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Real-Time Nonintrusive Monitoring
and Prediction of Driver Fatigue

Qiang Ji, Zhiwei Zhu, and Peilin Lan

Abstract—This paper describes a real-time online prototype
driver-fatigue monitor. It uses remotely located charge-cou-
pled-device cameras equipped with active infrared illuminators
to acquire video images of the driver. Various visual cues that
typically characterize the level of alertness of a person are
extracted in real time and systematically combined to infer the
fatigue level of the driver. The visual cues employed characterize
eyelid movement, gaze movement, head movement, and facial
expression. A probabilistic model is developed to model human
fatigue and to predict fatigue based on the visual cues obtained.
The simultaneous use of multiple visual cues and their systematic
combination yields a much more robust and accurate fatigue
characterization than using a single visual cue. This system was
validated under real-life fatigue conditions with human subjects
of different ethnic backgrounds, genders, and ages; with/without
glasses; and under different illumination conditions. It was
found to be reasonably robust, reliable, and accurate in fatigue
characterization.

Index Terms—Driver vigilance, human fatigue, probabilistic
model, visual cues.

I. INTRODUCTION

THE EVER-INCREASING number of traffic accidents in
the United States that are due to a diminished driver’s

vigilance level has become a problem of serious concern
to society. Drivers with a diminished vigilance level suffer
from a marked decline in their perception, recognition, and
vehicle-control abilities and, therefore, pose a serious danger
to their own life and the lives of other people. Statistics show
that a leading cause of fatal or injury-causing traffic accidents
is due to drivers with a diminished vigilance level. In the
trucking industry, 57% of fatal truck accidents are due to driver
fatigue. It is the number one cause of heavy truck crashes.
Seventy percent of American drivers report driving fatigued.
The National Highway Traffic Safety Administration (NHTSA)
[1] estimates that there are 100 000 crashes that are caused
by drowsy drivers and result in more than 1500 fatalities and
71 000 injuries each year in U.S. With the ever-growing traffic
conditions, this problem will further increase. For this reason,
developing systems that actively monitoring a driver’s level
of vigilance and alerting the driver of any insecure driving
conditions is essential for accident prevention.
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Many efforts [2]–[20] have been reported in the literature for
developing an active safety systems for reducing the number
of automobile accidents due to reduced vigilance. These tech-
niques can be classified into the following categories [21].

• Readiness-to-perform and fitness-for-duty technologies:
These technologies [10] attempt to assess the vigilance

capacity of an operator before the work is performed. The
tests conducted to assess the vigilance level of the operator
consist of two groups: performance based or measuring
ocular physiology.

• Mathematical models of alertness dynamics joined with
ambulatory technologies:

These technologies use mathematical models to pre-
dict operator alertness and performance at different times
based on interactions of sleep, Circadian, and related tem-
poral antecedents of fatigue [12]–[14].

• Vehicle-based performance technologies:
These technologies detect the behavior of the driver by

monitoring the transportation hardware systems under the
control of the driver, such as driver’s steering wheel move-
ments, acceleration, braking, and gear changing [15]–[17].

• In-vehicle, online, operator-status-monitoring technolo-
gies:

The technologies in this category seek to real-time record some
biobehavioral dimension(s) of an operator, such as features of
the eyes, face, head, heart, brain activity, reaction time, etc.,
during driving [18]–[20]. According to the methods used for
measurements, the technologies can be further divided into
three types. The first employs electroencephalograph (EEG)
measures, on which most successful equipments developed for
offline fatigue monitoring are based. Also, there is an online
version called “mind switch” that uses a headband device in
which the electrodes are embedded to make contact with the
driver’s scalp to measure brain waves. Ocular measures are
used in the second type, which is considered to be the most
suitable way for online monitoring. So far, many eye-blinking,
pupil-response, eye-closure, and eye-movement monitors have
been developed. Other physiological/biobehavioral measures
that are used in the third type include the tone of facial muscles
(facial expression), body postures, and head noddings.

Among different techniques, the best detection accuracy
is achieved with techniques that measure physiological con-
ditions such as brain waves, heart rate, and pulse rate [9],
[22]. Requiring physical contact with drivers (e.g., attaching
electrodes), these techniques are intrusive, causing annoyance
to drivers. Good results have also been reported with tech-
niques that monitor eyelid movement and eye gaze with a
head-mounted eye tracker or special contact lens. Results from
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monitoring head movement [23] with a head-mount device are
also encouraging. These techniques, although less intrusive,
still are not practically acceptable. A driver’s state of vigilance
can also be characterized by the behaviors of the vehicle he/she
operates. Vehicle behaviors including speed, lateral position,
turning angle, and changing course are good indicators of a
driver’s alertness level. While these techniques may be imple-
mented nonintrusively, they are, nevertheless, subject to several
limitations, including the vehicle type, driver experiences, and
driving conditions [3].

People in fatigue exhibit certain visual behaviors that are
easily observable from changes in facial features such as the
eyes, head, and face. Visual behaviors that typically reflect a
person’s level of fatigue include eyelid movement, gaze, head
movement, and facial expression. To make use of these visual
cues, another increasingly popular and noninvasive approach
for monitoring fatigue is to assess a driver’s vigilance level
through the visual observation of his/her physical conditions
using a remote camera and state-of-the-art technologies in
computer vision. Techniques that use computer vision are
aimed at extracting visual characteristics that typically char-
acterize a driver’s vigilance level from his/her video images.
In a recent workshop on driver’s vigilance [24] sponsored by
the Department of Transportation (DOT), it is concluded that
computer vision represents the most promising noninvasive
technology to monitor driver’s vigilance.

