
Under consideration for publication in Math. Struct. in Comp. Science

Quantum Programming Languages
Survey and Bibliography

S imon J. Gay

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK
Email: simon@dcs.gla.ac.uk

Received 13 October 2005; Revised 24 March 2006

The field of quantum programming languages is developing rapidly and there is a

surprisingly large literature. Research in this area includes the design of programming

languages for quantum computing, the application of established semantic and logical

techniques to the foundations of quantum mechanics, and the design of compilers for

quantum programming languages. This article justifies the study of quantum

programming languages, presents the basics of quantum computing, surveys the

literature in quantum programming languages, and indicates directions for future

research.

1. Introduction

Feynman (1982) suggested that constructing computers based on the principles of quan-
tum mechanics might enable the quantum systems of interest to physicists to be efficiently
simulated, whereas this seemed to be very difficult with classical computers. Deutsch
(1985) investigated the possible computational power of physically realizable comput-
ers, and formulated a quantum version of the Turing machine. Shor (1994) demonstrated
that two important practical problems—factorizing integers and the “discrete logarithm”
problem—could be solved efficiently by quantum computers. Grover (1996) showed that
database search could also be made more efficient by the use of quantum computers.
Since then, a substantial literature has developed in quantum algorithms and quantum
complexity theory.

Another important theme in quantum computing has been the development of quan-
tum cryptographic techniques, going back to the work of Bennett and Brassard (1984)
which in turn built on work, not published until several years after its conception, by
Wiesner (1983). There is an interesting interplay between quantum computing and quan-
tum cryptography, in that while Shor’s algorithm for integer factorization has the poten-
tial to undermine many current cryptosystems, quantum cryptographic systems can be
proved secure against any form of attack, including attacks which make use of quantum
computing.

Despite Deutsch’s (1985) observation that “quantum computers raise interesting prob-
lems for the design of programming languages”, computing scientists were slow to respond



S. J. Gay 2

to this challenge. Although it now seems obvious that quantum information processing
devices, like their classical counterparts, should be programmed in high-level, structured
and well-defined languages, it was only in 1996 that work towards the design of such
languages began to be published. There has been an explosion of publication since 2001.

The fact that physical implementations of quantum computers are still very limited,
working with only a few qubits, and have not yet escaped from the physics laboratory,
exposes the field of quantum programming languages to the criticism that it is pointless
to study languages for programming non-existent hardware. This criticism is ill-founded,
for several reasons.

Firstly, it overlooks the dramatic progress that has been made in the practical imple-
mentation of quantum cryptographic systems. Components for these systems are now
commercially available, and it seems very likely that quantum cryptography will be an
important technology long before quantum computers of useful size are constructed. Yet
quantum cryptographic systems implement complex and delicate protocols, and will need
to be programmed in systematic and principled ways; furthermore, the need to be confi-
dent of their security introduces a whole new dimension of programming language theory
when notions of program equivalence are considered.

Secondly, the widespread use of programming languages that do not have a firm seman-
tic foundation has caused huge problems for software engineering. Practical computing
technologies have raced ahead of theoretical studies, and it is only recently that the latest
developments in mainstream programming language design (for example, Java 1.5) have
had the benefit of a theoretical basis which was thoroughly understood in advance. From
this point of view, designing quantum programming languages before the hardware exists
is, in some respects, an ideal situation.

Thirdly, and perhaps unexpectedly, the application of semantic, logical and especially
category-theoretic techniques is providing a fascinating new perspective on quantum
theory itself. Computing scientists are generating new insights into the foundations of
quantum mechanics, which will be of value even if practical quantum computers are never
built.

In this article I survey the present literature on quantum programming languages,
and attempt a classification into major topics. Before doing so, I briefly summarise the
basic concepts of quantum computing, in Section 2. I describe the classification criteria
in Section 3, and discuss the papers themselves in Section 4. Finally, in Section 5, I
indicate some directions for future research in this area. I have tried to be as inclusive
as possible, and I have not made any judgement of the relative significance or quality of
the papers surveyed. In particular, the relative amounts of text devoted to each paper
do not indicate an assessment of their relative importance.

