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Stochastic Complexity Measures for
Physiological Signal Analysis

I. A. Rezek* and S. J. Roberts

Abstract—Traditional feature extraction methods describe signals in
terms of amplitude and frequency. This paper takes a paradigm shift
and investigates four stochastic-complexity features. Their advantages
are demonstrated on synthetic and physiological signals; the latter
recorded during periods of Cheyne–Stokes respiration, anesthesia, sleep,
and motor-cortex investigation.

Index Terms—Approximate entropy, autoregressive (AR) model order,
spectral entropy (SE), state-space embedding, stochastic complexity.

I. INTRODUCTION

Physiological signals have a wide variety of forms. To describe
them, traditional feature measures typically extract amplitude and
frequency information. This makes comparison of signals which have
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different bandwidths difficult. In addition, such measures do not
allow comparison within subject groups as the absolute frequency
of rhythms may differ from person to person, and may depend on
other factors such as patient sex and age. Hence, other methods are
desirable.

When visually inspecting signals, one of the first impressions they
give to the observer is that of their “complexity.” Some signals seem
to vary more than others. Some appear extremely random while
others seem to demonstrate a reappearance of certain patterns at
various intervals. Indeed, in medical research signal variability or
system complexity has been correlated with physiological conditions.
Direct assessment of signal complexity/variability, thus, offers certain
advantages in clinical research. First, complexity is an intuitive
description and, thus, eases the interpretation of measurement results.
Second, as mentioned, invariant measures allow comparison across
different patient populations as they are insensitive toabsolute
measures such as amplitude and frequency.

II. CALCULATION OF COMPLEXITY

We have investigated four techniques which attempt to quantify
signal complexity. We shall call these measures “complexity fea-
tures,” although the definition of “complexity” varies with each one
of the feature extraction methods.

A. Autoregressive (AR) Model Order Estimation

Consider a deterministic system in which future samples are
affected by a certain number of past samples. The number of past
samples needed to predict the future sample may be regarded as
a measure of complexity, as each such value will affect prediction
difficulty and prediction uncertainty. If we use a linear prediction
model, the model order can be considered a measure of complexity.

Methods of estimating AR models and model orders are described
extensively in scientific literature [5]. In this study, we have used the
standard Levinson–Durbin recursion to estimate AR parameters. The
optimal model order was estimated using Akaike’s final prediction
error (FPE) [5], defined by FPEp = "p(

N+p+1

N�p�1
), whereN is the

number of data samples used,p the model order, and"p the prediction
error power. If a large number of coefficients are required to model,
then the sequence may be called “more complex” than one which
requires only a few. We have, therefore, used the estimated optimum
model order as an indicator of system complexity. It is worth noting
that this complexity estimation will fail when the time sequence under
observation may be regarded as random noise. In this case, model-
order estimates will generally be low. This might be misinterpreted
as a signal of ‘low complexity” even though, intuitively, the opposite
definition applies to noise. Also, the estimation relies on repetitive
patterns found in the autocorrelation sequence. If such patterns do
not exist, yet the sequence is not noise (e.g., a chaotic sequences),
the model-order-estimation procedure will fail. In such cases, again,
the estimated model order is too low.

B. Spectral Entropy

The next measure we introduce quantifies the spectral complexity
of a time series. A variety of spectral transformations exist. Of these,
the Fourier transformation (FT) [7] is probably the most well-known
transformation method from which the power spectral density (PSD)
P̂ (f) can be obtained. The PSD̂P (f) is a density function, i.e., it
represents the distribution of power as a function of frequency. Thus,
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normalization ofP̂ (f), with respect to the total spectral power, will
yield a probability density function (pdf). Application of Shannon’s
channel entropy gives an estimate of the spectral entropy (SE) of the
process, where entropy is given asH �

f
pf log(1=pf); and pf

is the pdf value at frequencyf .
Heuristically, the entropy has been interpreted as a measure of

uncertainty about the event atf . Thus, the entropyH may be used
as a measure of system complexity. High uncertainty (entropy) is
due to a large number of processes, whereas low entropy is due to a
small number of dominating processes which make up the time series.
Randomly distributed noise, for example, has high entropy values.
In contrast, regular motions, such as sinusoids, give low entropy
values. We note that spectral estimates are also easily obtained using
parametric modeling techniques, in particular AR modeling. As we
show empirically later in this paper, however, there is considerable
uncertainty in the estimation of model order (which must be re-
estimated over each time window in the signal). This fact, along
with the undesirable property of AR models that noise and chaos
induce a very low (but nonzero) model order, means that we choose
FT-based methods for spectral estimation.