Many efforts on developing active real-time image-based fa-
tigue-monitoring systems have been reported in the literature
[2]–[6] [8], [9], [25],[26]–[32]. These efforts are primarily fo-
cused on detecting driver fatigue. For example, Ishii et al. [8] in-
troduced a system for characterizing a driver’s mental state from
his facial expression. Saito et al. [2] proposed a vision system
to detect a driver’s physical and mental conditions from line of
sight (gaze). Boverie et al. [4] described a system for monitoring
driving vigilance by studying eyelid movement. Their prelimi-
nary evaluations revealed promising results of their system for
characterizing a driver’s vigilance level using eyelid movement.
Ueno et al. [3] described a system for drowsiness detection by
recognizing whether a driver’s eyes are open or closed and,
if open, computing the degree of eye openness. Their study
showed that the performance of their system is comparable with
those of techniques using physiological signals.

Despite the success of the existing approaches/systems for ex-
tracting characteristics of a driver using computer vision tech-
nologies, current efforts in this area, however, focus only on
using a single visual cue, such as eyelid movement, line of sight,
or head orientation, to characterize driver’s state of alertness.
The system that relies on a single visual cue may encounter
difficulty when the required visual features cannot be acquired
accurately or reliably. For example, drivers with glasses could
pose a serious problem to those techniques based on detecting
eye characteristics. Glasses can cause glare and may be totally
opaque to light, making it impossible for a camera to monitor
eye movement. Furthermore, the degree of eye openness may
vary from person to person. Another potential problem with the
use of a single visual cue is that the obtained visual feature is

Fig. 1. Flowchart of the proposed driver-vigilance-monitoring system.

often ambiguous and, therefore, cannot always be indicative of
one’s mental conditions. For example, the irregular head move-
ment or line of sight (such as briefly look back or at the minor)
may yield false alarms for such a system.

All those visual cues, however imperfect they are individu-
ally, can provide an accurate characterization of a driver’s level
of vigilance if combined systematically. It is our belief that si-
multaneous extraction and the use of multiple visual cues can
reduce the uncertainty and resolve the ambiguity present in the
information from a single source. The systematic integration of
these visual parameters, however, requires a fatigue model that
models the fatigue-generation process and is able to system-
atically predict fatigue based on the available visual informa-
tion, as well as the relevant contextual information. The system
we propose can simultaneously, nonintrusively, and in real time
monitor several visual behaviors that typically characterize a
person’s level of alertness while driving. These visual cues in-
clude eyelid movement, pupil movement, head movement, and
facial expression. The fatigue parameters computed from these
visual cues are subsequently combined probabilistically to form
a composite fatigue index that could robustly, accurately, and
consistently characterize one’s vigilance level. Fig. 1 gives an
overview of our driver-vigilance-monitoring system.

This paper consists of three parts. First, it focuses on a discus-
sion of the computer vision algorithms and the hardware com-
ponents that are necessary to extract the needed visual cues.
Second, after extracting these visual cues, the issue of sensory
data fusion and fatigue modeling and inference is discussed. Fi-
nally, experiments under real-life conditions are conducted to
validate our driver-vigilance-monitoring system.
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Fig. 2. Overview of the driver-vigilance-monitoring system.

II. EYE DETECTION AND TRACKING

Fatigue monitoring starts with extracting visual parameters
that typically characterize a person’s level of vigilance. This is
accomplished via a computer vision system. In this section, we
discuss the computer vision system we developed to achieve
this goal. Fig. 2 provides an overview of our visual-cues ex-
traction system for driver-fatigue monitoring. The system con-
sists of two cameras: one wide-angle camera focusing on the
face and another narrow-angle camera focusing on the eyes. The
wide-angle camera monitors head movement and facial expres-
sion while the narrow-angle camera monitors eyelid and gaze
movements. The system starts with eye detection and tracking.

The goal of eye detection and tracking is for subsequent
eyelid-movement monitoring, gaze determination, facial-ori-
entation estimation, and facial-expression analysis. A robust,
accurate, and real-time eye tracker is therefore crucial. In this
research, we propose real-time robust methods for eye tracking
under variable lighting conditions and facial orientations,
based on combining the appearance-based methods and the
active infrared (IR) illumination approach. Combining the
respective strengths of different complementary techniques
and overcoming their shortcomings, the proposed method uses
active IR illumination to brighten subject’s faces to produce
the bright pupil effect. The bright pupil effect and appearance
of eyes (statistic distribution based on eye patterns) are utilized
simultaneously for eyes’ detection and tracking. The latest
technologies in pattern-classification recognition (the support
vector machine) and in object tracking (the mean shift) are em-
ployed for eye detection and tracking based on eye appearance.

Fig. 3. Combined eye-tracking flowchart.

Our method consists of two parts: eye detection and eye
tracking. Fig. 3 summarizes our eye-detection and -tracking
algorithm. Some of the ideas presented in this paper have
been reported in [33] and [34]. In the sections that follow, we
summarize our eye-detection and -tracking algorithms.

A. Image-Acquisition System

Image understanding of visual behaviors starts with image
acquisition. The purpose of image acquisition is to acquire the
video images of the driver’s face in real time. The acquired
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Fig. 4. Actual photograph of the two-ring IR illuminator configuration.

images should have a relatively consistent photometric property
under different climatic/ambient conditions and should produce
distinguishable features that can facilitate the subsequent image
processing. To this end, the person’s face is illuminated using a
near-IR illuminator. The use of an IR illuminator serves three
purposes. First, it minimizes the impact of different ambient
light conditions, therefore ensuring image quality under varying
real-world conditions including poor illumination, day, and
night. Second, it allows us to produce the bright/dark pupil
effect, which constitutes the foundation for detection and
tracking of the proposed visual cues. Third, since near IR is
barely visible to the driver, this will minimize any interference
with the driver’s driving.

