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Abstract—Indoor positioning systems have received increasing attention for supporting location-based services in indoor environ-
ments. WiFi-based indoor localization has been attractive due to its open access and low cost properties. However, the distance
estimation based on received signal strength indicator (RSSI) is easily affected by the temporal and spatial variance due to the
multipath effect, which contributes to most of the estimation errors in current systems. In this work, we analyze this effect across the
physical layer and account for the undesirable RSSI readings being reported. We explore the frequency diversity of the subcarriers in
OFDM systems and propose a novel approach called FILA, which leverages the channel state information (CSI) to build a propagation
model and a fingerprinting system at the receiver. We implement the FILA system on commercial 802.11 NICs, and then evaluate its
performance in different typical indoor scenarios. The experimental results show that the accuracy and latency of distance calculation
can be significantly enhanced by using CSI. Moreover, FILA can significantly improve the localization accuracy compared with the
corresponding RSSI approach.

Index Terms—Indoor localization, Channel State Information, RSSI, Physical Layer.
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1 INTRODUCTION

LOcalization is one of the essential modules of many
mobile wireless applications. Although Global Posi-

tioning System (GPS) works extremely well for an open-
air localization, it does not perform effectively in indoor
environments due to the disability of GPS signals to
penetrate in-building materials. Therefore, precise in-
door localization is still a critical missing component
and has been gaining growing interest from a wide
range of applications, e.g., location detection of assets
in a warehouse, patient tracking inside the building of
the hospital, and emergency personnel positioning in a
disaster area.

A great number of researches have been done to
address the indoor localization problem. Many range-
based localization protocols compute positions based on
received signal strength indicator (RSSI), which repre-
sents the received power level at the receiver. According
to propagation loss model [1], received signal power
monotonically decreases with increasing distance from
the source, which is the foundation of the model-based
localization. Most of the existing radio frequency (RF)-
based indoor localization are based on the RSSI val-
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ues [1]–[5]. More related work is in the supplemental
file. However, we claim that the fundamental reasons
why RSSI is not suitable for indoor localization are
from two aspects: First, RSSI is measured from the RF
signal at a per packet level, which is difficult to obtain
an accurate value. According to our measurement in
a typical indoor environment as shown in Fig. 1, the
variance of RSSIs collected from an immobile receiver in
one minute is up to 5dB. Second, RSSI is easily varied by
the multipath effect. In theory, it is possible to establish
a model to estimate the separation distance using the
received power. In reality, however, the propagation of
a RF wave is attenuated by reflection when it hits the
surface of an obstacle. In addition to the line-of-sight
(LOS) signal, there are possibly multiple signals arriving
at the receiver through different paths. This multipath
effect is even more severe in indoor environments where
a ceiling, floor and walls are present. As a result, it is
possible for a closer receiver to have a lower RSSI than
a more distant one. Consequently, a simple relationship
between received power and separating distance cannot
be established. Therefore, this time-varying and vulner-
able RSSI value creates undesirable localization errors.

We argue that a reliable metric provided by commer-
cial NICs to improve the accuracy of indoor localiza-
tion is in need. Such metric should be more temporal
stable and provide the capability to benefit from the
multipath effect. In current widely used Orthogonal Fre-
quency Division Multiplexing (OFDM) systems, where
data are modulated on multiple subcarriers in different
frequencies and transmitted simultaneously, we have a
value that estimates the channel in each subcarrier called
Channel State Information (CSI). Different from RSSI,
CSI is a fine-grained value from the PHY layer which
describes the amplitude and phase on each subcarrier in
the frequency domain. In contrast to having only one
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RSSI per packet, we can obtain multiple CSIs at one
time. More importantly, the CSIs over multi-subcarriers
will travel along different fading or scattering paths
on account of the multipath effects. It then naturally
brings in the frequency diversity attribute of CSI, which
each subcarrier has different amplitudes and phases. By
exploiting the frequency diversity, we can construct a
unique “fingerprinting” indicating each location on the
radio map. According to these advantages, it is favorable
to leverage the CSI to improve the performance of indoor
location fingerprinting. And thus, designing a precise
tracking/localization system becomes possible.

Based on CSI, in this paper, we present the design and
implementation of FILA, a novel cross-layer approach
based on OFDM for indoor localization using WLANs.

In summary, the main contributions of this paper are
as follows.

1) We design FILA, a cross layer approach that en-
ables fine-grained indoor localization in WLANs.
FILA includes two parts, the first one is CSI-based
propagation model and the second one is CSI-
based fingerprinting. To the best of our knowledge,
FILA is the first to use fine-gained PHY layer
information (CSI) in OFDM to build a propagation
model so as to improve indoor localization perfor-
mance. And it is also the first time to take advance
of the combination of the fine-grained PHY lay-
er information CSI with frequency diversity and
multiple antennas with spatial diversity for indoor
location fingerprinting.

2) We implement FILA in commercial 802.11 NICs
and conduct extensive experiments in several typ-
ical indoor environments to show the feasibility of
our design.