C. Approximate Entropy

In the field of nonlinear dynamics, complexity measures often
statistically quantify the evolution of trajectory points in phase space.
For instance, the Kolmogorov–Sinai (K-S) entropy [3] estimates
the generation of information by computing the probabilities of
nearby signal trajectory points remaining close after some time.
However, most of these measures also aim to quantify chaotic
sequences and, thus, require the use of limits (e.g., time!1). The
approximate entropy (ApEn) [10] also measures signal randomness.
It does so without taking limits at the cost of being unable to detect
chaos. It is, hence, more suitable for finite data sequences in which
distinguishing chaos from high-complexity nonchaotic data is not of
primary importance.

Consider the definition of the correlation sum [3]

Cm
i (r) =

1

N �m

N�m

j=1

� r � norm(ui;uj) (1)

where� is the Heaviside function and the norm may be defined
in any consistent metric space. The parameterr corresponds to
the distance within which neighboring trajectory points must lie (it
is often referred to as bin size because of the correlation sum’s
correspondence to nonparametric pdf estimators). The vectorui is
the embedding vector[3] whose elements arem samples taken
at intervals ofJ samples along the observed time seriesx, i.e.,
ui = (xi; xi+J ; � � � ; xi+(m�1)J )

T : ApEn uses the correlation sum
(1) as its basis [10], such that ApEn(m; r;N ) = �m+1(r)��m(r),
where�m = log[P (kuj � ui k � r], i.e., the likelihood thatm
nearby points on the trajectory remain close to each other. Thus, ApEn
measures the average conditional information generated by diverging
points on the trajectory. The larger ApEn is the more complex than
the signal. Noise causes ApEn to reach an upper bound.

D. Embedding Space Eigen Spectrum

The foundation of many quantitative methods in nonlinear dy-
namics is Taken’s embedding theorem for noiseless systems [3, and
references therein]. Using embedding vectors of the formui (as
defined in the previous section), one can construct an embedding
matrix U, the column vectors of which areuT1 ;u

T
1 ; � � � ;u

T
N�(i�1)

constructed fromN time-series samples. The valuem is referred
to as theembedding dimensionand must satisfy Taken’s Theorem
m � 2M + 1, which sets the lower bound form given anM -

dimensional manifold in the phase space [1]. SinceM is not known
a priori, the embedding dimensionm is chosen large enough so that
redundancy results. This leads to a rank deficiency of the embedding
matrixU and, therefore, some of the eigenvalues�2i of UT

U will
be zero. It was shown in [1] that the rank is an upper bound to the
trajectory dimension, and we utilize a measure of this as an alternative
estimate of system complexity.

In real-world situations, the observed time series will be corrupted
by experimental noise (including quantization noise). This, as shown
in [1], results in a shifting of the eigenvalues, such that�2i !
�2i +h�

2i, whereh�2i is the expected signal noise variance. Hence, no
eigenvalue will be zero. There will be a spread of significant eigen-
value “power” away from the first singular values, if the trajectory
is of larger dimension. We quantify this spread using the fractional
spectral radius (FSR), defined asFSR(j) = ( j

i=0 �
2
i )=(

m

l=0 �
2
l ).

The value ofj was empirically set toj = 1, i.e., only the first
eigenvalue was used. A trajectory which is spanned by a higher
number of independent variables is considered more complex (as
more information is required to specify the state of the system) and
is characterized by a low FSR value. A value of FSR close to unity
indicates a system with a very low number of degrees of freedom
and, thus, low complexity.