Specifically, our IR illuminator consists of two sets of IR
light-emitting diodes (LEDs), distributed evenly and symmetri-
cally along the circumference of two coplanar concentric rings,
as shown in Fig. 4. The center of both rings coincides with the
camera optical axis. These IR LEDs will emit noncoherent IR
energy in the 800–900-nm region of the spectrum.

The bright pupil image is produced when the inner ring of
IR LEDs is turned on and the dark pupil image is produced
when the outer ring is turned on, which is controlled via a video
decoder. An example of the bright/dark pupils is given in Fig. 5.
Note that the glint, the small bright spot near the pupil, produced
by cornea reflection of the IR light, appears on both the dark and
bright pupil images.

B. Eye Detection

Eye-tracking starts with eyes detection. Fig. 6 gives a
flowchart of the eye-detection procedure. Eye-detection is
accomplished via pupil detection due to the use of active IR
illumination.

Specifically, to facilitate pupil detection, we have developed
a circuitry to synchronize the inner and outer rings of LEDs
with the even and odd fields of the interlaced image, respec-
tively, so that they can be turned on and off alternately. The inter-
laced input image is deinterlaced via a video decoder, producing
the even and odd field images as shown in Fig. 7(a) and (b).
While both images share the same background and external il-
lumination, pupils in the even images look significantly brighter
than in the odd images. To eliminate the background and reduce
external light illumination, the odd image is subtracted from
the even image, producing the difference image, as shown in

Fig. 5. Bright and dark pupil images with glints.

Fig. 7(c), with most of the background and external illumination
effects removed. The difference image is subsequently thresh-
olded. A connected component analysis is then applied to the
thresholded difference image to identify binary blobs that sat-
isfy certain size and shape constraints, as shown in Fig. 8(a).
From Fig. 8(a), we can see that there still are several nonpupil
blobs left, because they are so similar in shape and size that we
cannot distinguish them from the real pupil blobs, so we have to
use other features.

From the dark pupil image, as shown in Fig. 8(b), we ob-
served that each pupil is surrounded by the eye region, which
has a unique intensity distribution and appears different from
other parts of the face. The appearance of an eye can therefore
be utilized to separate it from noneyes. We map the locations
of the remaining binary blobs to the dark pupil images and then
apply the support vector machine (SVM) classifier [35], [36] to
automatically identify the binary blobs that correspond to eyes.
A large number of training images including eyes and noneyes
were used to train the SVM classifier. Fig. 8(c) shows that the
SVM eye classifier correctly identifies the real eye regions as
marked and removes the spurious ones. Details on our eye-de-
tection algorithm may be found in [33].

C. Eye-Tracking Algorithm

The detected eyes are then tracked frame to frame. We have
developed the following algorithm for the eye tracking by com-
bining the bright-pupil-based Kalman filter eye tracker with the
mean shift eye tracker [34]. While Kalman filtering accounts
for the dynamics of the moving eyes, mean shift tracks eyes
based on the appearance of the eyes. We call this two-stage eye
tracking.

After locating the eyes in the initial frames, the Kalman
filtering is activated to track bright pupils. The Kalman filter
pupil tracker works reasonably well under frontal face orienta-
tion with open eyes. However, it will fail if the pupils are not
bright due to oblique face orientations, eye closures, or external
illumination interferences. Kalman filter also fails when sudden
head movement occurs, because the assumption of smooth
head motion has been violated. Therefore, we propose to use
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Fig. 6. Eye-detection block diagram.

Fig. 7. (a) Even field image, (b) odd field image, and (c) the difference image.

Fig. 8. (a) Thresholded difference image marked with possible pupil candidates, (b) image marked with possible eye candidates according to the positions of
pupil candidates, and (c) image marked with identified eyes.

mean shift tracking to augment Kalman filtering tracking to
overcome this limitation. If Kalman filtering tracking fails in a
frame, eye tracking based on mean shift will take over. Mean
shift tracking is an appearance-based object-tracking method
that tracks the eye regions according to the intensity statistical
distributions of the eye regions and does not need bright pupils.
It employs the mean shift analysis to identify an eye candidate
region, which has the most similar appearance to the given eye
model in terms of intensity distribution. Therefore, the mean
shift eye tracking can track the eyes successfully under eye
closure or oblique face orientations. Also, it is fast and handles
noise well, but it does not have the capability to self-correction
and, therefore, the errors tend to accumulate and propagate
to subsequent frames as tracking progresses. Eventually, the
tracker drifts away.

To overcome these limitations with the mean shift tracker, we
propose to combine the Kalman filter tracking with the mean
shift tracking to overcome their respective limitations and to

take advantage of their strengths. Specifically, we take the fol-
lowing measures. First, two channels (eye images with dark and
bright pupils) are used to characterize the statistical distributions
of the eyes. Second, the eye’s model is continuously updated by
the eyes detected by the last Kalman filtering tracker to avoid
error propagation with the mean shift tracker. Finally, the ex-
perimental determination of the optimal window size and quan-
tization level for mean shift tracking further enhance the perfor-
mance of our technique.

The two trackers are activated alternately. The Kalman
tracker is initiated first, assuming the presence of the bright
pupils. When the bright pupils appear weak or disappear, the
mean shift tracker is activated to take over the tracking. Mean
shift tracking continues until the reappearance of the bright
pupils, when the Kalman tracker takes over. Eye detection will
be activated if the mean shift tracking fails. These two-stage eye
trackers work together and complement each other. The robust-
ness of the eye tracker is improved significantly. The Kalman
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filtering and mean shift-tracking algorithms are discussed in
[33] and [37].

The eye-detection and -tracking algorithm is tested with
different subjects under different facial orientations and illu-
minations. These experiments reveal that our algorithm is more
robust than the conventional Kalman-filter-based bright pupil
tracker, especially for the closed and partially occluded eyes due
to the face orientations. Even under strong external illumina-
tions, we have achieved good results. Video demonstrations are
available at http://www.ecse.rpi.edu/~cvrl/Demo/demo.html.

