness level include slow eyelid movement
[12, 13], smaller degree of eye openness (or even closed),
frequent nodding [14], yawning, gaze (narrowness in the
line of sight), sluggish in facial expression, and sagging
posture. To make use of these visual cues, another
increasingly popular and non-invasive approach for
monitoring fatigue is to assess a driver’s vigilance level
through visual observation of his/her physical condi-
tions using a camera and state-of-the-art technologies in
computer vision. Techniques using computer vision are
aimed at extracting visual characteristics that typically
characterize a driver’s vigilance level from his/her video
images. In a recent workshop [15] sponsored by the
Department of Transportation (DOT) on driver’s
vigilance, it is concluded that computer vision represents
the most promising non-invasive technology to monitor
driver’s vigilance.

Many efforts have been reported in the literature
on developing active real-time image-based fatigue
monitoring systems [1-5, 7, 8, 13, 16—19]. These efforts
are primarily focused on detecting driver fatigue. For
example, Ishii et al. [7] introduced a system for
characterizing a driver’s mental state from his facial
expression. Saito et al. [1] proposed a vision system to
detect a driver’s physical and mental conditions from

line of sight (gaze). Boverie et al. [3] described a system
for monitoring driving vigilance by studying the eyelid
movement. Their preliminary evaluation revealed pro-
mising results of their system for characterizing a driver’s
vigilance level using eyelid movement. Ueno et al. [2]
described a system for drowsiness detection by recogniz-
ing whether a driver’s eyes are open and closed, and, if
open, computing the degree of openness. Their study
showed that the performance of their system is compar-
able to those of techniques using physiological signals.

Despite the success of the existing approaches/systems
for extracting characteristics of a driver using computer
vision technologies, current efforts in this area, however,
focus on using only a single visual cue such as eyelid
movement or line of sight or head orientation to
characterize driver’s state of alertness. The system
relying on a single visual cue may encounter difficulty
when the required visual features cannot be acquired
accurately or reliably. For example, drivers with glasses
could pose serious problem to those techniques based on
detecting eye characteristics. Glasses can cause glare and
may be total opaque to light, making it impossible for
camera to monitor eye movement. Furthermore, the
degree of eye openness may vary from people to people.
Another potential problem with the use of a single visual
cue is that the obtained visual feature may not always be
indicative of one’s mental conditions. For example, the
irregular head movement or line of sight (like briefly
look back or at the mirror) may yield false alarms for
such a system.

All those visual cues, however imperfect they are
individually, if combined systematically, can provide an
accurate characterization of a driver’s level of vigilance.
It is our belief that simultaneous extraction and use of
multiple visual cues can reduce the uncertainty and
resolve the ambiguity present in the information from a
single source. The system we propose can simulta-
neously, non-intrusively, and in real-time monitor
several visual behaviors that typically characterize a
person’s level of alertness while driving. These visual
cues include eyelid movement, pupil movement, and face
orientation. The fatigue parameters computed from this
visual cues are subsequently combined probabilistically
to form a composite fatigue index that can robustly,
accurately, and consistently characterize one’s vigilance
level. Figure 1 gives an overview of our driver vigilance
monitoring system.

The paper focuses on the development of computer
vision algorithms and the necessary hardware compo-
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nents to extract the needed visual cues. The issue of
sensory data fusion will be dealt with in a separate
paper. Figure 2 gives an overview of our visual cues
extraction system for driver fatigue monitoring. The
system starts with pupil detection and tracking, which is
then used for eyelid movement monitoring, gaze
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Figure 2. Overview of the driver vigilance monitoring system.

estimation, and face orientation determination, respec-
tively.

Image Acquisition System
Introduction

Image understanding of visual behaviors starts with
image acquisition. The purpose of image acquisition is
to acquire the video images of the driver face in real
time. The acquired images should have relatively
consistent photometric property under different cli-
matic/ambient conditions and should produce distin-
guishable features that can facilitate the subsequent
image processing. To this end, the person’s face is
illuminated using a near-infrared (NIR) illuminator.
The use of infrared (IR) illuminator serves three
purposes: first, it minimizes the impact of different
ambient light conditions, therefore ensuring image
quality under varying real-world conditions including
poor illumination, day, and night; second, it allows to
produce the bright pupil effect, which constitutes the
foundation for detection and tracking the proposed
visual cues. Third, since NIR is barely visible to the
driver, this will minimize any interference with the
driver’s driving.

According to the original patent from Hutchinson
[20], a bright pupil can be obtained if the eyes are
illuminated with a NIR illuminator beaming light along
the camera optical axis at certain wavelength. At the
NIR wavelength, pupils reflect almost all IR light they
receive along the path back to the camera, producing the
bright pupil effect, very much similar to the red eye effect
in photography. If illuminated off the camera optical
axis, the pupils appear dark since the reflected light will
not enter the camera lens. This produces the so-called
dark pupil effects. Figure 3 illustrates the principle of
bright and dark pupil effects. An example of the bright/
dark pupils is given in Figure 4.

To produce the desired bright pupil effect, the IR
illuminator theoretically must locate along the optical
axis of the lens. Our experiment reveals that it is
physically difficult to place IR light-emitting diodes
(LEDs) along the optical axis since it may block the view
of the camera, limiting the camera’s operational field of
view. Others [11] suggested the use of a beam splitter to
achieve this purpose without blocking camera view. The
set-up, however, is complex.
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We present a simple geometric disposition of the IR
LEDs similar to that of morimoto et al. [21] that can
achieve the same bright pupil effect but with minimal
reduction in camera operational view. Specifically, our IR
illuminator consists two sets of IR LEDs, distributed
evenly and symmetrically along the circumference of two
coplanar concentric rings as shown in Figure 5. The center
of both rings coincides with the camera optical axis.