Selinger (2004a) published an earlier survey of quantum programming languages. His
article uses a similar classification scheme and offers a different perspective on some of the
issues in the field. A preliminary version of the present article appeared in Bulletin of the
EATCS, June 2005. The bibliography is online at www.dcs.gla.ac.uk/∼simon/quantum
and I intend to maintain it as a resource for the community.
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2. Basics of Quantum Computing

In this section I will briefly introduce the aspects of quantum theory that form the basis
of quantum computing, and describe an example, Deutsch’s (1985) algorithm, which
illustrates the potential power of quantum computers. More detailed presentations can
be found in the books by Gruska (1999) and Nielsen & Chuang (2000). Rieffel and Polak
(2000) give an account aimed at computer scientists, and Preskill’s (1998) lecture notes
are another valuable resource. Arrighi (2003) covers similar material to this section, with
a more detailed discussion of the fundamentals of quantum theory.

A quantum bit or qubit is a physical system that has two basis states, conventionally
written |0〉 and |1〉, corresponding to one-bit classical values. These could be, for example,
spin states of a particle or polarization states of a photon, but we do not consider physical
details. According to quantum theory, a general state of a quantum system is a super-
position or linear combination of basis states. Concretely, a qubit has state α|0〉+ β|1〉,
where α and β are complex numbers such that |α|2 + |β|2 = 1; states which differ only by
a (complex) scalar factor with modulus 1 are indistinguishable. States can be represented
by column vectors: (

α

β

)
= α|0〉+ β|1〉.

Formally, a quantum state is a unit vector in a Hilbert space, i.e. a complex vector space
equipped with an inner product satisfying certain axioms. In this section we will restrict
attention to collections of qubits.

The basis {|0〉, |1〉} is known as the standard basis. Other bases are sometimes of
interest, especially the diagonal (or dual, or Hadamard) basis consisting of the vectors
|+〉 = 1√

2
(|0〉 + |1〉) and |−〉 = 1√

2
(|0〉 − |1〉). For example, with respect to the diagonal

basis, |0〉 is in a superposition of basis states:

|0〉 =
1√
2
|+〉+

1√
2
|−〉.

Evolution of a closed quantum system can be described by a unitary transformation. If
the state of a qubit is represented by a column vector then a unitary transformation U can
be represented by a complex-valued matrix (uij) such that U−1 = U∗, where U∗ is the
conjugate-transpose of U (i.e. element ij of U∗ is ūji). U acts by matrix multiplication:(

α′

β′

)
=

(
u00 u01

u10 u11

) (
α

β

)
A unitary transformation can also be defined by its effect on basis states, which is ex-
tended linearly to the whole space. For example, the Hadamard transformation is defined
by

|0〉 7→ 1√
2
|0〉+ 1√

2
|1〉

|1〉 7→ 1√
2
|0〉 − 1√

2
|1〉

which corresponds to the matrix

H =
1√
2

(
1 1
1 −1

)
.
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The Hadamard transformation creates superpositions:

H|0〉 = |+〉 H|1〉 = |−〉.

A key feature of quantum physics is the role of measurement. If a qubit is in the state
α|0〉 + β|1〉 then measuring its value gives the result 0 with probability |α|2 (leaving it
in state |0〉) and the result 1 with probability |β|2 (leaving it in state |1〉). Protocols
sometimes specify measurement with respect to a different basis, such as the diagonal
basis; this can be expressed as a unitary change of basis, followed by a measurement
with respect to the standard basis, followed by the inverse change of basis. Note that if a
qubit is in state |+〉 then a measurement with respect to the standard basis gives result
0 (and state |0〉) with probability 1

2 , and result 1 (and state |1〉) with probability 1
2 . If a

qubit is in state |0〉 then a measurement with respect to the diagonal basis gives result
+ (and state |+〉) with probability 1

2 , and result − (and state |−〉)) with probability 1
2 ,

because of the representation of |0〉 in the diagonal basis noted above.
To go beyond single-qubit systems, we consider tensor products of spaces (in contrast

to the cartesian products used in classical systems). If spaces U and V have bases {ui}
and {vj} then U⊗V has basis {ui⊗vj}. In particular, a system consisting of n qubits has
a 2n-dimensional space whose standard basis is |0〉 ⊗ · · · ⊗ |0〉, . . . , |1〉 ⊗ · · · ⊗ |1〉, which
we write as |00 . . . 0〉 . . . |11 . . . 1〉. We can now consider measurements of single qubits
or collective measurements of multiple qubits. For example, a 2-qubit system has basis
|00〉, |01〉, |10〉, |11〉 and a general state is α|00〉+β|01〉+γ|10〉+δ|11〉 with |α|2+|β|2+|γ|2+
|δ|2 = 1. Measuring the first qubit gives result 0 with probability |α|2 + |β|2 (leaving the
system in state 1√