III. EYELID-MOVEMENT PARAMETERS

Eyelid movement is one of the visual behaviors that reflect a
person’s level of fatigue. The primary purpose of eye tracking
is to monitor eyelid movements and to compute the relevant
eyelid-movement parameters. Here, we focus on two ocular
measures to characterize the eyelid movement. The first is
Percentage of eye closure over time (PERCLOS) and the
second is average eye-closure speed (AECS). PERCLOS has
been validated and found to be the most valid ocular parameter
for monitoring fatigue [25].

The eye-closure/opening speed is a good indicator of fatigue.
It is defined as the amount of time needed to fully close or open
the eyes. Our previous study indicates that the eye-closure speed
of a drowsy person is distinctively different from that of an alert
person [37].

The degree of eye opening is characterized by the shape of
the pupil. It is observed that, as eyes close, the pupils start to
get occluded by the eyelids and their shapes get more elliptical.
So, we can use the ratio of pupil ellipse axes to characterize
the degree of eye opening. The cumulative eye-closure dura-
tion over time, excluding the time spent on normal eye blinks, is
used to compute PERCLOS. To obtain a more robust measure-
ment for these two parameters, we compute their running av-
erage (time tracking). To obtain running average of PERCLOS
measurement, for example, the program continuously tracks the
person’s pupil shape and monitors eye closure at each time in-
stance. We compute these two parameters in a 30-s window and
output them onto the computer screen in real time, so we can
easily analyze the alert state of the driver. The plots of the two
parameters over time are shown in Fig. 9. Also, video demos are
available at http://www.ecse.rpi.edu/~cvrl/Demo/demo.html.

IV. FACE (HEAD) ORIENTATION ESTIMATION

The facial (head) pose contains information about one’s at-
tention, gaze, and level of fatigue. Facial-pose determination is
concerned with computation of the three-dimensional (3-D) fa-
cial orientation and position to detect head movements such as
head tilts. Frequent head tilts indicate the onset of fatigue. Fur-
thermore, the nominal face orientation while driving is frontal.
If the driver faces in another directions (e.g., down or sideway)
for an extended period of time, this is due to either fatigue or
inattention. Facial-pose estimation, therefore, can indicate both
fatigued and inattentive drivers. For this study, we focus on the
former, i.e., detection of frequent head tilts.

Fig. 9. (a) Detected eyes and pupils. (b) Plots for eyelid-movement
parameters: The top displays the AECS parameter and the bottom displays the
PERCLOS parameter.

We present a new technique to perform the two-dimensional
(2-D) facial tracking and 3-D facial-pose estimation synchro-
nously. In our method, a 3-D facial pose is tracked by Kalman
filtering. The initial estimated 3-D pose is used to guide facial
tracking in the image, which is subsequently used to refine the
3-D face pose estimation. Facial detection and pose estimation
work together and benefit from each other. Weak perspective
projection is assumed so that the face can be approximated as a
planar object with facial features, such as eyes, nose, and mouth,
located symmetrically on the plane. Fig. 10 summarizes our
approach.

Initially, we automatically detect a fronto-parallel facial view
based on the detected eyes [34] and some simple anthropometric
statistics. The detected face region is used as the initial 3-D
planar facial model. The 3-D facial pose is then tracked, starting
from the fronto-parallel facial pose. During tracking, the 3-D
face model is updated dynamically and the facial-detection and
facial-pose estimation are synchronized and kept consistent with
each other.

We will discuss our facial-pose-tracking algorithm briefly, as
follows.

A. Automatic 3-D Facial Model and Pose Initialization

In our algorithm, we should have a fronto-parallel face to rep-
resent the initial facial model. This initialization is automatically
accomplished by using the eye-tracking technique we have de-
veloped [34]. Specifically, the subject starts in the fronto-par-
allel facial pose position with the face facing directly at the
camera, as shown in Fig. 11. The eye-tracking technique is then
activated to detect the eyes. After detecting the eyes, the first
step is to compute the distance between two eyes. Then,
the distance between the detected eyes, eyes locations, and the
anthropometric proportions are used to automatically estimate
the scope and location of the face in the image. Experiments
show that our facial-detection method works well for all the
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Fig. 10. Flowchart of facal-pose tracking.

Fig. 11. Initial facial model.

faces we tested. An example of the detected frontal facial re-
gion is shown in Fig. 11. Once the facial region is decided, we
will treat it as our initial facial model, whose pose parameters
are used as initial facial-pose parameters.

Compared with the existing frontal facial-detection methods,
ours takes full advantage of the detected eyes to guide the de-
tection of the frontal face and is simple, robust, and automatic.
In [38], we also demonstrate the tolerance of our facial initial-
ization to slight deviations from the fronto-parallel facial pose
and to perturbations of initial positions of the face.

B. Facial-Pose-Tracking Algorithm

Given the initial facial image and its pose in the first frame,
the task of finding the facial location and facial pose in sub-
sequent frames can be implemented as simultaneous 3-D fa-
cial-pose tracking and faceial detection described in [38].

Based on the detected facial pose in the previous frame,
we can use Kalman filtering to predict the facial pose in
the next frame, but the prediction based on Kalman filtering

Fig. 12. Facial and facial-pose-tracking results for images randomly selected
from one video sequence. The white rectangle indicates the tracked facial region
and the white line represents the normal facial plane, which is drawn according
to the estimated facial pose.

assumes smooth facial movements. The prediction will be off
significantly if the head undergoes a sudden rapid movement.
To handle this issue, we propose to approximate the facial
movement with eyes movement, since eyes can be reliably
detected in each frame. Then, the final predicted facial pose
is based on combining the one from Kalman filtering with the
one from the eyes. The simultaneous use of Kalman filtering
and eye’s motion allows us to perform accurate facial-pose
prediction even under significant or rapid head movements.
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Fig. 13. Results of facial-pose tracking. The plots show the sequences of three estimated rotation angles through the image sequence.

