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ABSTRACT

A numerical study of the distribution of spacings between zeros of the Riemann zeta

function is presented. It is based on values for the first 105 zeros and for zeros number

1012 + 1 to 1012 + 105 that are accurate to within ± 10 − 8 , and which were calculated

on the Cray-1 and Cray X-MP computers. This study tests the Montgomery pair

correlation conjecture as well as some further conjectures that predict that the zeros of the

zeta function behave similarly to eigenvalues of random hermitian matrices. Matrices of

this type are used in modeling energy levels in physics, and many statistical properties of

their eigenvalues are known. The agreement between actual statistics for zeros of the

zeta function and conjectured results is generally good, and improves at larger heights.

Several initially unexpected phenomena were found in the data and some were explained

by relating them to the primes.
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1. Introduction

The Riemann Hypothesis (RH) has been of central interest to number theorists for a

long time, and many unsuccessful attempts have been made to either prove or disprove it

by analytic methods. A series of large computations have also been made, culminating in

the recent verification [52] that the RH holds for the first 1. 5 × 109 zeros, an effort that

involved over a thousand hours on a modern supercomputer.

A proof of the RH would lead to tremendous improvements in estimates for various

arithmetic functions, such as the difference between π(x), the number of primes ≤ x, and

Li (x), the logarithmic integral of x. However, many other questions would remain open,

such as the precise magnitude of the largest gap between consecutive primes below a

given bound. Answers to such questions depend on a much more detailed knowledge of

the distribution of zeros of the zeta function than is given by the RH. Relatively little

work has been devoted to the precise distribution of the zeros. The main reason for the

lack of research in this area was undoubtedly the feeling that there was little to be gained

from studying problems harder than the RH if the RH itself could not be proved.

A major step towards a detailed study of the distribution of zeros of the zeta function

was made by H. L. Montgomery [56, 57]. Under the assumption of the RH, he showed

that if we define
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F(α , T) = 2π(T log T) − 1

0 < γ′ ≤ T
0 < γ ≤ T

Σ T iα (γ − γ′ )

4 + (γ − γ′ )2

4_ ___________ (1.1)

for α and T real, T ≥ 2, where 1/2 + iγ and 1/2 + iγ′ denote nontrivial zeros of the

zeta function, then

F(α , T) = ( 1 + o( 1 ) ) T − 2α log T + α + o( 1 ) as T → ∞ , (1.2)

uniformly for 0 ≤ α ≤ 1. Montgomery also presented heuristic arguments which

suggested that

F(α , T) = 1 + o( 1 ) as T → ∞ (1.3)

uniformly for α ε [a , b], where 1 ≤ a < b < ∞ are any constants. If the conjecture

(1.3) were true, then the following estimate, known as the Montgomery pair correlation

conjecture [56] would follow:

Conjecture. For fixed 0 < α < β < ∞,

2π
T_ __ log T

 {(γ , γ′ ) : 0 < γ , γ′ ≤ T , 2π α( log T) − 1 ≤ γ − γ′ ≤ 2π β( log T) − 1 }_ ____________________________________________________________ (1.4)

∼ ∫
α
β




î
1 −



î πu

sin πu_ ______




2 




du

as T → ∞.

The above conjecture is very striking, particularly in predicting that small gaps

between zeros of the zeta function occur very infrequently. This behavior is very

different from that of many other number theoretic functions. The number of primes in

short intervals, for example, is observed experimentally and is conjectured theoretically
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to be distributed like a Poisson random variable [29].

The conjecture (1.4) suggests some further topics for investigation. In the language

of mathematical physics, this conjecture says that 1 − ( ( sin πu) /(πu) )2 is the pair

correlation function of zeros of the zeta function. F. J. Dyson pointed out [56] that the

gaussian unitary ensemble (GUE) has the same pair correlation function. The GUE has

been studied very extensively in mathematical physics together with the gaussian

orthogonal ensemble (GOE) and the gaussian symplectic ensemble (GSE) as models for

distribution of energy levels in many-particle systems. The GUE consists of n × n

complex hermitian matrices of the form A = (a j k ), where a jj = 21/2 σ j , j ,

a j k = σj ,k + i η j ,k for j < k, and a j ,k = a
_

k , j = σk , j − i η k , j for j > k, where the

σ j ,k and η j ,k are independent standard normal variables. When n → ∞ and the

eigenvalues of the matrices of the GUE are suitably normalized, their pair correlations

becomes 1 − ( ( sin πu) /(πu) )2 . (The pair correlations of the GOE and GSE are

different.) For more information about the GUE and the other ensembles, the reader is

referred to [2, 4, 11, 41, 54, 59, 63].

The possible connection between zeros of the zeta function and eigenvalues of

random matrices is of interest in number theory because of the Hilbert and Po ´lya

conjectures [56, 59] which say that the zeros of the zeta function correspond to

eigenvalues of a positive linear operator. If true, the Hilbert and Po ´lya conjectures would

imply the RH, and some people feel that the most promising way to prove the RH is by

finding the right operator and establishing the necessary results about it. One can argue

heuristically that if such an operator exists, its eigenvalues might behave like those of a

random operator, which in turn might behave like the limit of a sequence of random
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matrices, and that therefore the zeros of the zeta function might be distributed like the

eigenvalues of a large random matrix. For more on these very vague conjectures, see [3,

59]. Since Montgomery’s result (1.1) is consistent with the GUE distribution of

eigenvalues, one could then argue that the operator associated to the zeta function ought

to be complex hermitian, and that GUE properties of eigenvalues might apply at least

approximately to the zeros of the zeta function.

Since Montgomery’s proof of (1.2) (which depends on the RH) was published,

several other results have been obtained. Ozluk [62] has considered a q-analogue of

Montgomery’s method and showed, roughly speaking, that if one considers a function

similar to the F(α , T) of (1.1), but where one sums over zeros of many Dirichlet L-

functions, then the analogue of Montgomery’s conjecture (1.3) is true for 1 ≤ α ≤ 2.

For other results about Montgomery’s pair correlation conjecture and its consequences,

see [30, 31, 34, 35, 36, 42, 44, 59]. Overall, though, there is very little solid theoretical

evidence in favor of even the Montgomery pair correlation conjecture (1.4), and

essentially none for the speculative conjectures discussed above that link zeros of the zeta

function to eigenvalues of random hermitian matrices.

One feature of the speculative arguments mentioned above is that they propose a

connection between zeros of the zeta function, about which relatively little is known

theoretically and the GUE, which has been investigated very extensively and abounds in

specific predictions. This makes it possible to compare data for the zeros of the zeta

function against the theoretical predictions of the GUE. The purpose of this paper is to

report the results of such empirical tests of the pair correlation conjecture and other GUE

predictions.
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The agreement between the predictions of the GUE theory and actual computed

behavior of the zeros of the zeta function is quite good, especially when one takes

account of the fact that the zeta function on the critical line approaches its asymptotic

behavior very slowly, as is explained in Section 2. However, there are also several

features of the data for the zeros that are not predicted by the GUE theory. One is that

there are long-range correlations between spacings of consecutive zeros. These can be

explained in terms of the primes through the use of the ‘‘explicit formulas’’ of prime

number theory. Another is that small spacings between zeros are somewhat more

common among high zeros than is expected. The deviation between the predicted and

observed numbers is not large, but it is surprising, since it shows up quite early. It would

be very desirable to carry out further computations at much greater heights to see if this

phenomenon persists there.

This is the first study that computed large numbers of high zeros of the zeta function

to substantial accuracy. The large scale efforts to verify the RH numerically were

designed only to prove that the zeros under investigation lie on the critical line, and did

not produce accurate values for their positions. Some very accurate values of zeros have

also been computed in order to use them in disproving a variety of number theoretic

conjectures, but they were limited to a small number of initial zeros (such as the roughly

100 decimal digit values for the first 2000 zeros of [60]). For a numerical investigation

of the Montgomery pair correlation conjecture and the other conjectures alluded to

above, it was desirable to obtain a larger sample of zeros but only to medium accuracy.

Furthermore, since there are many properties of the zeta function that are true only

asymptotically, and the asymptotic behavior is often approached very slowly, it seemed
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desirable to compute a sample of zeros very high up. The computations on which this

paper are based determined the values of the first 105 zeros and also of zeros number n,

1012 + 1 ≤ n ≤ 1012 + 105 , each to within ± 10 − 8 , using the Cray-1 and Cray X-MP

computers, respectively. In the second case it was also verified that those zeros satisfy

the RH. Zero number 1012 is at height approximately 2. 7 × 1011 , and given the

available computational resources and the method used it was about as high as one could

go. (A more efficient algorithm for evaluating the zeta function was invented recently

[61], but it is quite complicated and has not yet been implemented.) The computations

used on the order 20 hours on the Cray X-MP, and the capabilities of this modern

supercomputer were essential for the project. Several other samples of 105 zeros each at

large heights had been computed earlier on a Cray-1, but due to a defect in the

manufacturer’s software, described at the end of Section 3, some of their accuracy was

lost, and so they are used for only some of the statistical analyses.

The comparison of the empirical data for the zeros of the zeta function to the results

that are proved for the GUE is made in Section 2. Section 3 is devoted to a description of

the computation of the zeros of the zeta function and the associated error analysis.

Section 4 gives some statistical information about the zeros that were found, as well as of

some other zeros. This information is not directly relevant for the purposes of Section 2,

but are of interest because of the comparison with the earlier computations of [10, 52].