Mounted in front of the lens, the optimal sizes of the
LED rings are determined empirically so that a dark
image is produced if the outer ring is turned on and a
bright pupil image is produced if the inner ring is turned
on. It represents a trade-off between producing the ideal
bright/dark pupil images and minimizing the occlusion
of the camera view. The ring configuration achieves the
same bright-pupil effect as with LEDs mounted along
the optical axis. Besides the advantages of easy
installation and a minimal reduction in camera’s
operational field of view, since LEDs are arranged
symmetrically around the camera optical axis, they can

Figure 4. IR illuminated eyes: (a) dark pupil image generated
by IR LEDs off the camera optical axis; (b) bright pupil image
generated by IR LEDs along the camera optical axis.
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Figure 5. IR light source configuration.

cancel shadows generated by LEDs. Furthermore, the
use of multiple IR LEDS can generate a strong light
such that the IR illumination from the illuminator
dominates the IR radiation exposed to the driver’s face,
therefore greatly minimizing the IR effect from other
sources. This ensures the bright pupil effect under
different climatic conditions. The use of more than one
LED also allows to produce the bright pupil for subjects
far away (3f) from camera. To further minimize
interference from light sources beyond IR light and to
maintain uniform illumination under different climatic
conditions, a narrow bandpass NIR filter is attached to
the front of the lens to attenuate light beyond NIR range
(700900 nm). A physical set-up of the IR illuminator is
shown in Figure 6.

The IR light source illuminates the user’s eye and
generates two kinds of pupil images: bright and dark

Figure 6. An actual photograph of the two rings IR
illuminator configuration.
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pupil images as shown in Figure 7. The bright pupil
image is produced when the inner ring of IR LEDs is
turned on and the dark image is produced when the
outer ring is turned on. Note, the glint* appears on both
the dark and bright pupil images. Figure 8 presents
additional examples of the acquired images using the
image acquisition system described above. These images
demonstrate the robustness of the system in that the
desired bright pupil effect is clear for images at different
distances, orientations, magnifications, with and with-
out glasses. It even works to certain degree with
sunglasses.

For implementation in vehicle, we propose to use two
CMOS miniature CCD cameras embedded on the
dashboard of the vehicle as shown in Figure 9. The first
camera is a narrow angle camera, focusing on the
driver’s eyes to monitor eyelid movement while the
second camera is a wide angle camera that focuses on
the driver’s head to track and monitor head movement.
Two cameras may be motorized so that their movements
can be adjusted through a controller to obtain the best
picture of the driver. Both cameras should have a rather
large depth of field, so that they can stay focused from a
working distance of 0.8-1.5m. The field of angle is
between +45° on both the horizontal and vertical
directions.

*The small bright spot near the pupil, produced by corneal
reflection of the IR light.

Figure 8. Examples of the acquired images with the desired
bright pupil effect. (a) without glasses, (b) with glasses; (c) with
sunglasses.

Pupil Detection and Tracking

The goal of pupil detection and tracking is for
subsequent eyelid movements monitoring, gaze determi-
nation, and face orientation estimation. A robust,
accurate, and real-time pupil detection is therefore
crucial. Pupil detection and tracking starts with pupil
detection.

For this research, we detect pupils based on their
intensity, shape, and size. Due to the use of special IR
illumination, pupils appear distinctively brighter than
the rest of the face. Pupil intensity is, therefore, the
primary feature employed to detect pupils. To further
separate pupils from other bright objects in the images,
additional properties of the pupils are used. These
include pupils size, shape, the spatial relationships
between pupils, and their motion characteristics. Given
the detected pupils, pupils are then tracked efficiently
from frame to frame in real time based on Kalman
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filtering. Figure 10 gives an overview of the eye tracking
system.

The system has two phases-pupil detection and pupil
tracking. Pupil detection starts with a pre-processing to
remove external illumination interference, followed by a
global search of the whole image to locate the first pair
of pupils in the image. Pupil tracking locally searches the
pupils based on the pupils’ positions in prior frames. In
the sections to follow, we discuss in detail each aspect.

Q. Ji AND X. YANG

Figure 11. Background illumination interference removal
(a) the even image field obtained with both ambient and IR
light; (b) the odd image field obtained with only ambient
light; (c) the image resulting from subtraction of (b) from (a).

Pupil detection

Pupil detection involves locating pupils in the image. It
consists of two steps: illumination interference removal
and pupil detection.

Hllumination interference removal via image subtraction.
The detection algorithm starts with a pre-processing to
minimize interference from illumination sources other
than the IR illuminator. This includes sunlight and
ambient light interference. Figure 11(a) shows an image
where parts (upper left) of the background look very
bright, almost as bright as the pupil. A simple global
thresholding of the image solely based on intensity may
not always uniquely detect the pupils due to the presence
of other bright regions in the image. To uniquely detect
pupils, other bright areas in the image must be removed

Video Images

!

Pupil Detection

3) Verification

" ]1) Background removal
»-|2) Localization via global search[ ™

Yes

Contextual knowledge

intensity
shape
size

motion

Pupil Tracking

3) Verification

1) Prediction via Kalman
2) Localization via local search |«

Figure 10. Pupil detection and tracking system flowchart.
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or they may adversely affect pupil detection. The
background clusters removal is accomplished by sub-
tracting the image with only ambient light illumination
from the one illuminated by both the IR illuminator and
the ambient light. The resultant image contains the
illumination effect from only the IR illuminator, there-
fore with bright pupils and relatively dark background.
This method has been found very effective in improving
the robustness and accuracy of our eye tracking
algorithm under strong external illumination interfer-
ence, even under strong incoming light or another IR
source nearby, as shown in Figures 11-13.