Fig. 14. Head-tilt monitoring over time (seconds).

Details on our facial-pose-estimation and -tracking algorithm
may be found at [38].

The proposed algorithm is tested with numerous image
sequences of different people. The image sequences include
a person rotating his/her head before an uncalibrated camera,
which is approximately 1.5 m from the person. Fig. 12 shows
some tracking results under different facial rotations. It is
shown that the estimated pose is very visually convincing
over a large range of head orientations and changing distances
between the face and camera. Plots of three facial-pose angles
( , , and ) are shown in Fig. 13, from which we can see that
three facial-pose angles vary consistently and smoothly as the
head rotates. Video demonstrations of our system may be found
at http://www.ecse.rpi.edu/~cvrl/Demo/demo.html.

To quantitatively characterize one’s level of fatigue by facial
pose, we introduce a new fatigue parameter called NodFreq,
which measures the frequency of head tilts over time. Fig. 14
shows the running average of the estimated head tilts for a period
of 140 s. As can be seen, our system can accurately detect head
tilts, which are represented in the curve by the up-and-down
bumps.

V. EYE-GAZE DETERMINATION AND TRACKING

Gaze has the potential to indicate a person’s level of vigi-
lance; a fatigued individual tends to have a narrow gaze. Gaze
may also reveal one’s needs and attention. The direction of a

person’s gaze is determined by two factors: the orientation of
the face (facial pose) and the orientation of eye (eye gaze). Fa-
cial pose determines the global direction of the gaze, while eye
gaze determines the local direction of the gaze. Global and local
gazes together determine the final gaze of the person. So far,
the most common approach for ocular-based gaze estimation
is based on the determination of the relative position between
pupil and the glint (cornea reflection) via a remote IR camera
[39]–[45]. While contact free and nonintrusive, these methods
work well only for a static head, which is a rather restrictive
constraint on the part of the user. Even a chin rest is often used
to keep the head still, because minor head movement can make
these techniques fail. This poses a significant hurdle for prac-
tical application of the system. Another serious problem with the
existing eye- and gaze-tracking systems is the need to perform
a rather cumbersome calibration process for each individual.
Often, recalibration is needed even for the same individual who
already underwent the calibration procedure, whenever his/her
head moved. This is because only the local gaze is accounted
for, while global gaze due to facial pose is ignored.

In view of these limitations, we present a gaze-estimation ap-
proach [46] that accounts for both the local gaze computed from
the ocular parameters and the global gaze computed from the
head pose. The global gaze (facial pose) and local gaze (eye
gaze) are combined together to obtain the precise gaze informa-
tion of the user. Our approach, therefore, allows natural head
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Fig. 15. Major components of the proposed system.

movement while still estimating gaze accurately. Another effort
is to make the gaze estimation calibration free. New or existing
users who have moved do not need to undergo a personal gaze
calibration before using the gaze tracker. Therefore, the pro-
posed gaze tracker can perform robustly and accurately without
calibration and under natural head movements. An overview of
our algorithm is given in Fig. 15.

A. Gaze Estimation

Our gaze-estimation algorithm consists of three parts: pupil-
glint detection and tracking, gaze calibration, and gaze mapping.

Gaze estimation starts with pupil and glint detection and
tracking. For gaze estimation, we continue using the IR il-
luminator, as shown in Fig. 4. To produce the desired pupil
effects, the two rings are turned on and off alternately via
the video decoder that we developed to produce the so-called
bright and dark pupil effect, as shown in Fig. 5(a) and (b). The
pupil-detection and -tracking technique can be used to detect
and track glint from the dark images. Fig. 16(c) shows the
detected glints and pupils.

Given the detected glint and pupil, we can use their properties
to obtain local and global gazes. Fig. 16 shows the relationship
between the local gaze and the relative position between the
glint and the pupil, i.e., the pupil–glint vector.

Our study in [47] shows that there exists a direct correlation
between a 3-D facial pose and the geometric properties of the
pupils. Specifically, pupil size, shape, and orientation vary with
facial pose. Therefore, the pupil geometric properties are used
to capture the 3-D face pose, which will serve as the global gaze.

In order to obtain the final gaze, the factors accounting for
the head movements and those affecting the local gaze should
be combined. Hence, six parameters are chosen for the gaze
calibration to get the parameters mapping function: , ,
, , , and . and are the pupil-glint displacement.
is the ratio of the major-to-minor axes of the ellipse that fits

to the pupil. is the pupil ellipse orientation and and are
the glint-image coordinates. The choice of these factors is based
on the following rational. and account for the relative
movement between the glint and the pupil, representing the local
gaze. The magnitude of the glint–pupil vector can also relate to

Fig. 16. Relative spatial relationship between glint and the bright pupil center
used to determine local gaze position. (a) Bright pupil images, (b) glint images,
and (c) pupil–glint vector indicating local gaze direction.

TABLE I
GAZE-CLASSIFICATION RESULTS FOR THE GRNN GAZE CLASSIFIER. AN

AVERAGE OF GAZE-CLASSIFICATION ACCURACY OF (96% ACCURACY) WAS

ACHIEVED FOR 480 TESTING DATA NOT INCLUDED IN THE TRAINING DATA

the distance of the subject to the camera. is used to account
for out-of-plane facial rotation. The ratio should be close to 1
when the face is frontal. The ratio becomes larger or less than 1
when the face turns either up/down or left/right. Angle is used
to account for inplane facial rotation around the camera optical
axis. Finally, ( , ) is used to account for the inplane head
translation.

