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terms of amplitude and frequency. This paper takes a paradigm shift number of data samples usgdhe model.o.rder, and, the predlcnon
and investigates four stochastic-complexity features. Their advantages €rror power. If a large number of coefficients are required to model,
are demonstrated on synthetic and physiological signals; the latter then the sequence may be called “more complex” than one which
recorded during periods of Cheyne—Stokes respiration, anesthesia, sleep,requires only a few. We have, therefore, used the estimated optimum
and motor-cortex investigation. model order as an indicator of system complexity. It is worth noting
Index Terms—Approximate entropy, autoregressive (AR) model order, that this complexity estimation will fail when the time sequence under
spectral entropy (SE), state-space embedding, stochastic complexity. observation may be regarded as random noise. In this case, model-
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frequency information. This makes comparison of signals which hayg, model-order-estimation procedure will fail. In such cases, again,
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normalization ofﬁ(f), with respect to the total spectral power, willdimensional manifold in the phase space [1]. Siddds not known
yield a probability density function (pdf). Application of Shannon’sa priori, the embedding dimension is chosen large enough so that
channel entropy gives an estimate of the spectral entropy (SE) of tkeundancy results. This leads to a rank deficiency of the embedding
process, where entropy is given &= Zf prlog(1/ps), andps matrix U and, therefore, some of the eigenvaluésof UT U will
is the pdf value at frequency. be zero. It was shown in [1] that the rank is an upper bound to the
Heuristically, the entropy has been interpreted as a measuretmajectory dimension, and we utilize a measure of this as an alternative
uncertainty about the event #t Thus, the entropy¥ may be used estimate of system complexity.
as a measure of system complexity. High uncertainty (entropy) isIn real-world situations, the observed time series will be corrupted
due to a large number of processes, whereas low entropy is due toyaexperimental noise (including quantization noise). This, as shown
small number of dominating processes which make up the time series[1], results in a shifting of the eigenvalues, such that —
Randomly distributed noise, for example, has high entropy values +{¢?), where(¢?) is the expected signal noise variance. Hence, no
In contrast, regular motions, such as sinusoids, give low entropigenvalue will be zero. There will be a spread of significant eigen-
values. We note that spectral estimates are also easily obtained usage “power” away from the first singular values, if the trajectory
parametric modeling techniques, in particular AR modeling. As wie of larger dimension. We quantify this spread using the fractional
show empirically later in this paper, however, there is consideratdpectral radius (FSR), defined BSR(j) = (327_,07)/(3_1%, 07)-
uncertainty in the estimation of model order (which must be réhe value of; was empirically set toj = 1, i.e., only the first
estimated over each time window in the signal). This fact, alorgjgenvalue was used. A trajectory which is spanned by a higher
with the undesirable property of AR models that noise and chanamber of independent variables is considered more complex (as
induce a very low (but nonzero) model order, means that we choasere information is required to specify the state of the system) and

FT-based methods for spectral estimation. is characterized by a low FSR value. A value of FSR close to unity
indicates a system with a very low number of degrees of freedom
C. Approximate Entropy and, thus, low complexity.
In the field of nonlinear dynamics, complexity measures often
statistically quantify the evolution of trajectory points in phase space. lll. SIMULATION

For instance, the Kolmogorov-Sinai (K-S) entropy [3] estimates 1pg pehavior of all four complexity measures is first demonstrated
the generation of information by computing the probabilities qgsing the logistic map [3]

nearby signal trajectory points remaining close after some time.
However, most of these measures also aim to quantify chaotic Tng1 = Ren(1—a2,) )
sequences and, thus, require the use of limits (e.g., tims). The ‘

approximate entropy (ApEn) [10] also measures signal randomnegere the parametet determines the regime of oscillation produced
It does so without taking limits at the cost of being unable to detegy the map. IfR is set in the range of < R < 4, the seriese,

chaos. It is, hence, more suitable for finite data sequences in whigiy demonstrate period-doubling phenomena and, eventually, chaotic
distinguishing chaos from high-complexity nonchaotic data is not gkcillations atR = 3.6 [3].

primary importance. We do not propose the logistic-map model as a model for any
Consider the definition of the correlation sum [3] biological system. It has pragmatically been chosen here for reasons
1 Nom of comparability with the literature [10], and as it is well known [3].
Ci'(r) = Z O(r — norm(u;,u;)) (1) In addition, it is a one-dimensional system which does not require
=1