III. SIMULATION

The behavior of all four complexity measures is first demonstrated
using the logistic map [3]

xn+1 = Rxn(1� xn) (2)

where the parameterR determines the regime of oscillation produced
by the map. IfR is set in the range of0 � R � 4, the seriesxn
will demonstrate period-doubling phenomena and, eventually, chaotic
oscillations atR = 3:6 [3].

We do not propose the logistic-map model as a model for any
biological system. It has pragmatically been chosen here for reasons
of comparability with the literature [10], and as it is well known [3].
In addition, it is a one-dimensional system which does not require
numerical integration to obtain an output. The number of control
parameters is, hence, kept to a minimum.

Table I shows the values obtained for each of the complexity
measures, based on 512 samples, for the different oscillatory regimes
of the logistic map (as determined byR). SE clearly increases as
the map bifurcates further and further. The highest SE values are
found when the map is chaotic. Similar observations can be made
for AR model-order estimates. However, the actual estimated values
for the order do not correspond to the period number of (2). Note
also that in the chaotic regime, i.e., for a very complex time-series,
estimated model orders are very low. Similar estimates result if an
AR process is used to model a random noise signal. Although AR
model estimation may be a simple tool for complexity measurements,
it is nonetheless ambiguous. Signals of low complexity and noise
cannot be distinguished by this method. ApEn results are shown
based on distance bins(r) of approximately 0.1 standard deviations
of fxg in size. The more complex the dynamic behavior of the system
becomes, the more ApEn increases. However, as pointed out in [10],
the function is very sensitive to the width of the distance bins. FSR
measures show a consistent decrease withR, indicating signals of
increasing complexity.

IV. PHYSIOLOGICAL SIGNAL ANALYSIS

We first present examples of complexity analysis applied to elec-
troencephalogram (EEG) and respiratory recordings of a patient
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TABLE I
COMPLEXITY ESTIMATES FOR LOGISTIC MAP WITH DIFFERENT VALUES OFR

Fig. 1. Complexity measures during CS respiration movements.

during Cheyne–Stokes (CS) respiration and on EEG recordings from
patients during anesthesia.

EEG recordings were sampled at 128 Hz and, subsequently, low-
pass filtered using an 11th-order finite-impulse-response filter with a
cutoff frequency of 25 Hz. Consecutive overlapping windows were
taken, and data within each were subject to the analysis of all four
feature extraction methods. Window length was set to 4 s, with a
window overlap of 75%. The resulting feature values were then
filtered using a 10th-order moving-average boxcar filter, with the
exception of AR model-order estimates which were filtered with an
11th-order moving-median filter.

Figs. 1 and 2 show the time course of the feature values together
with the corresponding respiration and EEG recordings for a duration
of approximately 6.5 min. Respiration shows alternating epochs of
apnoea and respiration movements (hyper-ventilation/apnoea) typical
of CS breathing. All features show changes corresponding to respi-
ratory periodicity. During apnoea, FSR decreases, as the trajectory
constitutes mainly noise (Note that we have plotted 1-FSR for
illustrative purposes only and as lower values of this correspond to
reduced “complexity”). Similarly, AR model-order estimates are low,
indicating little to be modeled but noise. Because noise resembles
high uncertainty, both entropy estimates (SE and ApEn) are high
as compared to estimates during respiratory activity. The more
interesting result (Fig. 2) is that features obtained from the EEG
recording also demonstrate changes which correspond to changes
in respiration, i.e., information regarding the respiratory state is
also contained in the EEG recordings themselves. As was seen
in the respiratory analysis, a clear periodic structure is evident in
all complexity measures with the exception of AR model-order
estimation.

All four “complexity” methods were also applied to EEG record-
ings obtained from patients during anesthesia. Anesthetic levels were

Fig. 2. Complexity measures during CS EEG; same time segment as in
Fig. 1.