The use of these parameters accounts for both head and pupil
movement, since their movements will introduce corresponding
changes to these parameters, which effectively reduces the
head-movement influence. Given the six parameters affecting
gaze, we now need to determine the mapping function that
maps the parameters to the actual gaze. This mapping function
can be approximated by the generalized regression neural
networks (GRNN) [48], which features fast training times, can
model nonlinear functions, and has been shown to perform
well in noisy environments given enough data. Specifically, the
input vector to the GRNN is

A large amount of training data under different head positions
is collected to train the GRNN. During the training-data acqui-
sition, the user is asked to fixate his/her gaze on each predefined
gaze region. After training, given an input vector, the GRNN can
then approximate the user’s actual gaze.
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Fig. 17. Plot of PERSAC parameter over 30 .

Fig. 18. Facial features and local graphs.

Experiments were conducted to study the performance of our
gaze-estimation technique. Table I shows some results. An av-
erage of gaze-classification accuracy of (96% accuracy) was
achieved for 480 testing data not included in the training data, as
shown in the confusion Table I. Details on our gaze-estimation
algorithm can be found in [46].

Given the gaze, we can compute a new fatigue parameter
called GAZEDIS, which represents the gaze distribution over
time to indicate the driver’s fatigue or attention level. GAZEDIS
measures the driver’s situational awareness. Another fatigue
parameter we compute is PERSAC, which is the percentage
of saccade eye movement over time. Saccade eye movements
represent deliberate and conscious driver action to move an
eye from one place to another. Therefore, it can measure the
degree of alertness. The value of PERSAC is very small for a
person in fatigue. Fig. 17 plots the PERSAC parameter over
30 s.

VI. FACIAL-EXPRESSION ANALYSIS

Besides eye and head movements, another visual cue that can
potentially capture one’s level of fatigue is his/her facial expres-

sion. In general, people tend to exhibit different facial expres-
sions under different levels of vigilance. The facial expression
of a person in fatigue or in the onset of fatigue can usually be
characterized by having lagging facial muscles, being expres-
sionless, and yawning frequently.

Our recent research has led to the development of a feature-
based facial-expression-analysis algorithm. The facial features
around the eyes and mouth represent the most important spatial
patterns composing the facial expression. Generally, these pat-
terns with their changes in spatio–temporal spaces can be used
to characterize facial expressions. For the fatigue-detection ap-
plication, in which there are only limited facial expressions, the
facial features around the eyes and mouth include enough infor-
mation to capture these limited expressions. So, in our research,
we focus on the facial features around the eyes and mouth. We
use 22 fiducial features and three local graphs as the facial model
(shown in Fig. 18).

In our method, the multiscale and multiorientation Gabor
wavelet is used to represent and detect each facial feature.
For each pixel in the image, a set of Gabor coefficients in the
complex form can be obtained by convolution with the designed
Gabor kernels. These coefficients can be used to represent this
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pixel and its vicinity [49]. After training, these coefficients are
subsequently used for facial-feature detection.

After detecting each feature in the first frame, a Kalman
filter-based method with the eye constraints is proposed to
track them. The Kalman filter is used to predict the current
feature positions from the previous locations. It puts a smooth
constraint on the motion of each feature. The eye positions
from our eye tracker provide strong and reliable information
that gives a rough location of where the face is and how the
head moves between two consecutive frames. By combining
the head-motion information inferred from the detected eyes
with the predicted locations from the Kalman filtering, we can
obtain a very accurate and robust prediction of feature locations
in the current frame, even under rapid head movement. The
detected features and their spatial connections are used to
characterize facial expressions. Details can be found in [50].

A series of experiments are conducted in [50] and good re-
sults are achieved under large head movements, self-occlusion,
and different facial expressions. Fig. 19 shows the results of a
typical sequence of a person in fatigue. It consists of blended
facial expressions; the person in the scene yawned from the neu-
tral state, then moved the head rapidly from the frontal view to
the large side view and back to the other direction, raised the
head up, and finally returned to the neutral state. During the head
movements, the facial expression changes dramatically.

For now, we focus on monitoring mouth movements to detect
yawning. Yawning is detected if the features around te mouth
significantly deviate from its closed configuration, especially
in the vertical direction. There are eight tracked facial features
around the mouth, as shown in Fig. 20. Also, as shown in Fig. 20,
the height of the mouth is represented by the distance between
the upper and lower lips and the width of the mouth is repre-
sented by the distance between the left and right mouth corners.
The degree of mouth opening is characterized by the shape of
the mouth. Therefore, the openness of the mouth can be repre-
sented by the ratio of mouth height and width.

We develop a new measure of facial expression, YawnFreq,
which computes the occurrence frequency of yawning over
time. Fig. 21 shows the plot of YawnFreq over time and a
yawning is represented by an up-and-down bump.

VII. FATIGUE MODELING USING BAYESIAN NETWORKS

As we discussed above, human fatigue generation is a very
complicated process. Several uncertainties may be present in
this process. First, fatigue is not observable and can only be
inferred from the available information. In fact, fatigue can
be regarded as the result of many contextual variables such as
working environments, health, and sleep history. Also, it is the
cause of many symptoms, e.g., the visual cues, such as irregular
eyelid movements, yawning and frequent head tilts. Second,
a human’s visual characteristics vary significantly with age,
height, health, and shape of face. To effectively monitor fatigue,
a system that integrates evidences from multiple sources into
one representative format is needed. Naturally, a Bayesian
networks (BN) model is the best option to deal with such an
issue.

Fig. 19. Tracked facial features and local graphes.

Fig. 20. Facial features to be tracked around the mouth and the mouth width
and height used to represent the openness of the mouth.