|α|2+|β|2
(α|00〉+β|01〉)) and result 1 with probability |γ|2+|δ|2 (leaving

the system in state 1√
|γ|2+|δ|2

(γ|10〉 + δ|11〉)); in each case we renormalize the state

by multiplying by a suitable scalar factor. Measuring both qubits simultaneously gives
result 0 with probability |α|2 (leaving the system in state |00〉), result 1 with probability
|β|2 (leaving the system in state |01〉) and so on; note that the association of basis
states |00〉, |01〉, |10〉, |11〉 with results 0, 1, 2, 3 is just a conventional choice. The power of
quantum computing, in an algorithmic sense, results from calculating with superpositions
of states; all the states in the superposition are transformed simultaneously (quantum
parallelism) and the effect increases exponentially with the dimension of the state space.
The challenge in quantum algorithm design is to make measurements which enable this
parallelism to be exploited; in general this is very difficult.

Systems of two or more qubits can exhibit the phenomenon of entanglement, meaning
that the states of the qubits are correlated. For example, consider a measurement of the
first qubit of the state 1√

2
(|00〉 + |11〉). The result is 0 (and resulting state |00〉) with

probability 1
2 , or 1 (and resulting state |11〉) with probability 1

2 . In either case a subse-
quent measurement of the second qubit gives a definite (non-probabilistic) result which is
always the same as the result of the first measurement. This is true even if the entangled
qubits are physically separated. Entanglement illustrates the key difference between the
use of tensor product (in quantum systems) and cartesian product (in classical systems):
an entangled state of two qubits is one which cannot be expressed as a tensor product of
single-qubit states.
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2.1. Deutsch’s Algorithm

Deutsch’s (1985) algorithm was the first demonstration that a quantum computer can
solve a specific problem more efficiently than a classical computer. There are several
variations of the algorithm; the version described here is based on the presentation by
Nielsen and Chuang (2000).

Suppose that we have a black box which computes an unknown function f : {0, 1} →
{0, 1}. We want to know whether or not f is a constant function. Classically, it is obvious
that we must evaluate f(0) and f(1) and compare the results. But we will see that a
quantum computer can answer the question with only one evaluation of f .

Assume that we can ask for a quantum version of the black box; that is to say, a
unitary transformation F which performs, in some sense, the same computation as f .
Our first thought is to require

F |0〉 = |f(0)〉
F |1〉 = |f(1)〉

but this is not physically possible in general. F , as a unitary transformation, must be
invertible, but f need not be invertible.

However, it is possible to construct a unitary transformation F on two qubits, such
that

F |x〉|y〉 = |x〉|y ⊕ f(x)〉

where ⊕ is exclusive or. We therefore assume that this is the quantum version of the
black box.

The trick now is to apply F to the state

|+〉|−〉 =
1
2
(|0〉|0〉 − |0〉|1〉+ |1〉|0〉 − |1〉|1〉)

but we need to do some calculation in order to be able to express the result in terms of
the unknown function f .

From the definition of F we have

F |x〉|0〉 = |x〉|f(x)〉
F |x〉|1〉 = |x〉|1⊕ f(x)〉.

Combining these equations to calculate F |x〉|−〉, we see that if f(x) = 0 then F |x〉|−〉 =
1√
2
|x〉(|0〉 − |1〉), and if f(x) = 1 then F |x〉|−〉 = 1√

2
|x〉(|1〉 − |0〉). Hence

F |x〉|−〉 =
(−1)f(x)

√
2

|x〉(|0〉 − |1〉)

= (−1)f(x)|x〉|−〉.

We can now calculate

F |+〉|−〉 = 1√
2
(F |0〉|−〉+ F |1〉|−〉)

=
{
±|+〉|−〉 if f(0) = f(1)
±|−〉|−〉 if f(0) 6= f(1)
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and the information about whether or not f is constant has been concentrated into the
first qubit.

We can check that H|+〉 = |0〉 and H|−〉 = |1〉, so applying H to the first qubit gives

±|0〉|−〉 if f(0) = f(1)
±|1〉|−〉 if f(0) 6= f(1)

and finally a measurement of the first qubit reveals the desired information.
This algorithm embodies what seem to be the essential aspects of an efficient quantum

algorithm: preparation of a superposed state, then application of unitary transformations
in such a way as to take advantage of quantum parallelism and then concentrate the
resulting global information into a single place, and finally an appropriate measurement.