Section 5 reports on several alternative techniques for computing the zeros that might be

of use for other computations. Finally, Section 6 describes the computation of the GUE

predictions.
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2. Zeros and eigenvalues

Before presenting the results of the empirical study of the zeros, we first recall some

standard notation, and then discuss some known results about the zeta function and how

they might affect our interpretation of the data. As usual, we consider only zeros ρ of the

zeta function with Im (ρ) > 0, and we number them ρ1 , ρ2 ,... (counting each

according to its multiplicity) so that 0 < Im (ρ1 ) ≤ Im (ρ2 ) ≤ . . . . All the zeros ρn

that have been computed so far are simple and lie on the critical line, so we can write

them as ρn = 1/2 + i γn , γn ε  R +. We have γ1 = 14. 134 ... , γ2 = 21. 022 ... , etc.

We let

θ( t) = arg [π− it /2 Γ ( 1/4 + it /2 ) ] , (2.1)

S( t) = π− 1 arg ζ ( 1/2 + it) , (2.2)

where in both cases the argument is defined by continuous variation of s in π− s /2 Γ (s /2 )

or ζ (s), respectively, starting at s = 2, going up vertically to s = 2 + it, and then

horizontally to s = 1/2 + it, and where we assume (in the case of S( t)) that there are no

zeros ρ with Im (ρ) = t. If N( t) denotes the number of zeros ρ with 0 < Im (ρ) < t

(counted according to their multiplicity), then [68; Ch. 9.3]

N( t) = 1 + π− 1 θ( t) + S( t) . (2.3)

By Stirling’s formula [40] we have

θ( t) =
2
1_ _ t log (t /( 2πe) ) − π/8 + O( t − 1 ) as t → ∞ , (2.4)

so that
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N( t) =
2π
t_ __ log

2πe
t_ ___ +

8
7_ _ + O( t − 1 ) + S( t) . (2.5)

We will discuss the function S( t) at greater length below. For the moment, though, we

will mention only that the best unconditional bound that is known for S( t) is [68; Thm.

9.4]

S( t) = O( log t) as t → ∞ . (2.6)

In view of the bound (2.6), we see by (2.5) that N( t) is almost exactly equal to

π− 1 θ( t). In particular, zeros become denser and denser the higher up one goes in the

critical strip, and the average vertical spacing between consecutive zeros at height t is

2π/( log (t /( 2π) ) ). Therefore, in order to study quantities that are largely invariant with

height, we define the normalized spacing between consecutive zeros 1/2 + i γn and

1/2 + i γn + 1 (in cases where both zeros satisfy the RH) to be

δn = (γn + 1 − γn )
2π

log
2π
γn_ __

_ _______ . (2.7)

It then follows from (2.5) and (2.6) that the δn have mean value 1 in the sense that for

any positive integers N and M,

n = N + 1
Σ

N + M
δn = M + O( log NM) . (2.8)

In this notation, Montgomery’s pair correlation conjecture can be reformulated to say that

for any fixed α , β, 0 < α < β < ∞,
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N − 1 


î
(n ,k) : 1 ≤ n ≤ N , k ≥ 0 , δn + δn + 1 +... + δn + k ε [α ,β]





 (2.9)

∼ ∫
α
β




î
1 −



î πu

sin πu_ ______




2 




du

as N → ∞. If the pair correlation conjecture holds, we might even expect something

stronger to hold, namely that

M − 1 


î
(n ,k) : N + 1 ≤ n ≤ N + M , k ≥ 0 , δn +... + δn + k ε [α ,β]







∼ ∫
α
β




î
1 −



î πu

sin πu_ ______




2 




du (2.10)

as N , M → ∞ with M not too small compared to N, say M ≥ N η for some η > 0.

The definition of the δn makes it easy to compare distribution of spacings between

consecutive zeros of the zeta function and the normalized spacings between consecutive

eigenvalues in the GUE, since the latter are also normalized to have mean value 1. The

GUE hypothesis will be used to refer to the conjecture that the distribution of the δn

approaches asymptotically the distribution known to hold for the GUE eigenvalues. In

particular, the GUE hypothesis leads to the prediction that the δn should have a particular

distribution function; for any α ,β with 0 ≤ α < β < ∞,

M − 1 


î
n: N + 1 ≤ n ≤ N + M , δn ε [α ,β]





 ∼ ∫
α
β

p( 0 ,u) du (2.11)

as M , N → ∞ with M not too small compared to N, where p( 0 ,u) is a certain

complicated probability density function discussed in Section 6 and graphed (with the
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solid line curve) in figures 3 and 4. Similarly, one obtains the prediction that

M − 1 


î
n: N + 1 ≤ n ≤ N + M , δn + δn + 1 ε [α ,β]





 ∼ ∫
α
β

p( 1 ,u) du , (2.12)

where p( 1 ,u) is another density function. More generally, one obtains the prediction that

the δn approach asymptotically the behavior of a stationary (but non-Markovian)

process, so that for any k, the empirical joint distribution function of

δn , δn + 1 , . . . , δn + k for N + 1 ≤ n ≤ N + M approaches that of the GUE process.

Most of the studies to be reported below are based on the δn for 1 ≤ n ≤ 105 and

1012 + 1 ≤ n ≤ 1012 + 105 , although a few other sets of 105 consecutive δn for

n < 1012 will also be referred to occasionally. The letter N will be used to designate the

starting point of a data set, so that, for example, a graph or a table entry labelled with

N = 1011 will refer to data for δn or δn + δn + 1 , 1011 + 1 ≤ n ≤ 1011 + 105 . The

reason for selecting sets of size 105 was to obtain a sample so large that random

sampling errors would not be very significant. The reason for not computing zeros

higher than ρn for n = 1012 + 105 (approximately) is that on the machine that was

available to the author (a single-processor Cray X-MP with 2 million words of memory)

such computations would have been prohibitively slow, since the author’s program,

described in Section 3, achieves high speed by using several auxiliary storage arrays, so

that the size of available memory was a major limit.

Most of the studies of the available δn are concerned with the pair correlation

conjecture (2.10) and the conjectured distributions (2.11) and (2.12) for δn and

δn + δn + 1 , respectively. The reason for this is less the difficulty of computing the GUE
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predictions for other quantities than the question of significance of the comparison of the

experimental data to the theoretical predictions. By (2.5) and (2.6) we see that the

interesting behavior of spacings between zeros is due to S( t). The bound (2.6) is the best

that is known unconditionally. Even on the assumption of the RH, it is only known that

S( t) = O


î log log t

log t_ _______




as t → ∞ . (2.13)

The true rate of growth is likely to be much smaller, though. It has been known [68; Ch.

14.12] for a long time that on the RH,

S( t) = Ω± ( ( log t)1/2 − ε ) as t → ∞

for any ε > 0, and Montgomery [58] has shown more recently that

S( t) = Ω± ( ( log t)1/2 ( log log t) − 1/2 ) as t → ∞ . (2.14)

It is thought likely that

S( t) = O( ( log t)1/2 + ε ) as t → ∞ (2.15)

for every ε > 0 (cf. [49]) and Montgomery has even conjectured [58] that (2.14)

represents the right rate of growth of S( t). For statistical studies of the kind we are

undertaking, though, the typical size of S( t) is more important. Selberg [66, 68] has

shown that for all k ε Z +,

∫
0

T
S( t)2k dt ∼

k! ( 2π)2k

( 2k) !_ ________ T ( log log T) k as T → ∞ . (2.16)

This means that a typical value of S( t) is on the order of ( log log t)1/2 , an extremely

small quantity. Experimentally, it is known that  S( t) < 1 for 7 < t ≤ 280, and
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 S( t) < 2 for 7 < t ≤ 6. 82 . 106 . The largest value of  S( t) that has been observed

so far appears to be S( t) = 2. 3136 . . . for some t near γn , n = 1 , 333 , 195 , 692 [R].

(Large values of S( t) are associated to violations of Gram’s and Rosser’s rules, see [10,

23, 49, 59], which explains why some statistics about them are available.)

Aside from (2.6) and Selberg’s estimate (2.16), several other estimates have been

proved. For example, if

S 1 ( t) = ∫
0

t
S(u) du ,

then  S 1 ( t) = O( log t) unconditionally, and  S 1 ( t) = O( ( log t) ( log log t) − 2 ) on

the RH [68]. The true maximal order of magnitude is probably again around ( log t)1/2 .

Therefore there is a lot of cancellation in the local behavior of S( t). Many results about

the distribution of values of S( t + h) − S( t) are also known [25, 26, 27, 32, 33, 44, 69].

For example, Theorem 13.2 of [69] says that if 1/2 < η ≤ 1, then for T η < H ≤ T,

0 < h < 1,

∫
T

T + H 

î
S( t + h) − S( t)





2k

dt = HA k



î
log ( 2 + h log T)





k

(2.17)

+ O



î
H c k k k



î
k k + ( log ( 2 + h log T) ) k − 1/2










,

where A k = ( 2k) ! / ( 2k π2k k! ), and c > 0 is a constant. There are also theorems

about distribution of S 1 ( t + h) − S 1 ( t), cf. [69].

Since S( t) grows very slowly, we can expect low zeros of the zeta function to be very
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restricted in their behavior, and their asymptotic behavior to be approached quite slowly.

Pseudo-random behavior of the zeros (like that predicted by the GUE hypothesis) can

only be expected over ranges of about ( log T) − 1/2 at height T; i.e., over a range of about

( log n)1/2 normalized spacings from zero number n. Furthermore, we can expect gaps

between next-to-nearest neighbors (i.e., δn + δn + 1) to be much more constrained than

those between nearest neighbors (i.e., δn), and to approach their asymptotic behavior

even more slowly. This is indeed what is observed, and it’s the main reason for

restricting most of the present investigation to nearest or next-to-nearest spacings. We

will see, in fact, that when we consider very distant spacings, a totally different

phenomenon occurs, whose explanation lies not in the GUE, but rather in prime numbers.