T N—-m . . . .
o= numerical integration to obtain an output. The number of control

where © is the Heaviside function and the norm may be defind@2rameters is, hence, kept to a minimum. _
in any consistent metric space. The parametecorresponds to Table | shows the values obtained for each of the complexity

the distance within which neighboring trajectory points must lie (f1€@sures, based on 512 samples, for the different oscillatory regimes
is often referred to as bin size because of the correlation sun®kthe logistic map (as determined Hy). SE clearly increases as
correspondence to nonparametric pdf estimators). The vextos the map bifurcates further and further. The highest SE values are

the embedding vectof3] whose elements aren samples taken found when the map is chaotic. Similar observations can be made
at intervals of.J samples along the observed time serigsi.e., [of AR model-order estimates. However, the actual estimated values

w = (l'iquiJrJ,'"5177‘+(m—1)J)T- ApEn uses the correlation sumTor the or_der do not (_:orres_pond_ to the period number o_f (). N_ote
(1) as its basis [10], such that ApEn(r, N) = ™' (r) — ®™(r), alsp that in the chaotic regime, i.e., for 5?1 v_ery complex tlme-se_rles,
where®™ = log[P(||u;,, — w,,, || < 7], i.e., the likelihood thain estimated mc_JdeI orders are very low. Slmllgr es_tlmates result if an
nearby points on the trajectory remain close to each other. Thus, Apff Process is used to model a random noise signal. Although AR
measures the average conditional information generated by divergiigde! estimation may be a simple tool for complexity measurements,
points on the trajectory. The larger ApEn is the more complex thdin!s nonetheless ambiguous. Signals of low complexity and noise

the signal. Noise causes ApEn to reach an upper bound. cannot be distinguished by this method. ApEn results are shown
based on distance bir{g) of approximately 0.1 standard deviations

of {«} in size. The more complex the dynamic behavior of the system
_ o _ ) becomes, the more ApEn increases. However, as pointed out in [10],
The foundation of many quantitative methods in nonlinear dyne function is very sensitive to the width of the distance bins. FSR

namics is Taken's embedding theorem for noiseless systems [3, @hehsures show a consistent decrease Wittindicating signals of
references therein]. Using embedding vectors of the farm(as increasing complexity.

defined in the previous section), one can construct an embedding

matrix U, the column vectors of which are{ . u{.---,uy_( 1

constructed fromV time-series samples. The value is referred IV. PHYSIOLOGICAL SIGNAL ANALYSIS

to as theembedding dimensioand must satisfy Taken’s Theorem We first present examples of complexity analysis applied to elec-
m > 2M + 1, which sets the lower bound faon given anA- troencephalogram (EEG) and respiratory recordings of a patient

D. Embedding Space Eigen Spectrum
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TABLE |
CoMPLEXITY ESTIMATES FOR LoGisTiIc MAP WiTH DIFFERENT VALUES OF R
Logistic Map Parameter R 3.2 | 3.48 | 3.56 3.568 3.57 [ 3.8
Spectral Entropy 0.86 1.02 1.25 1.26 1.27 5.17
AR Model Order 2 8 14 18 18 3
Fractional Spectral Radius 0.99 0.80 0.63 0.59 0.58 0.11
Approximate Entropy 9.6 —06 | 1.356 — 05 | 2.15FE — 05 | 0.0893 | 0.0894 | 0.4981
CS Respiration CS EEG
i~~~ |
SE SE
p WN\\/W/
ARMO ARMO
ApEn ApEn
Fig. 1. Complexity measures during CS respiration movements. Fig. 2. Complexity measures during CS EEG; same time segment as in
Fig. 1.

during Cheyne—Stokes (CS) respiration and on EEG recordings from

patients during anesthesia. Camipeeky In Sneaadbeals: Paila 0485
EEG recordings were sampled at 128 Hz and, subsequently, Ic [

pass filtered using an 11th-order finite-impulse-response filter witt

cutoff frequency of 25 Hz. Consecutive overlapping windows we |

taken, and data within each were subject to the analysis of all fc| | o= et =
feature extraction methods. Window length was set to 4 s, with |
window overlap of 75%. The resulting feature values were th
filtered using a 10th-order moving-average boxcar filter, with tt{ 4
exception of AR model-order estimates which were filtered with ¢
11th-order moving-median filter.
&E