Furthermore, we can clearly see the need for a formalized programming language syn-
tax. The above description of Deutsch’s algorithm combines equations (to be interpreted
as transformations of the state) with narrative description, and mixes the definition of
the algorithm with the proof of its correctness, in a way which could be very difficult
to follow in more complex situations. Several of the papers surveyed in this article use
Deutsch’s algorithm to illustrate their programming languages.

3. Classification of Papers

I have used the following classification of the main theme of each paper.

1 Programming language design

(a) imperative languages
(b) functional languages and λ-calculi
(c) other language paradigms

2 Semantics

(a) applications of linear logic
(b) categorical and domain-theoretic techniques
(c) other semantic techniques

3 Compilation

The “semantics” classification refers to denotational techniques. Many of the papers
whose primary emphasis is on language design also define semantics in an operational
style. I have used the “semantics” classification for papers which do not define languages
(for example, the semantic studies that focus on protocols) and for papers including
language definitions but whose emphasis is on denotational semantics. Papers applying
linear logic to the structural aspects of quantum computation are also included.

It was not always clear how to classify each paper: for example, there is naturally con-
siderable overlap between functional programming and semantics, and between language
design and compilation. It was also difficult to draw the boundary of the whole area.
My primary concern was to concentrate on papers that discuss programming language
design, semantics or compilation, or that apply logical and semantic techniques from
computing science to quantum computation. I have omitted most papers on quantum
logic (there is an extensive literature) except when a formal syntax has been defined in
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order to develop a proof system, or when the emphasis is on the application of linear
logic to quantum computation.

I have not included papers describing systems for simulating quantum computation,
except when there is significant emphasis on the design of the input language of the
simulator. Most simulation systems are designed in one of two ways: either the input
language is some notation for quantum circuits, or the simulator is packaged as an API
for a standard programming language. These systems do not consider issues in the design
of quantum programming languages, such as high-level quantum data structures or high-
level quantum control structures. Glendinning (2005) is a useful catalogue of quantum
simulation systems. When the quantum programming languages surveyed in the present
article have been implemented via simulators, I have indicated this in the text.

4. The Papers

4.1. Programming Language Design

4.1.1. Imperative Languages. Deutsch (1985) defines quantum Turing machines (QTM)
as the first model for general quantum computation, with the crucial property that su-
perpositions of machine states are allowed, and defines a universal QTM. Earlier work by
Benioff (1980) defines physical systems in which the laws of quantum mechanics would
lead to the simulation of a classical Turing machine, but does not consider quantum
computation; Albert (1983) defines a form of quantum automata, which computes with
quantum states but is not programmable. Yao (1993) studies the properties of the uni-
versal QTM further, and Bernstein & Vazirani (1993; 1997) give a construction for an
efficient universal QTM and discuss programming primitives. The concept of the QTM
has been used as the basis for much work in complexity theory, which we do not con-
sider here. Iriyama et al. (2004) define a generalized QTM (GQTM) in which states can
evolve by non-unitary transformations, in order to model the computational capabilities
of a nonlinear chaos amplifier. Special cases of the GQTM are the linear QTM and the
unitary QTM. Perdrix and Jorrand define the measurement-based QTM (2004b; 2004c)
as a model for measurement-based quantum computation, and the classically-controlled
QTM (2004a) to capture the paradigm of quantum data and classical control.

Probably the earliest proposal for a formalized quantum programming language, as
opposed to a notation for QTM definitions, is that of Knill (1996). He defines an im-
perative pseudocode suitable for implementation on a quantum random access machine
(QRAM). The QRAM model is also a proposal of this paper; it is not defined formally,
but consists of a register machine with the ability to perform quantum operations, includ-
ing state preparation, unitary transformation and measurement, on quantum registers.
Knill acknowledges that quantum pseudocode is not, in itself, precise enough to be an
implementable quantum programming language; however, it is an important step beyond
the use of ad hoc narrative descriptions of how quantum operators and measurements
should be applied.

Another early piece of work towards a quantum programming language, with a simula-
tion system, is that of Baker (1996). Although incomplete, this contains some significant
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ideas, especially the use of linear types (in this case, through the use of Concurrent
Clean’s uniqueness types in the implementation of the simulator) to control quantum
state.

Over a period of several years, Ömer (1998, 2000, 2001, 2002, 2003) developed QCL,
the first real quantum programming language, with a syntax inspired mainly by C. He
has also implemented a simulator for the language. QCL contains a full classical pro-
gramming language as a sublanguage, and provides a range of useful high-level quantum
programming features such as memory management and automatic derivation of condi-
tional versions of operators.