For real eye tracking, the image subtraction must be
implemented efficiently in real time. To achieve this, we
design a video decoder that detects from each interlaced
image frame (camera output) the even and odd field
signals, which is then used to alternately turn the outer
and inner IR rings on to produce the dark and bright
pupil image fields. A program was then written to
separate each frame into two image fields (even and
odd), representing the bright and dark pupil images
separately. The even image field is then digitally
subtracted from the odd image field to produce the
difference image. Images in Figures 11-13 are such
produced. Figure 14 depicts the block diagram of the
image subtraction controller.

Determining the initial pupils positions. Given the image
resulted from the removal of the external illumination
disturbance, pupils may be detected by searching the

(c)

Figure 12. Strong incoming illumination interference re-
moval (a) the image field obtained with both incoming light
and IR light; (b) the image field obtained with only the
incoming light; (c) the image resulting from subtraction of
(b) from (a).

(c)

Figure 13. External IR Illumination interference removal:
(a) the image field obtained with both the external and IR
internal lights; (b) the image field obtained with only the
external IR and the ambient light; (c) the image resulting from
subtraction of (b) from (a).

entire image to locate two bright regions that satisfy
certain size, shape, and distance constraints. To do so, a
search window scans through the image. At each
location, the portion of the image covered by the
window is examined to determine the number of
modality of its intensity distribution. It is assumed that
the intensity distribution follows an unimodal distribu-
tion if the pupil is not covered by the window and
follows a bimodal intensity distribution if the window
includes the pupil. A thresholding is then applied to the
window image if its intensity distribution is determined
to be bimodal. The threshold is determined automati-
cally by minimizing Kullback information distance [22].
This yields a binary image consisting of binary blob that
may contain a pupil. The binary blob is then validated
based on its shape, size, its distance to the other detected
pupil, and its motion characteristics to ensure it is a
pupil. The validation step is critical since some regions
of the image such as the glares of the glasses (see
Figure 15, glares cannot be removed by the image
subtraction procedure) are equally bright. They may be
mistaken for pupils without the verification procedure.
The window moves to next position if the validation
fails. The centroids of the blob are returned as the
position of the detected pupil if the validation succeeds.
This then repeats to detect another pupil.

Pupil tracking via Kalman filtering

To continuously monitor the person, it is important to
track his/her pupils from frame to frame in real time.
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This can be done by performing a pupil detection in
each frame. This brutal force method, however, will
significantly slow down the speed of pupil tracking,
making real-time pupil tracking impossible since it needs
to search the entire image for each frame. This can be
done more efficiently by using scheme of prediction and
localization. Prediction involves determining the ap-
proximate locations of pupils in next frame based on its
current location. Localization determines the exact
location via a local search. The first step ensures efficient
accurate localization for the second step since it limits
search area in subsequent frames to a small area.

Two important factors need be considered when
implementing this scheme. The first one is the search
window size for the second step. A large search window
results in unnecessary search and is time consuming
while a too small search window may easily lose the
pupil information. Several factors may influence the

Figure 15. The glares on the eye frame are equally as bright
as the pupils. Verification can eliminate them from being
considered as pupils.

search window size including pupil size and uncertainty
with the predicted position. Pupil size varies with
distance and subjects, and positional uncertainty de-
pends on the feature detector and the noise character-
istics of the image. An effective way is to use an adaptive
search window, whereby the search area is determined
automatically based on pupil size and location error.
Kalman filtering [23] provides a mechanism to accom-
plish this. A Kalman filter is a set of recursive algorithms
which estimate the position and uncertainty of moving
objects in the next time frame, that is, where to look for
the pupils, and how large a region should be searched in
the next frame, around the predicted position, to be sure
to find the pupils with certain confidence. It recursively
conditions current estimate on all of the past measure-
ments and the process is repeated with the previous
posterior estimates used to project or predict the new a
priori estimates. This recursive nature is one of the very
appealing feature of the Kalman filter—it makes practical
implementation much more feasible.

Our pupil tracking method based on Kalman filtering
can be formalized as follows. A sequence of image
frames is captured. The image sequence is sampled at
each frame ¢, which is then processed to determine pupil
position. The state of a pupil at each time instance
(frame) can be characterized by its position and velocity.
Let (¢, r,) represent the pupil pixel position (its centroid)
at time ¢ and (u,, v,) be its velocity at time 7 in ¢ and r
directions, respectively. The state vector at time ¢ can,
therefore, be represented as x,=(c, r, u, v,)".

According to the theory of Kalman filtering [24], x,,1,
the state vector at the next time frame 7+ 1, linearly
relates to current state X, by the system model as follows:

X1 = Ox; +w; (1)

where @ is the state transition matrix and w, represents
system  perturbation, normally distributed as
wt ~ N(09 Q)

If we assume pupil movement between two consecu-
tive frames is small enough to consider the motion of
pupil positions from frame to frame as uniform, the
state transition matrix can be parameterized as

1010
01 0 1
=10 01 0
00 0 1

We further assume that a fast feature detector estimates
z; = (¢, 1,), the estimated pupil position at time ¢.
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Therefore, the measurement model in the form needed
by the Kalman filter is

z, = Hx, +v, 2

where matrix H relates current state to current
measurement and v, represents measurement uncer-
tainty, normally distributed as v, ~ N(0,R). For sim-
plicity and since z, only involves position, H can be
represented as

1000
H{0100}

The feature detector (e.g. thresholding or correlation)
searches for the region determined by the covariance
matrix Z;ll to find the feature point at time ¢+ 1. The
detected point is then combined with the prediction
estimation to produce the final estimate. Search region
automatically changes based on Z;ll

For subsequent discussion, let us define a few more
variables. Let x;;'| be the estimated state at time 7+ 1,
resulted from using the system model. It is often referred
to as the prior state estimate. X, differs from x| in
that it is estimated using both the system model (Eqn
(1)) and the measurement model (Eqn (2)). x,4; is
usually referred as posterior state estimate. Let 2:1 and
> .41 be the covariance matrices for the state estimates
X,,; and X, respectively. They characterize the
uncertainties associated with the prior and posterior
state estimates. The goal of Kalman filtering is therefore
to estimate x,4y and ), | given X;, ) _,, Z, the system,
and measurement models. The Kalman filtering algo-
rithm for state prediction and updating may be

summarized below.