Figs. 1 and 2 show the time course of the feature values toget . )
with the corresponding respiration and EEG recordings for a durati - e gl
of approximately 6.5 min. Respiration shows alternating epochs W Higk W Mellsn W Les |
apnoea and respiration movements (hyper-ventilation/apnoea) typical ) ) o ]
of CS breathing. All features show changes corresponding to resla'g. 3. Complexity changes in the EEG for differing depth of anesthesia.
ratory periodicity. During apnoea, FSR decreases, as the trajectory
constitutes mainly noise (Note that we have plotted 1-FSR f@gtermined by the concentration of anesthetic agent given to the
illustrative purposes only and as lower values of this correspond d@pjects (see [6] for further details). Fig. 3 shows the results for
reduced “complexity”). Similarly, AR model-order estimates are lowow, medium, and high levels of anesthetic agent concentration. Low
indicating little to be modeled but noise. Because noise resembjggels of anesthetic agent concentration correspond to low depth of
high uncertainty, both entropy estimates (SE and ApEn) are higResthesia, and vice versa. The results clearly show a reduction in
as compared to estimates during respiratory activity. The MOSE with increased depth of anesthesia. Similarly, FRS increases as
interesting result (Fig. 2) is that features obtained from the EEfge first eigenvalue accounts, increasingly, for a larger part of the
recording also demonstrate changes which correspond to changgsctral radius. Again, ApEn follows closely the results obtained from
in respiration, i.e., information regarding the respiratory state $E, however, with apparently higher sensitivity and reduced error.
also contained in the EEG recordings themselves. As was se&R model-order estimation failed completely to distinguish between
in the respiratory analysis, a clear periodic structure is evident @my of the three levels (note the very large error bars). This was in
all complexity measures with the exception of AR model-orddine with the results obtained from the CS EEG data and simulation,
estimation. but opposed to some researchers who have used AR model-order

All four “complexity” methods were also applied to EEG recordestimation successfully in EEG analysis [8], although conclusions
ings obtained from patients during anesthesia. Anesthetic levels wdrawn from just one data set must be taken with care.
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Fig. 5. SE for imagined finger movement EEG recording. Solid and dashed lines indicate right and left imagined movements, respectively.
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Fig. 6. Fractional spectral radius (1-FSR) for imagined finger movement EEG recording.

Fig. 4 shows the estimates of SE and FSR applied to a 7-h-sléepsampling frequency will naturally increase the SE estimates.
EEG recording. The manually scored EEG sleep stages are shdsmilarly, sampling affects the AR model-order estimates, as well
in the hypnogram trace (levels W, M, R, 1, 2, 3, and 4 correspoad FSR and ApEn. Particularly in the case of FSR, an additional
to wakefulness, movement, REM and sleep stages 1, 2, 3 andpdrameter, the embedding dimension, is also crucial in determining
respectively, on a 30-s resolution). The complexity measures comptre resolution of the complexity measure. To detect faster changes,
favorably with the hypnogram. smaller embedding dimensions must be chosen and vice versa [2].

Our final example is an application of complexity measures to EEG Other complexity measures have been proposed, such as Hjorth
recordings obtained from subjects during imagined finger movemertsefficients [4], number of zero crossings, and many more in the field
These recordings form part of a wider “brain-computer interfacesf nonlinear dynamics. Many of these measures are related. Clearly,
project designed to detect and classify imagined limb movemenke number of zero crossings is related to spectral estimation methods
from EEG recordings. Fig. 5 and 6 depict the SE and FSR valuesid, thus, in some respect, to SE. Hjorth coefficients are measures
calculated over 2-s sliding windows with 75% overlap, together withf low-order spectral moments and are related to the spectral entropy
the event times of the imagined finger movement cues (vertidar systems with a dominant spectral peak.
lines) for a typical recording fragment. Both measures exhibit a clearClearly, all methods can be improved upon. Spectral leakage and
reduction in complexity prior to the movement. This is consistent witlvindowing have an effect on the SE estimates. For instance, a single
the notion of movement-planning changes in the EEG, as discussedsgillation whose frequency is incommensurate with the sampling
[9]. We note that no filtering was performed on the complexity traceBequency will result in higher SE estimates. On the other hand,

temporal smoothing with a window function causes the SE estimates
to decrease. Recent work concerning a Bayesian analysis of singular
V. DiscussIoN value decomposition [11] is closely related to our FSR measure and

There are various definitions of complexity, four of which aré Bayesian approach to complexity estimation is an area for future

addressed by the feature-extraction methods presented in this pais&earch.