Bettelli et al. (2003) define a high-level language based on C++ and a collection of
low-level primitive operators; the low-level primitives are based on the QRAM model
but are intended to be architecture-independent as far as possible. They give a certain
amount of detail of a compilation scheme, and have implemented their language in the
form of a C++ library.

Sanders & Zuliani (2000) and Zuliani (2001) define the language qGCL, which is based
on a guarded-command language. qGCL inherits from the guarded-command world a
semantics in terms of either predicate transformers or relations, and a refinement calculus.
Part of the emphasis of this work is on the derivation of quantum algorithms. Zuliani
(2004, 2005b) has studied programming with non-determinism and mixed states in the
context of qGCL.

Tafliovich (2004) defines a quantum programming language based on probabilistic
predicative programming. The language itself is imperative, and a key aspect of the
paradigm is a close connection between programs and specifications, with an emphasis
on implementation by refinement.

4.1.2. Functional Languages and Lambda-Calculi. Maymin (1996) defines two extensions
of the λ-calculus, with call-by-value big-step operational semantics. The first, a proba-
bilistic λ-calculus (λp-calculus), incorporates distributions of terms, allowing functions
to return randomized results. The second, a quantum λ-calculus (λq-calculus), goes fur-
ther by allowing terms to be represented negatively in distributions; thus there is the
possibility of destructive interference when distributions are combined. In neither case is
it possible to associate numerical coefficients with the terms in a distribution, although
it is possible for terms to be repeated. In the λq-calculus this means that it is impossible
to express relative phases of anything other than 180 degrees. This seems like a signifi-
cant limitation, although Maymin shows that λq-calculus is able to efficiently solve NP-
complete problems, and in another paper (1997) argues that λq-calculus can efficiently
simulate one-dimensional partitioned quantum cellular automata, which are equivalent
to quantum Turing machines. It appears that λq-calculus may be strictly more expressive
than physically realizable quantum computation.

Van Tonder (2004) defines a quantum λ-calculus, λq, with an operational semantics
and an equational theory. It is a language for pure quantum computation: measurement is
not considered. He analyzes the non-duplicability of quantum state in terms of linear logic
and gives an inductive definition of well-formed λq terms which is, essentially, a simplified
form of a linear type system. The paper includes some examples of quantum algorithms
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expressed in λq, and argues that λq is equivalent in computational power to quantum
Turing machines. It also mentions a simulator for quantum algorithms, implemented in
Scheme.

Valiron (2004a,b) and Selinger & Valiron (2005; 2006) define a higher-order functional
programming language based on the idea of classical control and quantum data (following
Selinger (2004c)). The language is based on call-by-value λ-calculus, and includes both
classical and quantum data. The semantics is operational, although extending Selinger’s
(2004c) denotational semantics to the higher-order case is a goal, and there is a type
system based on linear logic for control of quantum state. They prove type preservation
and type safety properties, as expected for typed functional languages, and present a
type inference algorithm.

Extending the work of Valiron (2004b), Perdrix (2005) defines a type system which
reflects entanglement of parts of the quantum state. The idea is to enrich the type environ-
ment with an equivalence relation on quantum variables, representing an approximation
to the entanglement relation.

Arrighi and Dowek (2004; 2005) define a linear-algebraic λ-calculus in which all func-
tions are linear operators on vector spaces. Although modelling quantum computation
is a major goal of their work, they develop their theory somewhat independently of the
specifics of quantum mechanics in order to obtain a more general view of the mean-
ing of linearity. A notable feature of this work is the identification of a correspondence
between the pattern-matching notation familiar from functional programming and the
linear-algebraic notation defining linear operators by their effect on basis vectors. The
paper defines an operational semantics for the linear-algebraic λ-calculus and discusses
the relationship between linearity in the senses of linear algebra and linear logic.

Altenkirch and Grattage (2005a; 2005b) define a first-order functional programming
language, QML, in which control, as well as data, may be quantum. The semantics of
QML is expressed in category-theoretic terms, which provides a basis for a denotational
semantics in terms of superoperators (along the lines of Selinger’s (2004c)) and a transla-
tion into quantum circuits. The type system of QML is based on linear logic, but focuses
on the elimination of weakening (discarding quantum state) rather then contraction (du-
plication of quantum state); indeed, contraction is allowed but is interpreted as sharing
rather than copying. Another goal of the type system is to control decoherence, and
this is supported by introducing a judgement and derivation rules for orthogonality of
state-spaces. In further work with Vizzotto and Sabry (Altenkirch et al. 2006) the au-
thors develop a sound and complete equational theory for the pure (measurement-free)
fragment of QML; this also yields a normalization algorithm for QML.