We now proceed to a discussion of the evidence. Figures 1 and 2 show the data for

the pair correlation conjecture for the two sets of zeros 1/2 + i γn ,

N + 1 ≤ n ≤ N + 105 , and for N = 0 and N = 1012 , respectively. For each interval

I = [α ,β), with [α ,β) = [ 0 , 0. 05 ), [ 0. 05 , 0. 1 ) , . . . , [ 2. 95 , 3 ), a star is plotted at

the point x = (α + β) /2 , y = a α ,β, where

a α ,β =
105

20_ ___ 


î
(n ,k) : N + 1 ≤ n ≤ N + 105 , k ≥ 0 , δn +... + δn + k ε [α ,β)





 .

The solid lines in both figures are the GUE prediction y = 1 − ( ( sin π x) /(πx) )2 . Note

that for a typical value of α ≥ 1, a α , β is derived from about 5000 points

δn + ... + δn + k so the random sampling error is expected to be on the order of 0.015.

All of the plots in this paper, as well as most of the statistical computations, were done

using the S system [1].
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Figures 3 and 4 show the data on the distribution of the normalized spacings δn . The

stars again correspond to a histogram of the δn; for each interval [α ,β),

α = k /20 , β = α + 1/20, a star is plotted at x = (α + β) /2, y = b α ,β, where

b α ,β =
105

20_ ___ 


î
n: N + 1 ≤ n ≤ N + 105 , δn ε [α ,β)





 .

The solid lines are the GUE predictions, y = p( 0 ,x). (As in explained in Section 6, no

rigorous error analyses is available for the computed values of p( 0 , x), but they are

thought to be quite accurate.) Similarly, figures 5 and 6 show the data on the distribution

of δn + δn + 1 .

The graphs at first glance show a satisfying amount of agreement between the

experimental data and the GUE predictions. Graphs have roughly the same shape, and

agreement between data and prediction improves dramatically as one goes from the first

105 zeros to the 105 zeros with 1012 + 1 ≤ n ≤ 1012 + 105 . Moreover, the

disagreement between data and prediction is concentrated precisely where our discussion

of the effect of the small size of S( t) would lead one to expect it; there are fewer very

large or very small values of δn and δn + δn + 1 in the data than predicted, and more

values near the mean.

Further comparison of the distribution of zeros to the GUE prediction is provided by

Table 1, which shows values of

10 − 5

n = N + 1
Σ

N + 105

(δn − 1 ) k (2.18)

and
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10 − 5

n = N + 1
Σ

N + 105

(δn + δn + 1 − 2 ) k (2.19)

for the two sets N = 0 and N = 1012 , as well as the GUE values. (Numbers in Table 1,

as well as others in this paper that don’t have "..." at the end are usually rounded to the

number of digits shown, whereas those with "..." are truncated.) Table 2 shows moments

of log δn , δn
− 1 , and δn

− 2 .

The histograms of figures 1-6 and the moments of tables 1-2 provide a very rough

measure of the degree to which zeros of the zeta function match the GUE predictions.

One can obtain a better quantitative measure of the degree of fit between the observed

and the predicted distributions using the histogram data (e.g., one can use the χ2-test [47]

or the asymptotic results of [24]). In our case, since we know the predicted distribution

quite well (at least numerically), we will use the quantile-quantile (q − q) plot to detect

deviations between the empirical and theoretical distributions. Given a sample

x 1 , . . . , x n , and a continuous cumulative distribution function F(z) for some

distribution, the theoretical q − q plot is obtained by plotting x ( j) against q j , where

x ( 1 ) ≤ x ( 2 ) ≤ . . . ≤ x (n) are the x i sorted in ascending order, and the q j are the

theoretical quantiles defined by F(q j ) = ( j − 1/2 )/ n [13]. The q − q plot is a very

sensitive tool for detecting differences among distributions, especially near the tails. If

the x i are drawn from a distribution corresponding to F(z), and the sample size n is large,

the q − q plot will be very close to the straight line y = x. Figures 7-10 show segments

of the q − q plots of the δn and δn + δn + 1 for N = 0 and N = 1012 .

To obtain a quantitative measure of the agreement between the observed distributions

of the δn and the GUE predictions, we use the Kolmogorov test [47; Section 30.49].
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Given a sample x 1 , . . . , x n drawn from a distribution with the continuous cumulative

distribution function F(z), we let F e (z) be the sample distribution function:

F e (z) = n − 1 


î
k: 1 ≤ k ≤ n , x k ≤ z





 .

The Kolmogorov statistic is then

D =
z

sup  F e (z) − F(z)  . (2.20)

The asymptotic distribution of D is known [47; Eq. 30.132]; if the x i are drawn from the

distribution defined by F(z), then

n → ∞
lim Prob (D > un − 1/2 ) = g(u) , (2.21)

where

g(u) = 2
r = 1
Σ
∞

( − 1 ) r − 1 exp ( − 2 r 2 u 2 ) . (2.22)

Table 3 gives the Kolmogorov statistic D for δn and δn + δn + 1 for several blocks of

105 consecutive zeros. Also given is an estimate of the probability that this statistic

would arise if the δn (δn + δn + 1 , resp.) were drawn from the GUE distribution. This

estimate is obtained by evaluating g(D 105/2 ).

The data presented so far are fairly consistent with the GUE predictions. The

differences between computed values and the predicted ones diminish as one studies

higher zeros, and they are more pronounced for δn + δn + 1 than for δn . Moreover, the

computed spacings δn and δn + δn + 1 are more concentrated near their means than the

GUE predictions, which is again to be expected on the basis of the small size of S( t).
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However, there are some indications, based on the tails of the distribution of the δn and

δn + δn + 1 , that asymptotically the zeros of the zeta function might not obey the GUE

predictions. Already in Table 2 we see that the mean value of δn
− 2 for N = 1012 exceeds

the GUE prediction, which indicates an excess of small δn . The q − q plot of Fig. 8 (for

N = 1012) is much closer to a straight line than that of Fig. 7 (for N = 0), just as that of

Fig. 10 is closer to a straight line than that of Fig. 9. However, the graphs in figures 9

and 10 are both below the straight line y = x (which corresponds to perfect agreement

between theory and prediction), which indicates that in both cases there are fewer large

spacings than the GUE hypothesis predicts, which was to be expected. The graph of Fig.

7 is above the straight line y = x, which indicates fewer small spacings than predicted,

which again was to be expected, while on the other hand the graph of Fig. 8 is below the

line y = x, which indicates an excess of small spacings, which is quite unexpected. The

small size of S( t) leads one to expect a substantial deficiency in the number of small δn

and δn + δn + 1 , since the graph of S( t) is an uneven sawtooth curve, with S( t) jumping

up by 1 at t = γn , then decreasing essentially linearly up to t = γn + 1 , jumping up again

by 1 at t = γn + 1 , and so on, so that small gaps between zeros also correspond to large

values of S( t). Fig. 11 shows an initial part of the q − q plot for the δn for N = 2 . 1011

which indicates behavior very similar to that of Fig. 8. The q − q plot for N = 1011 is

very similar to those for N = 2 . 1011 and N = 1012 , while that of N = 109 lies on the

other side of the y = x line. (We should note again that the data for N = 109 , 1011 , and

2 . 1011 are not very accurate, and so have to be treated with caution. In fact, Fig. 11

provides a way to gauge the inaccuracy introduced into those data sets by the bug

described in Section 3. The q − q plot of Fig. 11 has in places the appearance of a
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staircase, with flat horizontal segments. These flat segments arise from identical

computed values of the δn . The correct values of the δn are expected to be all distinct

and much more evenly distributed, as is the case for N = 0 and N = 1012 .) Table 4

shows the number of δn and δn + δn + 1 that are very small or very large, as well as the

number that would be expected under the GUE for a sample of size 105 . Large δn and

δn + δn + 1 are generally less numerous than the GUE predicts, which is to be expected.

The data for the high blocks of zeros show that the number of δn ≤ 0. 05 and of

δn ≤ 0. 1 is in excess of that predicted. (We would have obtained the same results if we

considered the pair correlation conjecture (2.10) with α = 0. 01 , β = 0. 05, say.) The

excess is not very large, given that the expected number is fairly small, but it may be

significant that while the first few sets (for N = 0, 5 . 107 , and 109) all show

deficiencies, all the high sets of zeros (N = 1011 , 2 . 1011 , and 1012) show an excess of

δn ≤ 0. 05 and of δn ≤ 0. 1.

Another way to investigate this question is to look at the minimal values of δn ,

shown in Table 5. These values include some very small δn that were found by Brent

[10] and van de Lune et al. [52]. These investigators were not computing the γn , but

occasionally, when they had difficulty separating a close pair of zeros, they noted the

approximate locations of them. In particular, Brent [10] found that δn = 0. 001235 . . .

for n = 41 , 820 , 581, and van de Lune et al. [52] found that δn = 0. 000310 . . . for

n = 1 , 048 , 449 , 114. Thus these values provide upper bounds for the minimal δn in

the intervals investigated by those authors, and it is likely that they are the minimal

values.
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Since it is known [54, 55] that p( 0 ,t) has the Taylor series expansion near t = 0

given by

p( 0 ,t) =
3

π2
_ __ t 2 −

45
2π4
_ ___ t 4 +

315
π6

_ ___ t 6 +... , (2.23)

(for comparison, we note that p( 1 , t) = π6 t 7 /4050 +... [ 55 ] ), the GUE prediction is

that among M consecutive δn’s, the probability that the minimal δn is ≤ α M − 1/3 is

approximately

1 −


î
1 −

9
π2
_ __

M
α 3
_ __





M

∼ 1 − exp 
î − π2 α 3 /9

 . (2.24)

The function on the right side of (2.24) was used to compute the last column in Table 5.