State prediction. Given current state X, and its covar-
iance matrix ), state prediction involves two steps:
state projection (xtjrll) and error covariance estimation
(Z:l) as summarized below:

xtjrll = dx, 3)

POIE) RN @

State updating. Given the prior estimate X, its
covariance matrix Z;l, and current measurement z,.
resulted from a feature detection (via either a simple
thresholding or correlation method) in the neighbor-
hood determined by » . ,, state updating can be
performed to derive the posterior state and its covar-
iance matrix.

The first task during the measurement update is to
compute the Kalman gain K,;;. It is performed as
follows:

®)

The gain matrix K can be physically interpreted as a
weighting factor to determine the contribution of
measurement z,,; and prediction Hx;‘, to the posterior
state estimate x,. ;. The next step is to actually measure
the process to obtain z;,, and then to generate a
posteriori state estimate X,.; by incorporation the

measurement into Eqn (1). x,,1 is computed as follows:
Xer1 = X, + Kz — Hx ) (6)

The final step is to obtain a posteriori error covariance
estimate. It is computed as follows:

S =Ky ™

After each time and measurement update pair, the
Kalman filter recursively conditions current estimate on
all of the past measurements and the process is repeated
with the previous posterior estimates used to project or
predict a new a priori estimate.

In order for the Kalman filter to work, the Kalman
filter needs be initialized. First, we need to specify an
initial state. We start Kalman filter tracker after we
detected the pupils successfully in two consecutive
frames. Let the two frames be ¢ and ¢ + 1. The initial
state vector X, can be specified as

Co = Cr41
o = Iy41
U = €41 — ¢

Vo =T — Iy

We also need to specify the initial covariance matrix )
for the initial state xo. Since ), is updated iteratively as
we acquire more images, we can initialize it to large
values. Suppose the predicted position has +10 pixels
error from the true value in both u and v directions, and
the speed has +5 pixels error from the true value in u
and v directions, therefore, the estimator error covar-
iance ) is defined as

100 0 0 0
3 - 0 100 0 0
0 0 0 25 0

0 0 0 25
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Besides xo and >, we also estimate the system and
measurement error covariance matrices Q and R. Based
on observation of the pupil motion, we can safely
assume the system perturbation model as follows. The
standard deviation from positional system error to be 4
pixels for both u and v directions. We further assume
that the standard deviation for velocity error to be 2
pixels/frame. Therefore, the state covariance matrix can
be quantified as

16 0 0 O
0 16 0 O
Q= 0 0 4 0
0 0 0 4

Similarly, we can also assume the error for measurement
model as 2 pixels for both x and y directions. Thus,

4 0
*=[o 3
Both Q and R are assumed be stationary (constant).

Using the state prediction and updating equations, in
conjunction with the initial conditions, the state vector
and its covariance matrix at each frame is estimated. We
observe the covariance matrix ) ., gradually stabilize as
expected after a few image frames. The state covariance
matrix ), gives the uncertainty of pupils position in rth
frame. The search area can be determined by ), as
shown in Figure 16, where the ellipse represents the
search region and the major and minor axes of the
ellipse is determined by the two eigenvectors of »_,. In
practice, to speed up the computation, the values of
>-.[0][0] and > [1][1] are used to compute the search

201

+— predicted pupil
and search area
at time t+1

/ (Ctr1r Tr1)

detected | (cury)
pupil at

time t

Figure 16. Pupil detection and tracking using Kalman filter-
ing, where (€,41,F41) are the predicted position and )", | are
the uncertainty associated with (€,,1,F41).
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Figure 17. Trajectory of the real and estimated pupil posi-
tions in a 30-frame sequence. Crosses indicate the estimated
pupil positions via Kalman filter. Small circles indicate the
actual tracked pupil positions. It is apparent that the two pupil
positions match very well.

area size. Specifically, the search area size is chosen as
50 +2*3"[0][0] and 50+ 2*> [1][1], where 50 x 50 is the
basic window size. This means the larger the ) [0][0] and
>[1][1], the more the uncertainty of the estimation, and
the larger the search area is. The search area is,
therefore, adaptively adjusted. The pupil detection
procedure will be reactivated if tracking fails. Tracking
fails if the tracked region has a unimodal intensity
distribution (only background) as indicated by its
variance or the binary blob detected in the tracked
region does not satisfy certain geometric constraints
such as size and shape.

To study the validity of the Kalman filter for pupil
tracking, we study the differences between the
predicted and the actual pupil locations as shown
in Figure 17 which shows the trajectory of the actual
and estimated pupil position in a 30-frame image
sequence using Kalman filter. It is clear from this figure
that the predicted and the actual pupil positions
match well.