Fig. 3. Complexity changes in the EEG for differing depth of anesthesia.

determined by the concentration of anesthetic agent given to the
subjects (see [6] for further details). Fig. 3 shows the results for
low, medium, and high levels of anesthetic agent concentration. Low
levels of anesthetic agent concentration correspond to low depth of
anesthesia, and vice versa. The results clearly show a reduction in
SE with increased depth of anesthesia. Similarly, FRS increases as
the first eigenvalue accounts, increasingly, for a larger part of the
spectral radius. Again, ApEn follows closely the results obtained from
SE, however, with apparently higher sensitivity and reduced error.
AR model-order estimation failed completely to distinguish between
any of the three levels (note the very large error bars). This was in
line with the results obtained from the CS EEG data and simulation,
but opposed to some researchers who have used AR model-order
estimation successfully in EEG analysis [8], although conclusions
drawn from just one data set must be taken with care.
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Fig. 4. Complexity measures of sleep EEG recording.

Fig. 5. SE for imagined finger movement EEG recording. Solid and dashed lines indicate right and left imagined movements, respectively.
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Fig. 6. Fractional spectral radius (1-FSR) for imagined finger movement EEG recording.

Fig. 4 shows the estimates of SE and FSR applied to a 7-h-sleep
EEG recording. The manually scored EEG sleep stages are shown
in the hypnogram trace (levels W, M, R, 1, 2, 3, and 4 correspond
to wakefulness, movement, REM and sleep stages 1, 2, 3 and 4,
respectively, on a 30-s resolution). The complexity measures compare
favorably with the hypnogram.

Our final example is an application of complexity measures to EEG
recordings obtained from subjects during imagined finger movements.
These recordings form part of a wider “brain-computer interface”
project designed to detect and classify imagined limb movements
from EEG recordings. Fig. 5 and 6 depict the SE and FSR values,
calculated over 2-s sliding windows with 75% overlap, together with
the event times of the imagined finger movement cues (vertical
lines) for a typical recording fragment. Both measures exhibit a clear
reduction in complexity prior to the movement. This is consistent with
the notion of movement-planning changes in the EEG, as discussed in
[9]. We note that no filtering was performed on the complexity traces.

V. DISCUSSION

There are various definitions of complexity, four of which are
addressed by the feature-extraction methods presented in this paper.
Of these methods, SE, ApEn, and FSR have performed well. In
particular, their sensitivity to levels of anesthetic agent indicates their
usefulness as features for such problems (see [6]). In this respect, they
may succeed where other methods have failed [12]. AR model-order
estimation failed to give satisfactory results for the EEG signals used
in this paper. This appears to be independent of the AR parameter
estimation method and the model order criterion. The combination
of Yule–Walker and FPE gives highest sensitivity, however. Other
methods, such as Burg’s method, in conjunction with FPE, were
found to be less sensitive and the resultant complexity measures even
more erratic. In all of the above examples, the sampling frequency
was kept constant when comparing the complexity features for
different signals. Clearly, in the case of SE, the sampling frequency
is crucial and will affect the SE estimates. For instance, increase

in sampling frequency will naturally increase the SE estimates.
Similarly, sampling affects the AR model-order estimates, as well
as FSR and ApEn. Particularly in the case of FSR, an additional
parameter, the embedding dimension, is also crucial in determining
the resolution of the complexity measure. To detect faster changes,
smaller embedding dimensions must be chosen and vice versa [2].

Other complexity measures have been proposed, such as Hjorth
coefficients [4], number of zero crossings, and many more in the field
of nonlinear dynamics. Many of these measures are related. Clearly,
the number of zero crossings is related to spectral estimation methods
and, thus, in some respect, to SE. Hjorth coefficients are measures
of low-order spectral moments and are related to the spectral entropy
for systems with a dominant spectral peak.

Clearly, all methods can be improved upon. Spectral leakage and
windowing have an effect on the SE estimates. For instance, a single
oscillation whose frequency is incommensurate with the sampling
frequency will result in higher SE estimates. On the other hand,
temporal smoothing with a window function causes the SE estimates
to decrease. Recent work concerning a Bayesian analysis of singular
value decomposition [11] is closely related to our FSR measure and
a Bayesian approach to complexity estimation is an area for future
research.
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