The probabilities of obtaining the minimal δn that are observed from the GUE

distribution are rather low, in some cases very low. (We would have obtained

comparable inconsistencies between data and predictions had we worked with the pair

correlation function instead of the distribution of the δn .)

It is hard to draw any firm conclusions from the data that is available. It would be

very desirable to obtain data from much higher sets of zeros to see whether they also

have an excess of smaller spacings compared to the GUE hypothesis. If they do, this

would raise doubt not only about the GUE hypothesis but even about the Montgomery

pair correlation conjecture. This is an important possibility because the GUE hypothesis

is very speculative, as it relies on the hope that the eigenvalues of the hypothetical

operator associated to the zeta function would behave like those of a random operator.

Thus it is easy to conceive of the GUE hypothesis being false even when there is an

appropriate operator. On the other hand, the pair correlation conjecture depends only on
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the assumption of randomness in the behavior of primes (basically on error terms in the

number of primes in arithmetic progressions cancelling each other out). Therefore falsity

of the pair correlation conjecture would imply some unusual behavior among the primes.

It would also be desirable to obtain numerical data for zeros of Dirichlet L-functions,

using the generalization of the Riemann-Siegel formula [20, 21] or the new method of

[61]. Some data are available for zeros of Epstein zeta functions [8], and they don’t obey

the GUE predictions, as they have many small spacings between consecutive zeros. This

is not surprising, since Epstein zeta functions do not satisfy the RH in general.

We briefly discuss large δn . By [15],

log p( 0 ,t) ∼ −
8

π2
_ __ t 2 as t → ∞ (2.25)

(a result that had been derived earlier but less rigorously by F. Dyson [22]). Hence the

GUE prediction is that

N + 1 ≤ n ≤ N + M
max δn ∼ π − 1 ( 8 log M)1/2

as N ,M → ∞ with M not too small compared with N, and this implies

γn < T
max (γn + 1 − γn ) ∼ 8 ( 2 log T) − 1/2 . (2.26)

Montgomery’s conjecture [58; Eq. (11)] that

 S( t) = O( ( log t)1/2 ( log log t) − 1/2 )

as well as another argument of Joyner [45] suggest that

γn < T
max (γn + 1 − γn ) = O( ( log T) − 1/2 ( log log T) − 1/2 ) , (2.27)
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which contradicts (2.26). Because of the slow growth of ( log T)1/2 and of

( log log T)1/2 , our data do not allow us to conclude anything about the truth of these

conjectures. (Some additional information about known large values of δn is presented

in Section 4.)

There are some measures of higher order correlation among zeros that were computed

and compared to the GUE prediction [7]. The GUE predictions are not known very

accurately, but the agreement seemed quite good for short-range correlations. Substantial

deviations were found in the measure Σ 2 (r) of [BHP] for large r, which equals the

variance of the number of (normalized) zeros in an interval of length r. In the GUE case,

Σ 2 (r) is monotone increasing, whereas for the zeros of the zeta function for N = 1012 ,

this measure was increasing up to about r = 13, and then started to decrease slightly.

Given the bounds on S( t), this is not very surprising.

One feature of the behavior of the zero spacings which initially seemed quite

surprising involves very long-range correlations among the δn . As is usual, we define

the autocovariances of the δn by

c k = c k (N ,M) =
M
1_ __

n = N + 1
Σ

N + M
(δn − 1 ) (δn + k − 1 ) . (2.28)

It is not known exactly what the c k are in the GUE, but it has been conjectured by F. J.

Dyson (unpublished) that for k > 0,

c k ∼∼
2 π2 k 2

− 1_ _______ , (2.29)

where ∼∼ in (2.29) indicates approximate rather than asymptotic value. This conjecture is

intuitively appealing, since a large spacing is expected to lead to smaller spacings nearby
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to preserve the average distance, but this effect should apply less and less the further

apart the spacings one considers. What one observes in practice, though, is quite

different. Table 6 shows the values of the c k (N ,M) for various values of k, M = 105 ,

and for the two sets corresponding to N = 0 and N = 1012 . Fig. 12 shows a graph of

c k ( 1012 , 105 ) for 950 ≤ k ≤ 1000. Since the variance of the δn is around 1/6, random

independent δn would give values of c k around ( 6 √ 105 ) − 1 ∼∼ 0. 00053. The values in

Table 5 are typically much larger than that, and therefore statistically significant. These

values say, for example, that a large δn tends to be associated with a small δn + 963 (for

N = 1012). Even more striking than the sizes of the c k are the patterns of signs that are

visible in Table 6 and Fig. 12. (These effects are much more striking for N = 1012 than

for N = 0 due to the ‘‘averaging out’’ of the spectrum of the δn for N = 0 that is

introduced by the normalization (2.7), but we won’t discuss this here.)

The long-range correlations between the δn , which will be discussed below, should

not obscure the fact that our data do support the Dyson conjecture (2.29), at least in the

weak form that says that for every fixed k, as N ,M → ∞ with M not too small compared

to N, c k is approximated by the quantity on the right side of (2.29). Some support for

this conjecture can be derived from Table 6. The fact that (2.29) does not hold for k large

is to be expected given the known results about S( t). The only thing that is surprising is

that the c k are large for large k and there are patterns to their behavior.

An explanation for the long-range correlations between the δn can be obtained by

looking at the spectrum of the δn . Fig. 13 shows a portion of the spectrum, i.e., a graph

of



- 23 -

f (x) = c 
n = N + 1

Σ
N + M

(δn − 1 ) e π in x  2

for a certain constant c, where N = 1012 , M = 98303. No smoothing or tapering was

done to the data. The spectral lines are very sharp. The line graph of Fig. 13 is based on

approximately 12000 evenly spaced values of x between 0 and 1/4, so that the heights of

the peaks may not be very accurately portrayed, but their locations are accurate. (The

function f (x) is periodic with period 1. For 0. 25 ≤ x ≤ 1, it has more sharp peaks, but

they get closer and closer together and eventually begin to coalesce into a chaotic

regime.) To show more clearly the behavior of the spectrum of the δn , Fig. 14 shows a

graph of g(x) = max ( log f (x) , − 10 ). (This definition is meant to deemphasize

regions where f (x) is small.)

The peaks of f (x) occur near x = 2 ( log N) − 1 log q, where q is a prime power, and

the spikes in Fig. 13 are due to 2,3,4,5,7,8,9,11,13,16,17, and 19, in that order, with

proper prime powers having smaller peaks than primes. The explanation for this

behavior of the spectrum of the δn lies in the formulas that connect zeros of the zeta

function and prime numbers. Some of them, such as the exact formula for π(x) in terms

of the zeros, or the more general ‘‘explicit formulas’’ of Guinand [38] and Weil [72] are

well known. A related formula was proved by Landau [48]. (See [37] for a somewhat

stronger version.) It says, under the assumption of the RH (which we assume for

convenience, although Landau proved an unconditional result), that for any y > 0 as

N → ∞,
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n = 1
Σ
N

e i γn y =





î O( exp ( − y /2 ) log N) if y ≠ log p m ,

−
2π
γN_ __ exp ( − y /2 ) log p + O( exp ( − y /2 ) log N) if y = log p m ,

where p denotes a prime and m a positive integer. Therefore we also expect that if

h(y) =
n = N + 1

Σ
N + M

e i γn y ,

then h(y) will be large precisely for y in the vicinity of log p m and small elsewhere. Fig.

15 shows a graph of log  h(y) for 0. 004 ≤ y ≤ 3, N = 1012 , M = 4 . 104 , which

exhibits precisely this behavior. (This function log  h(y) is not graphed for

0 ≤ y < 0. 004, since it is very large there.) Let us write

γN + k = γN + kα + βk ,

where α is the average spacing,

α = 2π


î
log

2π
γN_ __





− 1

.

The βk are usually small, on the order of 1/α. Then, for y small, we can expect that

h(y) = e
i γN y

k = 1
Σ
M

e ikα y + iβ k y

∼∼ e i γN y

k = 1
Σ
M

e ikα y + i y e i γN y

k = 1
Σ
M

βk e ikα y . (2.30)

The first sum on the right side of (2.30) is small for y away from integer multiples of

2π/α, and so it is the second sum that contributes the oscillations at y = log p m . (For y

away from log p m , and especially so for y small, the first sum on the right side of (2.30)

dominates, and since it equals the rapidly oscillating function  sin (M α y /2 )
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 sin (α y /2 ) − 1 is absolute magnitude, it gives rise to the very regular patterns of points

visible in Fig. 15 because of the comparatively infrequent but regular spacing of sample

points.) On the other hand,

n = N + 1
Σ

N + M
(δn − 1 ) e πinx ∼∼ α − 1

n = N + 1
Σ

N + M
(γn + 1 − γn − α) e πinx

= α− 1 e πiNx

k = 1
Σ
M

(βk + 1 − βk ) e πikx

= α− 1 e πiNx


î
βM + 1 e πiMx − 2β1 e πix





+ α− 1 e πiNx

k = 1
Σ
M

βk e πikx ,

and so the spectrum of the δn can be expected to behave like the second sum on the right

side of (2.30) and to have peaks at frequencies x = π− 1 α log p m for primes p and

m ≥ 1.

3. Computation of the zeros

This section describes the computations of the zeros that were used in the

comparisons with eigenvalues of random hermitian matrices described in Section 2 and

documents the claim that the values that were found are accurate to within ± 10 − 8 . For

simplicity we will restrict the discussion here to the computations of γn for

n = 1012 + 1 to n = 1012 + 101000. Exactly the same method was used to compute

γn for 2001 ≤ n ≤ 101000, but the error estimates in that case are much easier. (Values

of γn for 1 ≤ n ≤ 2000 were taken from the 105 decimal place values computed in [60].)