A BN provides a mechanism for graphical representation
of uncertain knowledge and for inferring high-level activities
from the observed data. Specifically, a BN consists of nodes
and arcs connected together forming a directed acyclic graph
(DAG) [51]. Each node can be viewed as a domain variable
that can take a set of discrete values or a continuous value. An
arc represents a probabilistic dependency between the parent
and the child nodes.

A. Fatigue Modeling With BN

The main purpose of a BN model is to infer the unobserved
events from the observed or contextual data. So, the first step in
BN modeling is to identify those hypothesis events and group
them into a set of mutually exclusive events to form the target
hypothesis variable. The second step is to identify the observ-
able data that may reveal something about the hypothesis vari-
able and then group them into information variables. There also
are other hidden states that are needed to link the high-level hy-
pothesis node with the low-level information nodes. For fatigue
modeling, fatigue is obviously the target hypothesis variable
that we intend to infer. Other contextual factors, which could
cause fatigue, and visual cues, which are symptoms of fatigue,
are information variables. Among many factors that can cause
fatigue, the most significant are sleep history, Circadian, work
conditions, work environment, and physical condition. The most
profound factors that characterize work environment are tem-
perature, weather, and noise; the most significant factors that
characterize physical condition are age and sleep disorders; the
significant factors characterizing Circadian are time of day and
time-zone change; the factors affecting work conditions include
workload and type of work. Furthermore, factors affecting sleep
quality include sleep environment and sleep time. The sleep en-
vironment includes random noise, background light, heat, and
humidity.

The vision system discussed in previous sections can com-
pute several visual fatigue parameters. They include PERCLOS
and ACSE for eyelid movement, NodFreq for head movement,
GAZEDIS and PERSAC for gaze movement, and YawnFreq
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Fig. 21. Plot of the openness of the mouth over time. The bumps A, B, C , D, E, and F are the detected yawns.

Fig. 22. BN model for monitoring human fatigue.

for facial expression. Putting all these factors together, the BN
model for fatigue is constructed as shown in Fig. 22. The target
node is fatigue. The nodes above the target node represent var-
ious major factors that could lead to one’s fatigue. They are col-
lectively referred to as contextual information. The nodes below
the target node represent visual observations from the output of
our computer vision system. These nodes are collectively re-
ferred to as observation nodes.

B. Construction of Conditional Probability Table (CPT)

Before using the BN for fatigue inference, the network
needs to be parameterized. This requires specifying the prior
probability for the root nodes and the conditional probabilities
for the links. Usually, probability is obtained from statistical
analysis of a large amount of training data. For this research,
training data come from three different sources. First, we
obtain some training data from the human subjects study
we conducted. These data are used to train the lower part of
the BN fatigue model. Second, several large-scale subjective
surveys [1], [52]–[54] provide additional data of this type.
Despite the subjectivity with these data, we use them to help
parameterize our fatigue model. They were primarily used to
train the upper part of the fatigue model. Since these surveys
were not designed for the parameterizations of our BN model,
not all needed probabilities are available and some conditional
probabilities are, therefore, inferred from the available data

using the so-called noisy or principle [55]. Third, still some
prior or conditional probabilities are lacking in our model,
which are obtained by subjective estimation methods [55].
With the methods discussed above, all the prior and conditional
probabilities in our BN model are obtained, part of which are
summarized in Table II.

C. Fatigue Inference

Given the parameterized model, fatigue inference can then
commence upon the arrival of visual evidences via belief prop-
agation. MSBNX software [56] is used to perform the inference
and both top-down and bottom-up belief propagations are per-
formed. Here, we use some typical combination of evidences;
their results are summarized in Table III.

From Table III, we can see that the prior probability of fatigue
(e.g., when there is not any evidence) is about 0.5755 [1]. The
observation of a single visual evidence does not usually provide
a conclusive finding, since the estimated fatigue probability is
less than the critical value 0.95, which is a hypothesized critical
fatigue level1 [2]–[3]. Even when PERCLOS is instantiated,
the fatigue probability reaches 0.8639, which still is below
the threshold of 0.95. This indicates that one visual cue is not
sufficient to conclude if the person is fatigued. On the other
hand, when combined with some contextual evidences, any
visual parameter can lead to a high fatigue probability [4]. This

1This level may vary from application to application.
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TABLE II
PRIOR PROBABILITY TABLE

demonstrates the importance of contextual information. The
simultaneous observation of abnormal values for two visual
parameters [5], such as NodeFreq and PerSAC, can lead to a
fatigue probability higher than 0.95. This makes sense since they
quantify fatigue from two different perspectives: One is gaze and
the other is head movement. Any simultaneous observation of
abnormal values of three or more visual parameters guarantees
that the estimated fatigue probability exceeds the critical value.
The simultaneous presence of several contextual evidences only
leads to a high probability of fatigue, even in the absence of any
visual evidence. These inference results, though preliminary and
synthetic, demonstrate the utility of the proposed framework
for predicting and modeling fatigue.

D. Interfacing with the Vision System

To perform real-time driver-fatigue monitoring, the visual
and fusion modules must be combined via an interface program
such that the output of the vision system can be used by the

TABLE III
INFERENCE RESULTS OF FATIGUE BN MODEL

fusion module to update its belief in fatigue in real time. Such
an interface has been built. Basically, the interface program
periodically (every 0.03 s) examines the output of the vision
module to detect any output change. If a change is detected, the
interface program instantiates the corresponding observation
nodes in the fusion module, which then activates its inference
engine. The interface program then displays the inference result
plus current time, as shown in Fig. 23. Besides displaying
a current fatigue level, the interface program also issues a
warning beep when the fatigue level reaches a critical level.