Danos et al. (2004) study the one-way model of quantum computation, and develop
a notation for the key components of this model: entanglement, measurement, and local
correction. This notation is based on patterns. The main contribution of the paper is to
define a calculus of equations over patterns, which leads to an algorithm whereby any
pattern can be transformed into a standard form consisting of entanglement followed by
measurement followed by correction. Danos and Kashefi (2005a) describe sufficient condi-
tions for measurement patterns to execute deterministically. Danos et al. (2005b) develop
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a similar calculus of two-qubit measurements, which is relevant to use of teleportation
as a primitive for quantum computation.

Selinger’s (2004c) work has been very influential in the development of functional
languages for quantum computation. He defines a first-order functional language with
a static type system, taking the approach of classical control and quantum data. The
most significant aspect of this work is the denotational semantics. This uses the standard
mechanism of complete partial orders and continuous functions, but in the setting of
vector spaces and superoperators; a key feature is the treatment of partiality arising
from non-terminating recursion or loops. Edalat (2004) has also studied the semantics of
partial states in quantum computing.

Several papers investigate quantum programming within Haskell, following a tradi-
tion of developing domain-specific languages as collections of data types and functions
in Haskell. Mu and Bird (2001) first describe a way of embedding non-deterministic
programming in Haskell, using a monadic style. They extend this idea to give a represen-
tation of quantum programming, by defining a data type for quantum registers, although
the coefficients in a superposition are restricted to being real numbers. However, they
are able to express the Deutsch-Josza algorithm and Grover’s search algorithm. Sabry
(2003) extends this idea further by developing higher-level programming abstractions—
the concepts of “virtual value” and “adaptor”—to support computation with entangled
states. Vizzotto and da Rocha Costa (2005) extend the same ideas still further by con-
sidering concurrent quantum programming in the setting of Concurrent Haskell. This
enables them to give examples involving quantum protocols, in which physical distri-
bution is a key feature, rather than quantum algorithms. Karczmarczuk (2003) takes a
more foundational approach to quantum programming within Haskell, by implementing
the basic elements of quantum mechanics as data types and functions and constructing
higher-level data structures from them. The work of Skibiński (2001) has similar goals.

4.1.3. Other Language Paradigms. Gay and Nagarajan (2005; 2006) define the process
calculus CQP (Communicating Quantum Processes); Jorrand & Lalire (2004) and Lalire
& Jorrand (2004) define QPAlg (Quantum Process Algebra). Both languages can describe
systems combining classical and quantum computation and communication, and the goal
of both lines of work is to support the formal specification and verification of quantum
cryptographic protocols. Gay and Nagarajan’s language CQP is equipped with a static
type system which uses techniques from linear logic to express the constraint that each
element of quantum state is physically owned by a unique component of a system. They
prove type preservation and type safety properties for an operational semantics, and prove
soundness and completeness of a typechecking algorithm. Lalire (2005, 2006) defines a
probabilistic bisimulation for QPAlg, with the aim of formulating correctness properties
of protocols in terms of process equivalence.

Papanikolaou (2004) outlines the definition of the language qSpec, which supports the
definition of concurrent processes, with communication, in an imperative style inspired
by the model-checking specification languages Promela and Probmela. He gives some
definitions necessary to support a formal operational semantics, but does not define the
semantics itself.
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Mauerer (2005) defines the language cQPL, which is based on Selinger’s (2004c) QPL
with extensions for inter-process communication, allowing distributed systems and com-
munication protocols to be programmed. The core syntax of QPL is extended to a
familiar-looking concrete syntax, and there is a compiler and simulation system. A deno-
tational semantics of cQPL is defined, based on that of QPL with extensions to record
the location of qubits. The use of a type system to control qubits, in a similar way to
the work of Gay and Nagarajan (2005; 2006), is also discussed.

Adão and Mateus (2005) define a process calculus for specifying and reasoning about
quantum security protocols. The language is committed to the QRAM computational
model with the addition of a cost model. They also define notions of observational equiv-
alence and quantum computational indistinguishability, and demonstrate compositional
reasoning about a quantum zero-knowledge protocol.

Danos et al. (2005a) extend the measurement calculus (Danos et al. 2004) to a lan-
guage for modelling distributed systems. Individual agents compute by means of the
measurement calculus, and communicate by exchanging values or qubits over process-
calculus-style channels. D’Hondt (2005) studies the semantics of this language in more
detail, and uses it as the basis for reasoning about the behaviour of systems; she also
introduces a logic of knowledge in distributed quantum systems.