The computations described here relied on the Riemann-Siegel formula [23, 43, 68],
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which requires on the order of t 1/2 operation to compute ζ ( 1/2 + it). A new method

has recently been invented [61] which enables one to compute on the order of T 1/2 values

of ζ ( 1/2 + it) for T ≤ t ≤ T + T 1/2 in a total of O(T 1/2 + ε ) operations for all ε > 0

(i.e., O(T ε ) per value), but this method is quite involved and it has yet to be

implemented.

We first recall the Riemann-Siegel formula [10, 23, 28, 43, 59, 68]. Let

θ( t) = arg [π− it /2 Γ ( 1/4 + it /2 ) ] ,

and

Z( t) = exp (i θ ( t) ) ζ ( 1/2 + it) .

Then Z( t) is real for real t, and any sign change of Z( t) corresponds to a zero of ζ (s) on

the critical line. We define

τ = ( 2π) − 1 t , m = 
 τ1/2 

 , z = 2 (τ1/2 − m) − 1 . (3.1)

(All the computations of zeros γn for n near 1012 that were carried out had m = 206393).

Then, for any k ≥ 0,

Z( t) = 2
n = 1
Σ
m

n − 1/2 cos (t log (n) − θ( t) )

(3.2)

+ ( − 1 ) m + 1 τ − 1/4

j = 0
Σ
k

Φ j (z) ( − 1 ) j τ − j /2 + R k (τ ) ,

where

R k (τ ) = O(τ − ( 2k + 3 )/4 ) , (3.3)
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and the Φ j (z) are certain entire functions. Gabcke [28] has derived very sharp explicit

error estimates for the remainder terms R k (τ ), and the one used in the computations was

 R 4 (τ ) ≤ 0. 017t − 11/4 for t ≥ 200 . (3.4)

The Φ j (z) were computed using their Taylor series expansion [17, 28].

Before discussing the specific implementation of the Riemann-Siegel formula that

was used, we present the basic assumptions used in the error analysis. We will assume

that the computer that was used (a Cray X-MP) performed as usual, i.e., that there were

no intermittent faults, and the same program run on it at another time would produce the

same results. We also have to make some assumptions about the correct functioning of

the basic arithmetic units and the standard logarithm and cosine routines supplied by the

manufacturer. It is often unsafe to trust the manufacturer’s specifications and several

examples of this will be presented below.

The model of computation we will use in the error analysis of our algorithm is that

developed by W. S. Brown [12]. It assumes that floating point numbers can be

represented in the signed, base b , t digit form

± b e

i = 1
Σ
t

a i b − i , (3.5)

where either a 1 =... = a t = 0 or 1 ≤ a 1 < b, 0 ≤ a i < b for 2 ≤ i ≤ t, and

e min ≤ e ≤ e max . Brown [12] defines ‘‘correct’’ arithmetic for floating point numbers in

this model. If a model number is one that is representable in the form (3.5), then

Brown’s model can be briefly summarized by the following rules:

If the result of applying an elementary operation ( + , − , × or /) to two model
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numbers is exactly a model number, then the implementation must return that

number.

Otherwise, the implementation may return anything between the model numbers

adjacent to the exact result.

Comparison of model numbers must be exact.

Comparison of non-model numbers x and y may report the result of exact

comparison between any pair of elements in the smallest model intervals

containing x and y.

(For more details, see [12].)

One advantage of Brown’s model of computation is that it is not necessary to worry

about the internal details of the floating point arithmetic unit, but instead it is sufficient to

test whether a particular machine obeys the specifications of the model. It is of course

impractical to test all possible cases. N. L. Schryer [64, 65] has implemented a very

extensive set of tests designed to reveal deviations from the rules of the model and has

used it to test many computers. Schryer’s tests are based on the fact that there tend to be

patterns in the way hardware designers make mistakes, and these patterns can be detected

by cleverly designed test arguments. Schryer’s tests have detected most of the previously

known defects as well as some new ones on a variety of machines. The superficial

description of the Cray-1 and the Cray X-MP (both of which have 64-bit words) might

lead one to expect that they would satisfy Brown’s model with b = 2 , t = 48 for single

precision and b = 2 , t = 96 for double precision. However, Schryer’s tests have
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revealed some faults. For example, if f l(x) denotes the floating-point version of x, then

2 × f l( 2 − 1 + 2 − 2 +... + 2 − 48 ) = 2 on both machines. In fact, D. Winter has pointed

out that it already follows from the Cray hardware manual [19] that these machines do

not satisfy Brown’s model for b = 2, t = 48. On the other hand, very extensive tests by

Schryer’s programs have shown that these machines appear to satisfy Brown’s model for

b = 2 , t = 47 in single precision and t = 94 in double precision. We will assume in

our analysis that this is correct. (Some defects in Cray software will be described at the

end of this section.)

Using Brown’s model, it is possible to bound the errors that are made in various

elementary arithmetic operations. For example, if x and y are both model numbers,

2k < x < 2k + 1 , 0 < y < 2k , and x + y < 2k + 1 , where 1 ≤ k < 40, say, then the

single precision value z that is computed for x + y will satisfy

 z − (x + y) < 2k − 46 .

We now describe the computation of the sum of cosines in (3.2), which is what

consumes almost all of the computing time. The argument t is always maintained as a

double precision (dp) variable. Another dp variable, t 0 , is also maintained, which has

the property that  t − t 0  ≤ 3. Three arrays d n , q n , u n , 1 ≤ n ≤ m, are also used; d n

is the value of log n, computed and stored in dp, q n is the value of 2 n − 1/2 , computed in

dp but stored in single precision (sp) and u n is the value of t 0 log n reduced modulo 2π,

computed in dp but again stored in sp. (On the Cray-1 and Cray X-MP, conversion from

dp to sp is effected by truncation, and from sp to dp by padding with zeros.) To compute

Z( t) for a new value of t, a comparison of t with t 0 is made. If  t − t 0  > 3, t 0 is set
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equal to t, and the u n are recomputed. At that point we are in the remaining case of

 t − t 0  ≤ 3. Here δ is defined to be the sp value of t − t 0 , and t 1 the dp value of

t 0 + δ (so that  t 1 − t < t 0
. 2 − 90 , say). Next, θ( t 1 ) is computed in dp, reduced

modulo 2π, and converted to a sp variable v. Then the quantities

w n = q n cos (δ e n + (u n − v) ) , 1 ≤ n ≤ m (3.6)

where e n is the sp value of d n , are computed in sp, using the manufacturer-supplied sp

cosine routine, and these values are added up in a special way to be described below.

The reason for the involved procedure described above is that for t > 1010 , say, sp

arithmetic is not sufficiently accurate. On the other hand, dp arithmetic is much too slow

to be used all the time, since on the Cray X-MP it is done in software and does not

vectorize. Since the costly step of recomputing the u n is done very infrequently (roughly

once for every 100 evaluations of Z( t), on average, in the main, zero-locating run), the

scheme above allows for relatively high accuracy at reasonably high speed.

The computation that is described above approximates Z( t 1 ) rather than Z( t).

However, since  t 1 − t < t 0
. 2 − 90 , this difference is insignificant in practice, since

zeros were computed only to within ± 5 . 10 − 9 .

We next estimate how much w n differs from 2 n − 1/2 cos (t 1 log n − θ( t 1 ) ). The

function θ( t 1 ) is computed entirely in dp using Stirling’s formula [40]. The main term

in that formula is t 1 ( log t 1 − 1 − log ( 2π) )/2. No performance figures are supplied

by the manufacturer for the dp logarithm routine. However, tests performed with 1000

random inputs ε ( 0 , 1013 ) (comparing the values obtained on the Cray X-MP with those

obtained with the Macsyma symbolic manipulation system [53], which allows for



- 31 -

variable precision) found a maximal error of < 2 . 10 − 27 . Therefore it was assumed that

all dp logarithm values (for 2 . 1011 < t 1 < 3 . 1011) are correct to within ± 5 . 10 − 27 .

Under this assumption, the dp values of t 1 ( log t 1 − 1 − log ( 2π) )/2 are accurate to

within ± 4 . 10 − 27 t 1 . The computation of the other terms in the expansion of θ( t 1 ) is

easily shown to introduce an error of at most 10 − 17 . Hence after reduction modulo a dp

value of 2π (correct to within ± 10 − 27), the resulting dp value of θ( t 1 ) is in the interval

( − 0. 01 , 6. 3 ), say, and (except for a possible additive factor of ±2π) is correct to within

± 7 . 10 − 27 t 1 . The conversion to a sp value introduces an error in at most the last bit,

and this error is therefore ≤ 2 − 44 . Hence the sp value v of θ( t 1 ) differs from θ( t 1 ) by at

most 2 − 44 + 7 . 10 − 27 t 1 (and, possibly, by an additional factor of exactly 2π).

Similarly, the sp value u n differs from t 0 log n by an integer multiple of 2π and at most

2 − 44 + 7 . 10 − 27 t 1 and again is in the range (-0.01, 6.3).

Since e n is obtained from d n by truncation of the bit pattern it differs from log n by

at most ( 2 − 47 + 10 − 24 ) log n, say. Furthermore, the sp value computed by multiplying

δ and e n in sp can differ from δ e n by at most ( 2 − 47 + 2 − 93 ) δ e n . Hence the sp value

that is computed for δ e n differs from δ log n by at most ( 2 − 45 + 10 − 22 ) log n, as

δ ≤ 3. Since m ≤ 210000, we have δ e n  ≤ 37. Subtraction of v from u n gives a sp

value that is in the range (-7,7) but off by at most 2 − 44 from the correct value, and adding

it to the sp value of δ e n yields a value that is in the interval (-45,45), but is up to

2 − 41 + 2 − 44 away from the correct sum of the computed values of δ e n , u n , and − v.