Tracking results. The Kalman filter tracker has been
implemented and tested on a 300 MHz Ultra 30 Sun
workstation, with image resolution of 640 x 480. The
pupil tracking program and algorithm is found to be
rather robust under different face orientations and
distances. Specifically, our pupil tracking program
allows the subject to freely move in the view of the
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Figure 18. The pupil tracking program tracks the pupils as
the face rotates.

camera under the illumination of both an IR source
and ambient light. It automatically finds and tracks
the pupils and can recover from tracking-failures.
For pupils temporarily out of the camera view,
it can instantly relocate the pupils as soon as they
reappear in the camera view. The system runs
at a frame-rate of about 20 frames/s. To demon-
strate the pupil tracking program, Figure 18 shows a
sequence of consecutive frames with rectangles
indicating the locations of the detected pupils. Addi-
tional images are shown in Figures 19 and 20, which
shows pupil tracking for people with glasses. Figure 21
shows the pupil tracking result under strong external
illumination interference from a light in front of the
subject. Video demonstration of our eye tracking system
may be found at http://www.cs.unr.edu/qiangji/fati-
gue.html.

The major advantages of the eye detection
and tracking approach include its simplicity, robust-
ness, and accuracy. It is non-invasive and can,
therefore, be achieved without even the knowledge
of the subject. Furthermore, the technique
does not require any physical or geometric model. It is
based on the spectral (reflective) properties of pupil.
Although special illumination is required, the illumina-
tion set-up is simple and the scene background is
irrelevant. Pupils can be detected and tracked in real
time in a wide range of scales and illumination
conditions.
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Figure 19. Tracking result in 10 consecutive frames with
Kalman filtering track scheme.

Computation of Eyelid Movement Parameters
Introduction

Eyelid movement is one of the visual behaviors that
reflect a person’s level of fatigue. The primary purpose
of pupils tracking is to monitor eyelid movements and to
compute the relevant eyelid movement parameters.
There are several ocular measures to characterize eyelid
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(frame 101)

(frame 102) (frame 103)

Figure 20. Kalman filtering tracking result with glasses.

movement such as eye blink frequency, eye closure
duration, eye closure speed, and the recently developed
parameter PERCLOS. PERCLOS measures percentage
of eye closure over time, excluding the time spent on
normal closure. It has been found to be the most valid
ocular parameter for characterizing driver fatigue [13].
Study performed by Wierwillw et al. [25] shows that
alert drivers were reported to have much lower
PERCLOS measurement than a drowsy driver. Another
ocular parameter that could potentially be a good
indicator of fatigue is eye closure/opening speed, i.c. the
amount of time needed to fully close the eyes and to
fully open the eyes. Our preliminary study indicates that
the eye closure speed is distinctively different for a
drowsy and an alert subject. For this research, we focus
on real-time computation of these two parameters to
characterize eyelid movement.

To obtain these measurements (PERCLOS and eye
closure speed), we propose to continuously track the
subject’s pupils and determine in real time the amount of
eye closure based on the area of the pupils that have
been occluded by the eyelids. Specifically, an eye closure

Figure 21. Examples of pupil tracking under strong external
illumination interference.
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Figure 22. Definition of eye closure duration and eye open/
close speed.

occurs when the size of detected pupil shrinks to a
fraction (say 20%) of its nominal size. As shown in
Figure 22, an individual eye closure duration is defined
as the time difference between two consecutive time
instants, ¢, and f3, between which the pupil size is 20%
or less of the maximum pupil size. And an individual eye
closure speed is defined as the time period of #; to #; or #3
to 14, during which pupil size is between 20% and 80%
of nominal pupil size, respectively.

Computation of PERCLOS and average eye closure speed
(AECS)

Individual eye closure duration and eye closure speed
can reflect driver’s level of alertness. Both PERCLOS
and AECS at a particular time instance are computed
over a fixed time interval (30s). Average eye closure/
opening speed is computed as arithmetic average of all
eye closure speed over a fixed time period (30s). A one-
time measurement of either parameter, however, cannot
accurately quantify a person’s alertness because of its
random nature. A more accurate and robust way is to
compute the running average (time tracking) of each
parameter. Running average computes the two para-
meters at a time using current data and the data at
previous time instances. To obtain running average of
PERCLOS measurement for example, the program
continuously tracks the person’s pupil size and monitors
eye closure at each time instance. The cumulative eye
closure duration over time is used to compute PER-
CLOS. We compute the PERCLOS measure based on
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the percentage of eye closure in 30s. This time limit is
arbitrary and can be adjusted by the user.

Eye closure simulation result analysis

In this section, we describe the experiments we
performed aimed at studying the validity of the two
eyelid movement parameters. To produce realistic real
data, a human subject deliberately blinks her eyes
differently in front of our system to simulate different
eyelid movement patterns possibly associated with
different levels of fatigue. Note we are not measuring
fatigue itself, rather different eyelid movement patterns.
The first experiment studied the difference in eye closure
speed between an alert individual and a drowsy
individual. Figure 23 shows the average time needed
for an alert individual to close eyes vs. the time needed
for a drowsy person to close eyes. It is clear from the
simulation data that the eye closure speed for a fatigue
individual is much slower (longer time) than that of an
vigilant individual. This reveals that eye closure speed
could potentially be used as a metric to quantify the
level of fatigue subject to more rigorous validation.

The second experiment lasted for 6 min, with the
subject being alert during the first 2.5min and being
fatigued afterwards. The goal of this experiment is to
study: (1) whether the change in fatigue level can be
detected by both parameters; and (2) whether the two
parameters correlated. Our system recorded the eyelid
movement and computed the two parameters over the
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Figure 23. Eye closure speed comparison. The normal eye
closure only takes 0.17s, but abnormal eye closure takes as
long as 1.68s.
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Figure 24. Running average PERCLOS measurement over
6 min.

period in real time. Figures 24 and 25 plot PERCLOS
and AECS parameters over the entire 6-min period.