Di Pierro and Wiklicky (2001) extend the constraint programming paradigm to quan-
tum computing. Starting with a probabilistic version of constraint logic programming,
they define an alternative operational semantics in terms of quantum constraint systems.

Udrescu et al. (2004) use a hardware description language, of the kind standard in
VLSI design, to describe quantum circuits.

4.2. Semantics

4.2.1. Applications of Linear Logic. A significant aspect of denotational semantic ap-
proaches to quantum computation is the use of structures based on linear logic—for
example, categories with symmetric monoidal or compact closed structure or variations
thereof. Linear type systems are also being widely used in quantum programming lan-
guages whose semantics is defined operationally.

Pratt (1992) was an early advocate of linear logic as the basis for a dynamic logic of
quantum mechanics. He was motivated partly by the future prospect of quantum comput-
ing, but the paper itself discusses quantum mechanics more generally and is not specifi-
cally aimed at quantum computation. Inspired by Pratt’s ideas, Wehr (1996) suggested
that type theories based on linear logic would be appropriate for quantum programming
languages, although he did not define a particular language. Girard (2004) has developed
a quantum semantics of linear logic in terms of quantum coherent spaces.

4.2.2. Categorical and Domain-Theoretic Techniques. Abramsky (2004, 2005), Coecke
(2004a; 2004b) and Abramsky & Coecke (2003; 2005; 2004) have developed a category-
theoretic formulation of the axioms of quantum mechanics, in the setting of strongly
compact closed categories with biproducts. A substantial application of their work is
a study of information flow in quantum protocols, and especially the information flow
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enabled by the use of entangled states; they are able to prove correctness of a teleportation
protocol within a categorical semantics. In related work, Duncan (2004) has constructed
a new category-theoretic semantics of multiplicative linear logic within Abramsky and
Coecke’s framework, and Abramsky & Duncan (2006) have developed a categorical logic
of quantum systems. Coecke (2005) studies the category-theoretic framework further,
with the goal of simplifying its structures and axioms.

Blute et al. (2003) give another category-theoretic framework in which to understand
the behaviour of quantum systems; they do not focus specifically on quantum compu-
tation. They discuss connections between their approach and linear logic, especially the
use of the connectives of linear logic to describe entanglement.

Van Tonder’s quantum λ-calculus (2004) has already been mentioned. He has also de-
veloped a type theory and denotational semantics for λq, formulated in category-theoretic
terms (2003). The category-theoretic structure is that of a symmetric monoidal closed
category, confirming the connection with linear logic.

Selinger’s (2004c) language QPL has already been mentioned; its denotational seman-
tics is one of the most important aspects. Selinger (2004d) also describes two ideas for a
denotational semantics of a higher-order quantum programming language, and explains
why neither of them is satisfactory. In more recent work (2005a) he studies Abramsky
and Coecke’s strongly compact closed categories (renaming them “dagger compact closed
categories”), establishing closer connections between his previous (2004c) work and that
of Abramsky and Coecke (2004).

Vizzotto et al. (2006) extend earlier work on modelling pure quantum computation
with monads (discussed above in the functional programming section) (Mu and Bird
2001; Sabry 2003; Vizzotto and da Rocha Costa 2005) and show that by generalizing
monads to arrows it is possible also to model measurement. Moreover, they achieve a
general separation of quantum computation into a pure part and an effectful part. They
express this scheme within Haskell, and give examples of the resulting programming style.

Kashefi (2003a,b) develops domain theory for quantum computation, obtaining a deno-
tational semantics which has the same structure as a denotational semantics of classical
probabilistic computation. She uses this semantics primarily to study computability.

4.2.3. Other Semantic Techniques. D’Hondt and Panangaden (2006) define predicate
transformers and weakest preconditions for quantum computation, and establish a Stone
duality between state-transformer semantics and weakest precondition semantics. This
approach to semantics is language-independent, but as examples they define the se-
mantics of Selinger’s (2004c) language QPL and construct the predicate transformer
corresponding to the essential operator in Grover’s search algorithm.

Feng et al. (2005) consider a language similar to Selinger’s (2004c) and prove equiv-
alence of the superoperator semantics and a weakest precondition semantics similar to
that of D’Hondt and Panangaden (2006).

Unruh (2005) defines a semantic model of quantum programs which produce classical
output during execution. The execution of such a program is viewed as a measurement
on the initial quantum state; the measurement outcome is the classical output produced
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during execution. The semantics is fully abstract with respect to a notion of distinguisha-
bility of quantum states.