Therefore the sp value of r n = δe n + (u n − v) differs from t 1 log n − θ( t 1 ) by an

integer multiple of 2πand an additive factor that is



- 32 -

≤ 2 − 41 + 2 − 44 + ( 2 − 45 + 10 − 22 ) log n + 2 − 43 + 1. 4 . 10 − 26 t 1 ≤ 10 − 12(3.7)

in absolute magnitude, for t 1 ≤ 2. 7 . 1011 and n ≤ 210000. Hence

 cos (r n ) − cos (t 1 log n − θ( t 1 ) ) ≤ 10 − 12 . (3.8)

No rigorous bounds are known for the error made by the Cray X-MP sp cosine

routine. Some estimates are supplied [18; Appendix B] based on a random sample of

104 arguments; for example, for x ∈ ( − π , π), the maximal difference observed

between cos (x) and the computed value is given as 1. 01 . 10 − 14 , and the standard

deviation as 2. 31 . 10 − 15 . However, these figures appear to come from an old edition

of the manual, whereas substantial changes have been made to the software in the

meantime. A sample of 104 points x, drawn uniformly at random from the interval

( − π , π) showed that the maximal difference between values of cos (x) computed in dp

and sp was only 5. 34 . 10 − 15 , and the standard deviation 1. 4 . 10 − 15 , which is

considerably better than claimed in [18]. A similar sample of 106 points x, drawn

uniformly at random from (-50,50) showed that the maximal difference was

≤ 1. 35 . 10 − 14 and the standard deviation ≤ 1. 65 . 10 − 15 . A comparison of several

hundred values computed with the sp cosine routine with the same values computed in

the Macsyma [53] system showed similar results. Therefore it seemed safe to assume

that for x ∈ ( − 50 , 50 ), sp values of cos (x) are accurate to within ± 5 . 10 − 14 . With this

assumption, the computed value of cos (r n ) differs from the correct value

cos (t 1 log n − θ( t 1 ) ) by at most 1. 05 . 10 − 12 .

Since q n is obtained by converting the dp value of 2 n − 1/2 to sp, it is correct to

within ± ( 2 − 47 + 2 − 90 ) 2 n − 1/2 , say. Therefore the sp value of q n cos (r n ) that is
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computed differs from the desired value of 2 n − 1/2 cos (t 1 log n − θ( t 1 ) ) by at most

2 n − 1/2 ( 1. 05 . 10 − 12 + 2 − 46 + 2 − 80 ) ≤ 2. 14 . 10 − 12 n − 1/2 . (3.9)

The sum of the term on the right sides of (3.9) for 1 ≤ n ≤ m < 207000 is

< 1. 95 . 10 − 9 .

To add up the computed sp values of q n cos (r n ), the values for 1 ≤ n ≤ 1280 were

converted to dp and added in dp. The n with 1280 < n ≤ m were partitioned into sets B

such that for each B, B had ≤ 120 elements and

n ε B
Σ 2 n − 1/2 < 1/2 .

For each B, the sum S B of the computed values of q n cos (r n ) for n ε B was evaluated in

sp, making an error of at most 2 − 41 , converted to dp, and added in dp to the sums of the

other sets B and of the initial 1280 values. There were < 3600 sets B, so the total error

made in this addition is

< 3600 . 2 − 41 + 2 − 60 < 1. 7 . 10 − 9 .

Gabcke’s bound (3.4) for the remainder term in the Riemann-Siegel formula and the

error terms given in [17, 28] for the Taylor series expansions of the Φ j (z) guarantee that

these sources contribute an additional error of at most 5 . 10 − 11 . We conclude therefore

that the computed values of Z( t 1 ) are correct to within ± 3. 7 . 10 − 9 .

The actual computation of zeros was done in two stages. In the first stage, the

cumbersome procedure described above for computing the sum of the w n was replaced

by a simpler one which gave approximately a 10% speedup of the entire routine for

evaluating Z( t). This modified routine was used to locate the zeros to a nominal
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accuracy (i.e., disregarding any errors in computation or from neglecting remainder terms

in the Riemann-Siegel formula) of ± 5 . 10 − 9 . The procedure was the standard one [10,

52] of locating Gram blocks and searching for the expected number of sign changes of

Z( t) in them. Once these sign changes were found, zeros were computed more

accurately using the Brent algorithm [9] for locating zeros of functions by a combination

of linear and quadratic interpolation. On average, eight evaluations of Z( t) were used for

each zero.

In the second stage the more accurate algorithm described above was used. For each

value γ of a zero that was computed in the first stage, Z( t) was evaluated at the two

points t = γ ± 8 . 10 − 9 , the signs of the computed values were verified to be opposite,

and their absolute magnitudes were checked to be greater than the upper bound

3. 7 . 10 − 9 for the error that we obtained above. In a few cases this check failed. For

these zeros a more accurate version of the program, operating almost entirely in double

precision, was used to verify the correctness of their locations.

The time for the first stage of the computation of the zeros was approximately 16

hours on a single-processor Cray X-MP. The same program runs only about half as fast

on the Cray-1. Since the cycle time on the X-MP is only about 30% faster than on the

Cray-1, most of the gain seems to be due to the larger number of memory ports on the

X-MP.

The second stage, the careful verification that the computed values were as accurate

as claimed, was carried out twice, once using the CFT 1.14 Fortran compiler, and once

using an early unofficial version of the CFT 1.15 computer. Each run took about 5 hours.
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(These runs were slower than the initial zero-locating ones not only because of the less

efficient method for adding up the w n that was used, but also because the double

precision array recomputations were relatively more frequent.) The reason for

undertaking two runs was that both compilers have been reported by other users to have

bugs which have occasionally led to incorrect answers when operating with long vectors.

The exact circumstances that lead to such wrong computations are for the most part not

known very well (most seemed to be associated with long complex vectors or various

optimization features that were not used in our program), and the bugs affecting the two

compilers seemed different. The results of the two computations were compared, and

they seemed identical to the full sp accuracy.

One very annoying bug in the Cray-1 and Cray X-MP software was discovered

during the computations. When D is declared to be a dp variable, and one uses the free-

format statement

READ * , D

to read a number, this number is first converted into a sp value, and only then converted

to dp, so that D agrees with the value being read in only about 48 bits. The values that

had been computed earlier for zeros γn , 109 ≤ n ≤ 109 + 105 ,

1011 ≤ n ≤ 1011 + 105 , and 2 . 1011 ≤ n ≤ 2 . 1011 + 105 had been converted for

archival storage using a program that used the above free-format input. As a result, the

values that are available for those zeros are not very accurate and were not used for most

of the analyses in Section 2.
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4. Statistics of zeros

The main computation discovered 101111 zeros between Gram points g n with

n = 1012 − 14 and n = 1012 + 101097. Since the interval [g n , g n + 12 ) for

n = 1012 − 14 is the union of 6 Gram blocks of length 1 and 3 Gram blocks of length 2,

and the interval [g n , g n + 12 ) for n = 1012 + 105 + 1085 is the union of 8 Gram blocks

of length 1 and 2 Gram blocks of length 2, we can conclude by the now standard Turing

method (Theorem 3.2 of [10], for example) that the 101087 zeros that were found in the

interval [g p , g q ) , p = 1012 − 2, q = 1012 + 105 + 1085 are all the zeros of the

zeta function in that range, and are indeed the zeros γn with

1012 ≤ n ≤ 1012 + 105 + 1086.

The interval [g p , g q ) for p = 1012 − 2, q = 1012 + 105 + 1 appears to consist of

65265 Gram blocks of length 1, 10686 of length 2, 2850 of length 3, 847 of length 4, 217

of length 5, 49 of length 6, and 7 of length 7. (We say ‘‘appears’’ because the values of

Z( t) at Gram points were not checked to verify that their signs were unambiguous, except

near violations of Rosser’s rule.)

Four exceptions to Rosser’s rule were found during the computation of the zeros γn ,

1012 + 1 ≤ n ≤ 1012 + 105 . In the now-standard terminology of [52], all were of

length 2, and two were of type 1 (n = 1012 + 15934 and n = 1012 + 93436) and two

were of type 2 (n = 1012 + 13452 and n = 1012 + 17086). Earlier computations had

found 2 exceptions to Rosser’s rule among zeros γn with

2 . 1011 + 1 ≤ n ≤ 2 . 1011 + 105 (both of length 2, type 2, for n = 2 . 1011 + 5469

and n = 2 . 1011 + 52084), one exception among the γn with
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1011 + 1 ≤ n ≤ 1011 + 105 (for n = 1011 + 10477 and of length 2 and type 2), and

no exceptions for 109 + 1 ≤ n ≤ 109 + 105 . Thus the frequency with which Rosser’s

rule is violated appears to increase very rapidly with increasing height (cf. [10, 52]).

The largest δn that this author is aware of is δn = 4. 2626 . . . for

n = 184 , 155 , 671 , 040. (We have γn ∼ 5. 3 . 1010 here.) Z( t) atains a value of

approximately –214 near γn , and there is a violation of Rosser’s rule of length 2, type 2

in the vincinity of γn . This zero was discovered by an application of a method for

constructing values of t for which  Z( t) is large that was based on the Lovasz lattice

basis reduction algorithm in a manner somewhat similar to that of [60]. Several other

values of t <∼ 1011 with  Z( t) large were constructed that way, and a substantial fraction

of them corresponded to violations of Rosser’s rule, although all the violations

discovered that way were of known type. It is clear that this method can be used to

construct t with extremely large values of  Z( t), and the main barrier to its use is the

inability to compute the corresponding values of Z( t) efficiently. (It is hoped that the

algorithm of [61] will be implemented in the near future, which would enable one to

explore the behavior of Z( t) near such special points where it is large.)