VIII. SYSTEM VALIDATION

The last part of this research is to experimentally and scien-
tifically demonstrate the validity of the computed fatigue pa-
rameters as well as the composite fatigue index. The validation
consists of two parts. The first involves the validation of the
measurement accuracies of our computer vision techniques and
the second studies the validity of the fatigue parameters and the
composite fatigue index that our system computes in character-
izing fatigue.

A. Validation of the Measurement Accuracy

We present results to quantitatively characterize the measure-
ment accuracies of our computer vision techniques in measuring
eyelid movement, gaze, facial pose, and facial expressions. The
measurements from our system are compared with those ob-
tained either manually or using conventional instruments.

This section summarizes the eye-detection and -tracking
accuracy of our eye tracker. For this study, we randomly
selected an image sequence that contains 13 620 frames and
manually identified the eyes in each frame. This manually
labeled data serves as the ground-truth data and are compared
with the eye-detection results from our eye tracker. This study
shows that our eye tracker is quite accurate, with a false-alarm
rate of 0.05% and a misdetection rate of 4.2%.

Further, we studied the positional accuracy of the detected
eyes as well as the accuracy of the estimated pupil size (pupil
axes ratio). The ground-truth data are produced by manually
determining the locations of the eyes in each frame as well as
the size of the pupil. This study shows that the detected eye
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Fig. 23. Visual interface program panel, which displays the composite fatigue score over time.

Fig. 24. PERCLOS versus the TOVA response time. The two parameters
are clearly correlated almost linearly. A larger PERCLOS measurement
corresponds to a longer reaction time.

positions match very well with manually detected eye positions,
with a root-mean-square (rms) position errors of 1.09 and 0.68
pixels for and coordinates, respectively. The estimated size
of pupil has an average rms error of 0.0812.

Finally, we study the accuracy of the estimated facial pose.
To do so, we use a head-mount head tracker that tracks head
movements. The output of the head-mount head tracker is used
as the ground truth. Quantitatively, the rms errors for the pan
and tilt angles are 1.92 and 1.97 , respectively. This experi-
ment demonstrates that our facial-pose-estimation technique is
sufficiently accurate.

B. Validation of Fatigue Parameters and the Composite
Fatigue Score

To study the validity of the proposed fatigue parameters and
that of the composite fatigue index, we performed a human sub-
ject study. The study included a total of eight subjects and two
test bouts were performed for each subject. The first test was
done when they first arrived in the laboratory at 9:00 PM and
when they were fully alert. The second test was performed about
12 hours later, early in morning at about 7:00 AM the following
day, after the subjects have been deprived of sleep for a total of
25 hours.

During the study, the subjects are asked to perform a test of
variables of attention (TOVA) test. The TOVA test consists of a
20-min psychomotor test, which requires the subject to sustain
attention and respond to a randomly appearing light on a com-
puter screen by pressing a button. The TOVA test was selected
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Fig. 25. PERCLOS measurements for evening (solid line) and morning (dotted line) bouts.

Fig. 26. Estimated composite fatigue index (dotted line) versus the normalized TOVA response time (solid line). The two curves track each other well.

as the validation criterion because driving is primarily a vig-
ilance task requiring psychomotor reactions and psychomotor
vigilance. The response time is used as a metric to quantify the
subject’s performance.

Fig. 24 plots the average response times versus average
PERCLOS measurements. This figure clearly shows the ap-
proximate linear correlation between PERCLOS and the TOVA
response time. This experiment demonstrates the validity of
PERCLOS in quantifying vigilance, as characterized by the
TOVA response time.

In addition, we want to demonstrate the correlation between
PERCLOS and fatigue. For this, we compared the PERCLOS
measurements for two bouts for the same individual. This com-
parison is shown in Fig. 25, where it is clear that the PERCLOS
measurements for the night bout (when the subject is alert) is
significantly lower than the morning bout (subject is fatigued).
This not only proves the validity of PERCLOS to characterize
fatigue, but also proves the accuracy of our system in measuring
PERCLOS. Similar results were obtained for other visual-fa-
tigue parameters we proposed.

We also study the validity of the composite fatigue index that
our fatigue monitor computes. Fig. 26 plots the TOVA perfor-
mance versus the composite fatigue score and clearly shows that
the composite fatigue score (based on combining different fa-
tigue parameters) highly correlates with the subject’s response
time.

It is clear that the two curves’ fluctuations match well,
proving their correlation and covariation and, therefore,
proving the validity of the composite fatigue score in quanti-
fying performance.

IX. CONCLUSION

Through research presented in this paper, we developed an
nonintrusive prototype computer vision system for real-time
monitoring of a driver’s vigilance. First, the necessary hardware
and imaging algorithms are developed to simultaneously extract
multiple visual cues that typically characterize a person’s level
of fatigue. Then, a probabilistic framework is built to model
fatigue, which systematically combines different visual cues
and the relevant contextual information to produce a robust and
consistent fatigue index.

These visual cues characterize eyelid movement, gaze, head
movement, and facial expression. The main components of
the system consist of a hardware system for the real-time
acquisition of video images of the driver and various computer
vision algorithms and their software implementations for
real-time eye tracking, eyelid-movement-parameters computa-
tion, eye-gaze estimation, facial-pose determination, and facial
expression analysis. To effectively monitor fatigue, a BN model
for fatigue is constructed to integrate these visual cues and
relevant contextual information into one representative format.

Experiment studies in a real-life environment with subjects of
different ethnic backgrounds, genders, and ages were scientifi-
cally conducted to validate the fatigue-monitoring system. The
validation consists of two parts. The first involves the validation
of the measurement accuracy of our computer vision techniques
and the second studies the validity of the fatigue parameters
that we compute in characterizing fatigue. Experiment results
show that our fatigue monitor system is reasonably robust, reli-
able, and accurate in characterizing human fatigue. It represents
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the state of the art in real-time, online, and nonintrusive fatigue
monitoring.
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