Figure 24 shows that in the early session of simulation
(before 150,000 ms or 2.5 min), PERCLOS measurement
is below 30%, which represents the alert state. However,
beyond 150,000 ms, PERCLOS measures over 40%, a
significant increase, representing the fatigue state.
Interestingly enough, Figure 25 follows the similar
trend, i.e. it takes much shorter time to close eyes when
the subject is alert (before 150,000 ms) and much longer
time to close eyes when the subject is drowsy (after

Running Average Eye Closure Speed Plot Based On 6 Minutes Simulation
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Figure 25. Running average eye closure speed measurements

over 6 min.
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150,000 ms). We can conclude from this experiment: (1)
both parameters can detect different levels of vigilance;
(2) PERCLOS and AECS covariate, which demon-
strates that the two parameters correlate to certain
degree. The covariation between the two parameters,
however, needs be further validated using human
subjects with real fatigue.

In summary, our experiments show there is a
significant difference in eyelid movement measured in
terms of PERCLOS and AECS for different levels of
vigilance. If a driver is alert while driving, the
parameters for PERCLOS and running average eye
closure speed should be less than 30% and 0.5s,
respectively.

We have successfully developed a prototype hardware
and software system that tracks pupils and computes
PERCLOS and AECS parameters in real time. The
system will issue an alarm (a repeated and loud beeping)
if the computed PERCLOS and AECS measures exceed
certain given threshold (e.g. >30% and >0.55s) to alert
the driver. We have tested this system with the subject’s
face at different orientations, distances, and substantial
face movements. It works rather robustly under each
situation.

This is a very significant progress in that (1) it is real
time; (2) it is robust; (3) it computes the most valid
fatigue measure PERCLOS, a measure recommended by
the US DOT for monitoring driver fatigue [13] (4) it is
non-invasive, it can be executed without the knowledge
of the user due to its use of IR illumination. It can also
find applications such as in human-computer
interaction, assisting people with disability, and study-
ing people’s eye blink patterns.

Face (head) Orientation Estimation

Face (head) pose contains information about one’s
attention, gaze, and level of fatigue. Face pose
determination is concerned with computation of the
three dimensional (3D) face orientation and position to
detect such head behaviors as head tilts. The nominal
face orientation while driving is frontal. If the driver’s
face orientation is in other directions (e.g. down or
sideway) for an extended period of time or occurs
frequently (e.g. various head tilts), this is either due to
fatigue or inattention. Face pose estimation, therefore,
can detect both fatigue and inattentive drivers.

Methods for face pose estimation can be classified
into three main categories: model-based, appearance-
based, and feature-based. Model-based approaches
typically recover the face pose by establishing the
relationship between 3D face model and its two-
dimensional (2D) projection [26-28]. Appearance-based
approaches are based on view interpolation and their
goal is to construct an association between appearance
and face orientation [29-31]. Although appearance-
based methods are simpler, they are expected to be less
accurate than model-based approaches and are mainly
used for pose discrimination. Feature-based approach
determines face pose using some facial features and their
image, and then determine the pose using the conven-
tional point-based pose estimation method. The major
challenge with feature-based approach is to robustly
detect and track the required facial features from frame
to frame under varying illumination conditions, facial
expressions, and different head orientations.

In our application, the precise degree of head
orientation is not necessary, what we are interested is
to detect if the driver head deviates from its nominal
position and orientation for an extended time or too
frequently.

Face orientation determination

We propose a new model-based approach. Our
approach recovers 3D face pose from a monocular view
of the face with full perspective projection. Our study
shows that there exists a direct correlation between 3D
face pose and properties of pupils such as pupils size,
inter-pupil distance, and pupils shape. Figure 26 shows
pupil measurements under different head orientations.
The followings are apparent from these images:

e The inter-pupil distance decreases as the face rotates
away from the frontal orientation.

e The ratio between the average intensity of two pupils
either increases to over one or decreases to less than
one as face rotates away or rotates up/down.

e The shapes of two pupils become more elliptical as
the face rotates away or rotates up/down.

e The sizes of the pupils also decrease as the face
rotates away or rotates up/down.

The above observations serve as the basis for estimating

face orientation from pupils.

Based on the above observations, we can develop a
face pose estimation algorithm by exploiting the
relationships between face orientation and these pupil
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Figure 26. Pupil images for different head orientations. (a)
frontal head position, (b) turn head left, (¢) turn head right. It
is clear that pupil properties such as size, intensity, and shape
vary with face orientations.

parameters. We build a so-called pupil feature space
(PFS) which is constructed by seven pupil features:
inter-pupil distance, sizes of left and right pupils,
intensities of left and right pupils, and ellipse ratios of
left and right pupils. To make those features scale
invariant, we further normalize those parameters by
dividing over corresponding values of the front view.
Figure 27 shows sample data projections in PFS, from
which we can see clearly that there are five distinctive
clusters corresponding to five face orientations (5 yaw
angles). Note that although we can only plot 3-D space
here, PFS is constructed by seven features, in which the
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Figure 27. Face pose clusters in pupil feature space.
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Figure 28. Projection of pose classes in eigen-PFS.

clusters will be more distinctive. So a pose can be
determined by the projection of pupil properties in PFS.