Other methods of constructing values of t with interesting behavior of Z( t) are

presented in [46] and [50]. Van de Lune [50] has found several values of t for which

 Z( t) is very large. Thanks to D. Hejhal, the National Science Foundation, and the

Minnesota Supercomputer Institute, this author was able to use a Cray-2 to study some of

these points. The huge memory of the Cray-2 made it possible to utilize the algorithm

described in Section 3 to compute Z( t) for the most interesting of the values of t found

by van de Lune. (The highest point mentioned below required about 45 million words of
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memory.) Rigorous error analysis was not done, and the computations spanned blocks of

20 Gram intervals centered approximately at the points found by van de Lune, so it is

impossible to assert that all of the zeros in those intervals have been found and that they

satisfy the RH, but it seems very likely that they do. Table 7 presents the results of these

computations. For each point t that was checked, the approximate value of Z( t) is given

(taken from [50], since the computations reported have used a different grid of points at

which to evaluate Z( t)), the type of violation of Rosser’s rule that was found (if any), and

the maximal δn that was found in that neighborhood. The value of Z( t) ∼∼ − 453. 9 at the

last point in the list gives the largest values of  Z( t) that has been found so far. An entry

of ‘‘no’’ in the ‘‘Rosser rule’’ column means that no violation of Rosser’s rule was

found. The entry (2,2) means that a violation of length 2 and type 2 [52] was found. The

entry ‘‘a’’ means a previously undetected type of violation of length 3, with the two

Gram intervals preceding the block with zero pattern (0, 1, 0) having zero pattern (2,2).

The entry ‘‘b’’ denotes another new type of violation, this time of length 2, with Gram

block with zero patterns (0,0) being followed by a block with zero pattern (2, 1, 1, 2).

5. Other methods for computing the zeta function

The program described in the preceding section was designed for relatively accurate

and rapid computation of the zeros of the zeta function at fairly large weight. On the

single-processor Cray X-MP with 2 million words of memory on which this program was

run, it could only be used for zeros γn with n not much larger than 3 . 1012 due to the

limitations on memory storage. In terms of speed, on the Cray X-MP it ran at about two

thirds of the speed of the latest version [73] of the Cyber-205 program (written partially
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in assembly language) that was used for the verification of the RH for the first 1. 5 × 109

zeros [52], since on average it required about 3. 5 . 10 − 3 seconds to evaluate a sum of the

form

n = K + 1
Σ

K + 104

2 n − 1/2 cos (t log (n) − θ( t) ) , (5.1)

whereas the data in [73] indicate that a comparable computation with the program

outlined there requires about 2. 5 . 10 − 3 seconds. The program described in Section 4

has the advantages of being more portable (since it is written exclusively in Fortran) and

more accurate. The error estimates in it are not completely rigorous, as the error bounds

assumed for the manufacturer’s cosine routine are based on statistical sampling. The

main program described in [51, 52, 73] used the manufacturer’s dp cosine routines only

to compute a few values to medium accuracy. These values were then used inside the

program to obtain sp values of the cosine by linear interpolation. Thus the [51, 52, 73]

program can be regarded as somewhat more trustworthy than the one described here. (In

some cases, though, where Z( t) was small, a program in which all operations were

carried out using the manufacturer’s dp routines was used in [51, 52], and its

trustworthiness is comparable to ours.)

It is possible to write programs that are much faster than that described in Section 3,

are almost as accurate, are written in Fortran, and whose errors can be analyzed

rigorously. Note that most of the effort in computing Z( t) by the Riemann-Siegel

formula (3.2) is spent in evaluating

n = 1
Σ
m

2 n − 1/2 cos (t log n − θ( t) ) = Re e − iθ(t)

n = 1
Σ
m

2 n − 1/2 e it log n .
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Since θ( t) is easy to compute, it would suffice to find an efficient method to compute

f ( t) =
n = 1
Σ
m

2 n − 1/2 e it log n . (5.2)

Now m = 
 ( 2π) − 1/2 t 1/2 

 is constant for large stretches of values of t. Suppose that m

is constant over the interval t 0 ≤ t ≤ t 1 , and suppose we wish to find sign changes of

Z( t) in this interval. Without much loss of generality we can assume that t 0 is a Gram

point, t 0 = g k . We compute the complex numbers

a n = 2 n − 1/2 e it 0 log n , 1 ≤ n ≤ m ,

using some very accurate and rigorously analyzable method and store them. If

δ = g k + 1 − g k , then we also compute

b n , j = e i δ2 − j log n , 1 ≤ n ≤ m , 0 ≤ j ≤ J ,

(J depending on accuracy to which zeros are to be computed), and again store them. To

compute Z( t 0 ) = Z(g k ), we evaluate a 1 + a 2 +... + a m . To compute Z(g k + 1 ), we

compute

an
( 1 ) = a n

. b n , 0 , 1 ≤ n ≤ m , (5.3)

store them, and then evaluate a1
( 1 ) +... + am

( 1 ) . To compute Z( t) for some t very close to

g k + 2 , we compute

an
( 2 ) = an

( 1 ) . b n , 0 , 1 ≤ n ≤ m ,

store them, and then evaluate a1
( 2 ) +... + am

( 2 ) . (The differences g l + 1 − g l change very

slowly with l.) To compute Z( t) for some t close to (g k + 3 + g k + 2 ) /2, we compute
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an
( 3 ) = an

( 3 ) . b n , 1 , 1 ≤ n ≤ m ,

store them, and evaluate a1
( 3 ) +... + am

( 3 ) , and so on. When we reach the point when the

accumulated roundoff errors in the an
(h) get too big, we reset t 0 to the value of a Gram

point near t 0 and recompute the a n . Since the recomputation of the a n would be very

infrequent in computations such as that aimed at numerically verifying the RH for a large

set of consecutive zeros (where Z( t) is evaluated at all Gram points), the running time of

the algorithm would be dominated by the time to compute the component by component

product c = (c 1 , . . . , c m ) = (a 1 b 1 , . . . , a m b m ) of two complex vectors

a = (a 1 , . . . , a m ) and b = (b 1 , . . . , b m ) and then evaluate the complex sum

c 1 +... + c m . These operations are vectorized automatically by the Cray X-MP Fortran

compiler, and for m = 104 require only about 0. 8 × 10 − 3 seconds, which would yield a

program running about 4 times faster than that described in Section 3. Such a program

has not been implemented due to the large storage requirements, which would not have

allowed computations with zeros around the 1012-th zero. However, for verifying the

RH around the 1010-th zero such a Fortran program ought to be practical and, since most

of the computation there involves evaluating Z( t) at Gram points, it would probably run

about 3 times faster on the Cray X-MP than the program described in [73] run on the

Cyber-205. Some test runs performed on the Cyber-205 by H. te Riele have shown that

the ideas described above appear to lead to algorithms that are faster than those of [73] on

that machine as well.

6. Distribution of eigenvalues computations

In the standard terminology [15, 54, 55] we let p(k ,u) denote the probability density
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of k-th neighbor spacing in the GUE; i.e., the probability that the (normalized) difference

between an eigenvalue of the GUE and the (k + 1 )-st smallest eigenvalue of those that are

larger than it lies in the interval (a ,b) is

∫
a

b
p(k ,u) du . (6.1)

(This is referred to as p 2 (k;u) in [15, 54, 55], where the subscript 2 refers to the GUE.)

Define λ n and f n (x) to be the eigenvalues and eigenfunctions of the integral

equation (finite Fourier transform)

λ f (x) = ∫
− 1

1

π(x − y)
sin{πt(x − y) /2}_ ______________ f (y) dy , (6.2)

where t ∈  R + is a parameter, and where the f n (x) satisfy the orthonormality condition

∫
− 1

1
f k (x) f m (x) dx = δkm . (6.3)

The λ n and f n (x) can be renumbered so that

1 ≥ λ 0 ≥ λ 1 ≥... ≥ 0 .

Mehta and des Cloizeaux [55] have shown that

p(k ,t) = 4t − 2

n
Π ( 1 − λn )

0 ≤ j 1 <... < j k + 2

Σ V( j 1 , . . . , j k + 2 ) , (6.4)

where

V( j 1 , . . . , j k + 2 ) = 4
i = 1
Π
k + 2

1 − λ j i

λ j i_ _____

➳ < m
j ➳ + j m ≡ 1 (mod2 )
1 ≤ ➳ < m ≤ k + 2

Σ f j ➳
( 1 )2 f j m

( 1 )2 . (6.5)

(Note that notations differ from reference to reference by various scaling factors.) The
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p(k ,t) were computed using formulas (6.4) and (6.5), which are much better than some

of the older methods (cf. [54, 55]) which relied on the formula

p( 0 ,t) =
dt 2

d 2
_ ___

n
Π ( 1 − λn ) . (6.6)

For example, the values for p( 0 ,t) given in [54; Appendix A.12, Table A.1], which were

apparently derived using (6.6), seem to be rather inaccurate, since for t = 0. 891, the

value given there is 0.943, whereas (6.4) and (6.5) gave the value of 0.933. The

discrepancy was most pronounced near the peak of the graph of p( 0 ,t), which is where

one would expect numerical differentiation routines to be least accurate.