Of these methods, SE, ApEn, and FSR have performed well. In

particular, their sensitivity to levels of anesthetic agent indicates their ACKNOWLEDGMENT

usefulness as features for such problems (se_e [6]). In this respect, the?[he authors would like to thank Dr. J. Stradling and Dr. R. Davies
may succeed where other methods have failed [12]. AR model-ord(?rth Osler Chest Unit at the Churchill Hospital. Oxford. U K
estimation failed to give satisfactory results for the EEG signals us@y e ©ster Lhest Lnit at the Lhurchilt Hospital, Uxiord, 1.1,

in this paper. This appears to be independent of the AR parame(re] Dr. C. Jordan of the Academic Department of Anesthesia at

estimation method and the model order criterion. The combinatit ¢ Northwick Park Hospital, Harrow, U.K. They would also like

n
. . s thank the anonymous reviewers for their valuable feedback. They
f Yule-Walk FPE high h . Othéy than :
of Yule-Walker and gives highest sensitivity, however. Ot %vould like further to thank Dr. M. Stokes at the Royal Hospital for

methods, such as Burg’s method, in conjunction with FPE, we - s )
' urg ' I . ' R?eurodlsablllty, Putney, U.K., and the Living Again Trust.
found to be less sensitive and the resultant complexity measures even

more erratic. In all of the above examples, the sampling frequency
was kept constant when comparing the complexity features for

different signals. Clearly, in the case of SE, the sampling frequencjyi] p. s. Broomhead and G. P. King, “Extracting qualitative dynamics from
is crucial and will affect the SE estimates. For instance, increase experimental data,Physica D vol. 20, pp. 217-236, 1986.

REFERENCES



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 9, SEPTEMBER 1998

[2] J. B. Elsner and A. A. Tsonissingular Spectrum Analysis: A New Tool

(3]
(4]
(5]
(6]

(7]

in Time Series Analysis New York: Plenum, 1996.

R. C. Hilborn, Chaos and Nonlinear Dynamics New York: Oxford
Univ. Press, 1994.

B. Hjorth, “EEG analysis based on time domain properti&¢gctroen-
cephalogr., Clin, Neurophysiglvol. 29, pp. 306-310, 1970.

S. M. Kay and S. L. Marple, “Spectrum analysis—A modern perspec-
tive,” Proc. IEEE vol. 69, pp. 1380-1419, Nov. 1981. [11]
M. Krkic, S. J. Roberts, |I. A. Rezek, and C. Jordan, “EEG-based
assessment of anaesthetic-depth using neural network&foin Inst.
Elect. Eng. Al Methods in Biosignal Analysispr. 1996, pp. 10/1-10/6.
S. L. Marple, Digital Spectral Analysis with Applications Englewood
Cliffs, NJ: Prentice-Hall, 1987.

(9]

[20]

[12]

[8] J. Pardey, S. J. Roberts, and L. Tarassenko, “A review of parametric

modeling techniques for EEG analysided. Eng., Phys.vol. 18, no.

1191

1, pp. 2-11, 1996.

G. Pfurtscheller, D. Flotzinger, and C. Neuper, “Differentiation between
finger, toe, and tongue movement in man based on 40-Hz EEG,”
Electroencephalogr., Clin. Neurophysiolol. 90, pp. 456—460, 1994.

S. M. Pincus, “Approximate entropy as a measure of system complex-
ity,” in Proc. National Academy of Science USAI. 88, pp. 2297-2301,
Mar. 1991.

J. J. Rajan and P. J. W. Rayner, “Model order selection for singular
value decomposition and the discrete Karhunemveatransform using a
Bayesian approach,” iRroc. Inst. Elect. Eng, Vision, Image, and Signal
Processing 1997, vol. 144, no. 2, pp. 116-123.

H. U. Rehman, D. A. Linkens, and A. J. Asbury, “Neural networks
and nonlinear regression modeling and control of depth of anaesthesia
for spontaneously breathing and ventilated patien®ymput. Meth.,
Programming in Biomed.ol. 40, pp. 227-247, 1993.