Danos et al. (2005c) establish a new set of generators for unitary transformations,
and show that these generators have simple implementations in the one-way model of
quantum computation. This leads to a robust and efficient implementation of general
unitary transformations in the one-way model. Danos and Kashefi (2005b) study a version
of the one-way model in which only a limited range of measurements is allowed, and show
that it is approximately universal with respect to unitary transformations.

Baltag and Smets (2006) define a quantum logic and its proof system. They give logical
characterizations of entanglement and information-flow, using a teleportation protocol
as an example. Brunet & Jorrand (2004) and Mateus & Sernadas (2006) also define
quantum logics intended for reasoning about quantum systems in general as well as
quantum programs.

Petersen and Oskin (2003) define an algebraic notation for expressing quantum algo-
rithms, and establish some techniques for reasoning about quantum state, although the
paper does not fully define a programming language syntax.

Grädel and Nowack (2003) use the formalism of abstract state machines to describe
quantum algorithms, within the framework of classical control operating on quantum
state.

4.3. Compilation

Svore et al. (2004, 2006) define a software architecture for a suite of tools which will
transform a high-level language specification of a quantum algorithm into a low-level im-
plementation targeted at a particular quantum computing technology. Their proposal is
for compilation in two stages. The source language is a high-level language, which should
of course support complex data and control structures. The intermediate language is a
quantum assembly language, which should work at the level of qubits and unitary oper-
ators but should still be independent of any particular physical implementation scheme.
The object language is a quantum physical operations language, which is specific to a
particular physical system and may include, for example, explicit operations to bring
individual qubits into physical proximity so that they can interact. An instance of this
scheme has been developed, generating code for a fault-tolerant ion-trap architecture,
which can then be simulated. Heller et al. (2002) have also defined the language Q-HSK,
based on C, for programming simulations of quantum algorithms.

Aho and Svore (2003) develop algorithms for optimising the compilation of arbitrary
unitary transformations into controlled single-qubit gates; such techniques are likely to
be important in practical compiler systems for quantum programming.

Williams (2004) and Nagarajan et al. (2005) have developed a compiler from Selinger’s
(2004c) language QPL to an architecture which they call SQRAM (Sequential Quantum
Random Access Machine); it is a hybrid classical-quantum architecture based on QRAM,
and equipped with a specific instruction set. A key feature of the compiler is the imple-
mentation of an algorithm for decomposing arbitrary unitary operators into combinations
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of operators from a fixed universal set. A simulator for the SQRAM instruction set has
also been developed.

Grattage and Altenkirch (2005) have developed a compiler from their language QML
(2005a) into a representation of quantum circuits, using a categorical semantics as an
intermediate form. The quantum circuit specifications can be simulated with a tool devel-
oped by the authors or with a third-party system. A characteristic of the QML language,
which is reflected in the compiler, is the possibility of quantum control (superpositions
of control flow paths) as well as quantum data.

Zuliani (2005a) defines a compiler from qGCL, the quantum guarded command lan-
guage, to a simple quantum architecture. The compiler is presented in the normal-form
style, in which compilation is expressed as a series of algebraic transformations from the
source program to a directly executable form. This is a natural framework in which to
study compiler correctness, which is the main emphasis of the work.

5. Future Directions

There is much scope for further research in all of the areas that I have surveyed in this
article. In language design, the use of complex quantum data structures has not been
fully explored, nor has the development of high-level quantum control structures. There
has been relatively less emphasis on formal semantics for the imperative languages than
for the functional languages, and it would be useful to redress the balance. Denotational
semantics of higher-order quantum functional computation is still not solved. The area
of compiling quantum programming languages has received relatively little attention.
As languages increase in complexity and practical implementations become possible,
the sophisticated techniques of classical compiler theory are likely to be very relevant,
especially as quantum state may be a severely limited resource.

The physical implementation of quantum computers is an area of active research, and it
is not yet clear which physical technology will be most successful. This has implications
for programming language and compiler design: any given implementation technology
may have a preferred set of operators and measurements that are easiest to implement.
It may be necessary to develop a range of compilation techniques targetting different
physical architectures, or a range of programming language features designed to exploit
the preferred operations of different implementation schemes. Alternatively, it may be
necessary to develop program transformation techniques that can shift from one imple-
mentation style to another, and in this case it would be desirable for the correctness of
the transformations to be justifiable semantically.
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Ömer, B. (2002) Classical concepts in quantum programming. arXiv:quant-ph/0211100.
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