To maximize the separation of different clusters, we
need to find a representation of the PFS by which
different pose classes are most apart from each other. A
well-known method to achieve this goal is principal
component algorithm (PCA), or eigenspace algorithm,
which is to find the principal components of the
distribution of poses, or the eigenvectors of the
covariance matrix of the set of poses. The eigenvectors
are ordered, each one accounting for a different amount
of the variation among the poses, and each individual
pose can be represented exactly in terms of a linear
combination of the eigenvectors. Training data are
collected to build the ecigen-PFS, and store several
models representing typical poses, which are, in our
experiments, vary between —45° and 45°. Figure 28
shows the distribution of the models in eigen-PFS,
where a 3-D projection is used while the actual
dimensions of the ecigen-PFS are seven. The face
orientation of an input face can then be mapped to
one of the clusters based on its Euclidean distance to the
center of each cluster.

Experimental results

Here we present results of experiments with real data.
The experiment involve a human subject rotating her
face left and right to produce difference face orienta-
tions. Our face pose estimation technique is used to
estimate each pose. The face orientation is quantized
into seven angles: —45°, —30°, —15°, 0°, 15°, 30°, and
45°. A total of 300 data points were collected for each
face orientation, representing the seven face orienta-
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Table 1. Overall performance: statistics of pose estimation
output. Seven feature ratios, median filtering, leave-15-out
training

Ground Total no. No. of Overall correct Correctness
truth of data  test data estimation

—45 300 15 100.00
-30 300 14.95 99.67
—15 300 14.9 99.33

0 300 15 14.8 98.67
15 300 14.45 96.33
30 300 15 100.00
45 300 14.2 94.67

tions. Each data point is comprised of seven raw
features (inter-pupil distance, sizes of left and right
pupils, intensities of left and right pupils, and ellipse
ratios of left and right pupils), which are collected and
pre-processed through a median filtering to remove
outliers. The pre-processed data are subsequently
normalized by dividing each feature data by the
according data of the front view. The leave-N-out
technique was used to train and test the algorithm since
there are not enough training data available. It works by
repeatedly using part of the data for training and the
other part for test. This repeats until all data have been
training and testing data. In our case, 95% data are used
for training and 5% for test in each iteration. The
experimental results are summarized in Table 1.

To further validate the face pose estimation method,
we apply it to monitor the drivers attention while
driving. Figure 29 shows the running average face pose
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Figure 29. Face orientation monitoring over time.

estimation for a period of 6 min. As can be seen, most
times during this period, face pose is frontal. But there
are times when an extended period of time is spent on
other directions (left or right), representing inattention.
For a real-time demo of the face orientation determina-
tion, refer to

http://www.cs.unr.edu/ ~ qiangji/fatigue.html.

Similar results were obtained for head rotating up and
down (head tilt).

Eye-gaze Determination and Tracking

Gaze has the potential to indicate a person’s level of
vigilance. A fatigued individual tends to have a narrow
gaze. Gaze may also reveal one’s needs and attention.
Gaze estimation is important not only for fatigue
detection but also for identifying a person’s focus of
attention which can be used in the area of human-
computer interaction.

Of the numerous techniques proposed for gaze
estimation [31-33], the one proposed by Ebisawa [34]
appears very promising and is directly applicable to this
project. Their technique estimates the gaze direction
based on the relative position between pupil and the
glint. Based on an improvement of this technique, we
have developed a video-based, contact-free eye-gaze
estimation algorithm that can: (1) track and detect
the eye position from the face image in real time; (2)
estimate the gaze direction by computing the Cartesian
coordinates difference of the glint center and the pupil
center; (3) map the pixel coordinates difference into
gaze.

Pupil and glint detection and tracking

The gaze estimation algorithm consists of three parts:
pupil-glint detection and tracking, calibration, and gaze
mapping. For this research, the gaze of a driver can be
quantized into nine areas: frontal, left, right, up, down,
upper left, upper right, lower left and lower right, as
shown in Figure 30. Gaze estimation starts with pupil—
glint detection and tracking. For gaze estimation, we
continue using the IR illuminator as shown in Figure 5.
To produce the desired pupil effects, the two rings are
turned on and off alternately via the micro-controller
described in the Pupil detection section to produce the
so-called bright and dark pupil effects as shown in
Figure 7(a) and (b). The pupil looks bright when the
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Figure 30. Quantized eye gaze regions.

inner ring is turned on as shown in Figure 7(a) and the
pupil looks dark when the outer ring is turned on as
shown in Figure 7(b). Note glint appears on both
images. Algorithmwise, glint can be detected much more
easily from the dark image since both glint and pupil
appear equally bright and sometimes overlap on the
bright pupil image. This explains why we need both the
dark and bright pupil images. Unlike pupil tracking,
gaze tracking requires a close-up view of the eyes to
ensure accuracy and robustness in glint and pupil
detection and the accuracy of the gaze estimate. The
field of the view of camera, therefore, focuses on the
region of the face near the eyes.

Given a bright pupil image, the pupil detection and
tracking technique described earlier can be directly
applied. The location of a pupil at each frame is
characterized by its centroid. Only one pupil needs to be
tracked since both pupils give the same gaze direction.
Given the dark pupil image, the pupil detection and
tracking technique can be adapted to detect and track
glint. The center of glint can be computed and is used to
specify the location of the glint. Figure 31 gives an
example of bright pupils (a); dark pupils with glint (b);
and the detected pupil and glint (c).

Gaze mapping

Given the relative position between pupil and glint, the
screen (actual) coordinates of the gaze can be deter-
mined via a linear mapping procedure. The conventional
approach for gaze mapping only uses coordinates
displacement of pupil center and glint position [35, 36]
as a pupil-glint vector. The main drawback with this
method is that the subject must keep his or her head
stationary, or the glint position in the image will change.
In practice, it is difficult to keep head still and the

look left

(a) (b) look frontal ()

Figure 31. Relative spatial relationship between glint and
bright pupil center used to determine eye-gaze position: (a)
bright pupil images, (b) glint images; (¢) pupil-glint relation-
ship generated by superimposing glint to the thresholded
bright pupil images. The relative positions between glint and
pupil determines gaze.

existing gaze tracking methods will produce incorrect
result if the head moves, even slightly. Head movement
must, therefore, be incorporated in the gaze estimation
procedure. In this section, we introduce a new gaze
estimation procedure that tolerates slight translational
head movement.