The f n (x) are essentially the linear prolate functions. They were computed using the

program of Van Buren [71], with slight modifications introduced by this author and S. P.

Lloyd. In Van Buren’s notation, the λ n defined above become λ n (πt /2 ), and the f n (x)

become (λ n (πt /2 ) ) − 1/2 ψn (πt /2 ,x).

Van Buren’s program uses a complicated combination of a variational procedure and

expansion in terms of Legendre and spherical Bessel functions. There is no rigorous

error analysis for it. However, it appears to be fairly accurate, as is shown by comparing

its output to that of other calculations. Furthermore, tests such as numerical integration

of

0
∫
∞

p(k , t) dt

to verify that we obtain values very close to 1 were all positive.
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Table 1. Moments of δn − 1 and of δn + δn + 1 − 2, for blocks of the form N + 1 ≤ n ≤ N + 105 .

δn − 1 δn + δn + 1 − 2

k N = 0 N = 1012 GUE N = 0 N = 1012 GUE_ __________________________________________________________________________________

2 0.161 0.176 0.180 0.207 0.236 0.249

3 0.031 0.035 0.038 0.028 0.027 0.030

4 0.081 0.096 0.101 0.123 0.168 0.185

5 0.046 0.057 0.066 0.047 0.063 0.073

6 0.075 0.098 0.111 0.119 0.206 0.237

7 0.072 0.103 0.124 0.078 0.150 0.185

8 0.103 0.160 0.197 0.155 0.367 0.451

9 0.126 0.223 0.290 0.142 0.409 0.544

10 0.181 0.361 0.488 0.252 0.871 1.178
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Table 2. Moments of log δn , δn
− 1 , and δn

− 2 ,

for blocks of the form N + 1 ≤ n ≤ N + 105 .

moments
of N = 0 N = 1012 GUE_ _____________________________________

log δn –0.0912 –0.1021 –0.1035

δn
− 1 1.2363 1.2744 1.2758

δn
− 2 2.2235 2.6149 2.5633
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Table 3. Kolmogorov statistic for δn and δn + δn + 1 ,

for blocks of zeros of the form N + 1 ≤ n ≤ N + 105 .

δn δn + δn + 1

N D prob. D prob.
_ _______________________________________________

0 0.0207 10 − 37 0.0278 10 − 67

109 0.0081 4 . 10 − 6 0.0138 10 − 16

1011 0.0052 9 . 10 − 3 0.0099 6 . 10 − 9

2 . 1011 0.0058 2 . 10 − 3 0.0084 1. 5 . 10 − 6

1012 0.0045 3. 5 . 10 − 2 0.0091 1. 3 . 10 − 6
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Table 4. Numbers of very small and very large

δn and δn + δn + 1 in blocks of the form

N + 1 ≤ n ≤ N + 105 , and the GUE predictions.

number of number of number of number of number of

δn ≤ 0. 05 δn ≤ 0. 1 δn ≥ 2. 8 δn + δn + 1 ≤ 0. 6 δn + δn + 1 ≥ 4
_ ______________________________________________________________________________

N = 0 11 79 1 2 0

N = 5 . 107 9 103 9 24 3

N = 109 11 97 14 33 5

N = 1011 16 107 11 41 8

N = 2 . 1011 20 123 20 25 9

N = 1012 18 124 14 34 6

GUE 13.68 108.80 19.68 38.63 13.57

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Table 5. Extremal values of δn and δn + δn + 1 among zeros

number n, N + 1 ≤ n ≤ N + M, and the probability

that the minimum value of δn in the GUE

would not exceed the value in the third column.

prob.

N M min δn max δn min δn + δn + 1 max δn + δn + 1 min δn_ _________________________________________________________________________________

0 105 0.02186 2.8052 0.57647 3.9022 0.682

5 . 107 105 0.00734 3.1551 0.41841 4.3058 0.042

109 105 0.01679 3.0680 0.37404 4.1650 0.405

1011 105 0.00738 3.2811 0.30784 4.4753 0.043

2 . 1011 105 0.01515 3.1109 0.39744 4.3121 0.317

1012 105 0.01103 3.1893 0.44260 4.3371 0.137
_ _________________________________________________________________________________

0 106 0.00970 3.2143 0.26344 4.1517 0.632

0 7. 5 . 107 ≤ 0. 00124 ≤ 0. 145

0 1. 5 . 109 ≤ 0. 000310 ≤ 0. 048
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Table 6. Autocovariances of the δn , N + 1 ≤ n ≤ N + 105 .

k N = 0 N = 1012

_ __________________________________________________

0 .1607429 .1762933
1 -.0574023 -.0582498
2 -.0126083 -.0143371
3 -.0065874 -.0047603
4 -.0045317 -.0035270
5 -.0031454 -.0011576
6 -.0011362 -.0015305
7 -.0007084 -.0008964
8 -.0013904 -.0009071
9 .0013483 -.0011673

10 .0034456 -.0001692
11 .0018714 -.0009839
12 -.0002503 -.0002831
13 -.0005412 -.0003967
14 .0025227 -.0011130
15 .0046388 -.0002101
16 .0025451 -.0005048
17 .0010829 .0003850

_ __________________________________________________

55 -.0039299 -.0102228
56 -.0013716 -.0069591
57 .0032256 -.0011287
58 .0016816 .0012409
59 -.0014840 .0020236
60 -.0041143 .0017857
61 -.0017425 .0011242
62 .0019009 .0015995
63 .0000127 .0012965

_ __________________________________________________

960 .0002534 .0047463
961 -.0002862 .0013039
962 .0003855 -.0039218
963 -.0002286 -.0061988
964 .0001077 -.0015785
965 -.0000796 -.0011387
966 -.0002891 -.0050911
967 .0000783 -.0053232
968 -.0001676 .0008364
969 -.0000848 .0044897
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Table 7. Zeta function near selected van de Lune points.

Rosser

t Z( t) rule max δn_ ______________________________________________

18,132,299,244.660 -133.2 no 2.95

18,139,553,794.750 142.2 no 3.08

907,663,606,940.329 229.3 no 3.34

9,065,450,718,497.579 -253.5 a 3.02

45,323,986,866,893.743 -320.7 (2,2) 3.56

67,263,231,798,214.250 441.4 b 4.11

725,177,880,629,981.915 -453.9 no 3.43
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Fig. 1. Pair correlation of zeros of the zeta function. Solid line: GUE prediction.

Scatter plot: empirical data based on zeros γn , 1 ≤ n ≤ 105 .

Fig. 2. Pair correlation of zeros of the zeta function. Solid line: GUE prediction.

Scatter plot: empirical data based on zeros γn ,

1012 + 1 ≤ n ≤ 1012 + 105 .

Fig. 3. Probability density of the normalized spacings δn . Solid line: GUE

prediction. Scatter plot: empirical data based on zeros γn , 1 ≤ n ≤ 105 .

Fig. 4. Probability density of the normalized spacings δn . Solid line: GUE

prediction. Scatter plot: empirical data based on zeros γn ,

1012 + 1 ≤ n ≤ 1012 + 105 .

Fig. 5. Probability density of the normalized spacings δn + δn + 1 . Solid

line: GUE prediction. Scatter plot: empirical data based on zeros γn ,

1 ≤ n ≤ 105 .

Fig. 6. Probability density of the normalized spacings δn + δn + 1 . Solid

line: GUE prediction. Scatter plot: empirical data based on zeros γn ,

1012 + 1 ≤ n ≤ 1012 + 105 .

Fig. 7. Initial segment of the quantile-quantile plot of the normalized spacings δn

against the GUE prediction. Data based on zeros γn , 1 ≤ n ≤ 105 .

Straight line y = x drawn to facilitate comparisons.

Fig. 8. Initial segment of the quantile-quantile plot of the normalized spacings δn

against the GUE prediction. Data based on zeros γn ,
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1012 + 1 ≤ n ≤ 1012 + 105 . Straight line y = x drawn to facilitate

comparisons.

Fig. 9. Final segment of the quantile-quantile plot of the normalized spacings

δn + δn + 1 against the GUE prediction. Data based on zeros γn ,

1 ≤ n ≤ 105 . Straight line y = x drawn to facilitate comparisons.

Fig. 10. Final segment of the quantile-quantile plot of the normalized spacings

δn + δn + 1 against the GUE prediction. Data based on zeros γn ,

1012 + 1 ≤ n ≤ 1012 + 105 . Straight line y = x drawn to facilitate

comparisons.

Fig. 11. Initial segment of the quantile-quantile plot of the normalized spacings δn

against the GUE prediction. Data based on zeros γn ,

2 . 1011 + 1 ≤ n ≤ 2 . 1011 + 105 . Straight line y = x drawn to

facilitate comparisons.

Fig. 12. Autocovariance of the δn . The entry for k is the mean value of

(δn − 1 ) (δn + k − 1 ), averaged over 1012 + 1 ≤ n ≤ 1012 + 105 .

Fig. 13. Spectrum of the δn . Value plotted for x is c 
n
Σ (δn − 1 ) exp (πinx) 2 ,

where c is a constant, and n runs over 1012 + 1 ≤ n ≤ 1012 + 98303.

(Heights of peaks are not represented accurately due to limited sampling.)

Fig. 14. Logarithm of the spectrum of the δn . Value plotted for x is

2 log 
n
Σ (δn − 1 ) exp (π in x) + c for a constant c, where n runs over

1012 + 1 ≤ n ≤ 1012 + 98303, and where values < − 10 are replaced by
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-10.

Fig. 15. Graph of 2 log Σ exp (i γn y) for 0. 004 ≤ y ≤ 3, where n runs over

1012 + 1 ≤ n ≤ 1012 + 40000, and values < 0 are replaced by 0.