According to our mapping procedure, the pupil-glint
vector is represented by

g= [Ax Ay g, 8y 1]

where Ax and Ay are the pupil-glint displacement, g,
and g, are the glint image coordinates. Unlike the
existing methods which only uses Ax and Ay, our
procedure also includes the glint position. This effec-
tively reduces the head movement influence. The
coefficient vector ¢ is represented by

c=[apyro)]"

Assuming the gaze point is located at one of the nine
locations on the screen as illustrated in Figure 30.
The pupil-glint vector measured during runtime can be
mapped to the image screen locations through the
following equations:

i=g-c=aAx+ Ay +yg.+4g, +0

where 7 is the gaze region index from 1 to 9 representing
one of nine directions. The coefficients «, f, 7, 4, and 6
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are determined via a simple calibration procedure as
discussed below.

Calibration procedure. The calibration procedure is very
simple and brief. We divided calibration panel of into
nine regions to represent the nine gaze directions
corresponding to Figure 30. During calibration, the
user is asked to fixate his/her gaze from target 1 to 27.
After each target is finished, the system will sound a
beeper to remind user to move his gaze to next target.
On each fixation, three sets of pupil-glint vectors are
computed and stored, so that a 27 x 5 pupil-glint matrix
A is obtained. The transformation from pupil-glint

matrix A to the target vector B is given by
A-c=B ®)

where A is 27 x 5 matrix represented as

[ Ax) Ay x| an 1]

Axy; Ay gx2 g 1

Axs Ay gx3 gys |

Axs  Ays gxs  gya 1

Axs  Ays  gxs  gys 1

A= Ax¢  Aye  gx¢ gy 1

Axzs  Ayrs  gxas  gras 1

Axze Ay gx26 8126 1
LAxa7 Ayrr gx7 gy 1

and B is 27 x 1 vector represented by

B=[1 112223 -~ 9 9 97

Coefficient vector ¢ can be acquired by solving Eqn (8)
using the least-squares method.
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Figure 32. Normal driving case: Look front. (a) Gaze
distribution under normal driving. Gaze most times is frontal.
(b) Histogram plot for normal driving.

Experimental Results and Analysis

The gaze tracker is currently running on Sun UltralO
(300 MHz) in near real time (15 frames/s). In operation,
the subject faces directly to camera and changes his or
her gaze direction after finishing calibration. Table 2 is

Table 2 Confusion table for gaze estimation with 100 gaze samples

Ground truth (target no.)

Estimation result (mapping target no.)

Correctness rate (%)
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the confusion table showing the correction rate for each
direction based on 100 samples. The result is very
promising. Another experiment was conducted to
simulate different driving state: normal, drowsy and
inattention. Two hundred data samples were taken for
each case. The gaze distribution and its histogram plots
are shown in Figures 32-34. Figure 32 shows most gaze
points are located in region 5, which reflects normal
driving case. Figure 34 shows most gaze points are
located in region 8, which reflects drowsy driving case.
Figure 33 shows most gaze points are distributed in
regions 4—6, which reflects inattentive driving case.

Conclusions

Through research presented in this paper, we developed
a non-intrusive prototype computer vision system for
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Figure 33. Drowsy: look down. (a) Gaze distribution for
fatigued driving. Most gaze is down. (b) Histogram plot for
fatigued driving.

Pupil_Glint Difference Distributation Based on 200 Samples (Inattentation Case)

20 T T

T
'pg300.dat’ <

0 1

090000
9000

°

°

°
00000
90000
0000

0000
° 000

°

6600
°
6000

y_difference (pixels)
(9]
T
OO0 O

-10 L L L
-15 -10 -5 0 5 10 15

(@ x_difference (pixels)

Histogram Plot Based On 200 Samples (Inattentation)

80 68

70
60
50
40
30
20
10 T 1

an
iy

n
w

1

(b) |E|TL ETM O TR @MLOMMOMR DBLDBMDBR|

Figure 34. Inattention: look left or right. (a) Gaze distribu-
tion for inattentive driving. Significant gaze are toward left and
right. (b) Histogram plot for inattentive driving.

real-time monitoring a driver’s vigilance. We focus on
developing the necessary hardware and imaging algo-
rithms that can simultaneously extract multiple visual
cues that typically characterize a person’s level of
fatigue. These visual cues include eyelid movement,
gaze, and face orientation. The main components of the
system consists of a hardware system for real time
acquisition of video images of the driver and various
computer vision algorithms and their software imple-
mentations for real-time eye tracking, eyelid movement
parameters computation, face pose discrimination, and
gaze estimation.

Each part of our fatigue monitor system was tested in
a simulating environment with subjects of different
ethnic backgrounds, different genders, ages, and under
different illumination conditions. The system was found
very robust, reliable and accurate. We are now
collaborating with Honda to port the codes to PC and
to install it system on a vehicle to evaluate its



376 Q. Ji AND X. YANG

performance under real driving conditions. Another
future task is to develop new gaze estimation algorithm
to tolerate large head movement. This requires improv-
ing the calibration procedure and to incorporate face
pose into gaze estimation to compensate for head
movement.

With our active hardware system, we can achieve the
followings that are difficult to achieve with the conven-
tional passive appearance-based methods:

e fast and real-time eye and face tracking;

e less sensitive to external illumination interference;
e more robust and accurate;

e allow fast head/face movement.
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