3) Experimental results demonstrate that FILA sig-
nificantly improves the localization accuracy as
compared to the corresponding traditional RSSI-
based approach.

The rest of this paper is organized as follows. In
Section. 2, we introduce some preliminaries. This is
followed by the system architecture design in Section 3.
In Section 4, we demonstrate the CSI-based propagation
model. In Section 5, we illustrate the methodology of
CSI-based fingerprinting. The implementation of FILA
and experimental evaluations are presented in Section 6.
Finally, conclusions are presented and suggestions are
made for future research in Section 7.

2 PRELIMINARIES
In this section, we introduce the CSI value which is
the foundation of FILA design. And the background
information of the OFDM system can be found in sup-
plemental file.

2.1 Channel State Information
Based on OFDM, channel measurement at the subcarrier
level becomes available. Nowadays, adaptive transmis-
sion systems in wireless communication always improve
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Fig. 1: Temporal variance of RSSI.

the throughput by utilizing some knowledge of the chan-
nel state to adapt or allocate transmitter resources [6].

Channel state information or channel status informa-
tion (CSI) is information that estimates the channel by
representing the channel properties of a communica-
tion link. More specifically, CSI describes how a signal
propagates from the transmitter(s) to the receiver(s) and
reveals the combined effect of, for instance, scattering,
fading, and power decay with distance. In summary,
the accuracy of CSI greatly influences the overall OFDM
system performance. It is worth pointing out that accord-
ing to the definition of CSI, only OFDM-based WLAN
systems can demonstrate the frequency diversity in CSI
since they use multiple subcarriers for data transmission.
In another word, other modulation schemes like DSSS
cannot provide this value.

In a narrowband flat-fading channel, the OFDM sys-
tem in the frequency domain is modeled as

y = Hx+ n, (1)

where y and x are the received and transmitted vectors,
respectively, and H and n are the channel matrix and
the additive white Gaussian noise (AWGN) vector, re-
spectively.

Thus, CSI of all subcarriers can be estimated according
to (1) as

Ĥ =
y

x
, (2)

which is a fine-grained value from the PHY layer that
describes the channel gain from TX baseband to RX
baseband.

3 SYSTEM DESIGN

In this section, we first give an overview of the system
architecture. Challenges in the system design are pre-
sented in the supplemental file.

3.1 System Architecture
FILA system is built based on the current communi-
cation system and thus compatible to the under layer
design. More precisely, no modification is required at
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the transmitter end (TX–the AP), while only one new
component for CSI processing is introduced for localiza-
tion purposes at the receiver end (RX–the target mobile
device). Fig. 2 demonstrates the detailed design of the
system architecture. For traditional packet transmission
in wireless communication, only the demodulated signal
is exported to the decoder for message content retrieval.
However, a prerequisite in FILA localization system is
that it should be able to export the CSI value after the
normal demodulation process. Such that we devise a
localization block to exploit the CSI information.

In our designated localization block, the CSI collect-
ed from 30 groups different subcarriers will firstly be
processed. After running the proposed algorithm, we
can obtain the effective CSI in an efficient time con-
straint. Then the effective CSI will be used to estimate
the location of the target object. As mentioned in the
previous section, CSI value is the channel matrix from
RX baseband to TX baseband which is needed for chan-
nel equalization. Therefore, there is no extra processing
overhead when obtaining the CSI information. Never-
theless, RSSI is obtained at the receiver antenna in the
2.4 GHz radio frequency before down convert to the IF
and baseband. Therefore, the free space model that built
for RSSI-based localization approaches can’t be directly
applied to process the CSI value. We need to refine such
radio propagation model according to the CSI informa-
tion and compute the distance based on the proposed
one. Finally, as the AP location information is obtained
from the network layer while CSI is collected from the
physical layer, we then use the simplest trilateration
method to obtain the location. For the fingerprinting, we
leverage the CSI values including different amplitudes
and phases at multiple propagation paths, known as the
frequency diversity, to uniquely manifest a location. We
then present a probability algorithm with a correlation
filter to map object to the fingerprints.

In our FILA system architecture design, CSI is only
processed by a newly designed localization block if

needed. Owing to the fact, FILA can be applied con-
currently with the original packet transmission. In other
words, it will not introduce additional overhead during
the data transmission.

4 CSI-BASED PROPAGATION MODEL

In this section, we leverage the fine grained CSI value in-
stead of RSSI to build a propagation model and address
the indoor localization issue. The CSI-based propagation
model can be built based on three following steps.

1) CSI Processing: First, we need to mitigate estima-
tion error by effectively processing the CSI value
denoted as CSIeff . This is known as the prerequi-
site of the ongoing two steps.

2) Calibration: Afterwards, we develop a refined in-
door propagation model and a fast training algo-
rithm to derive the relationship between CSIeff
and distance.

3) Location Determination: By receiving the APs coor-
dinates in network layer and CSIeff values from
physical layer, we apply the revised propagation
model and trilateration method to accomplish the
localization. This part is in the supplemental file.

4.1 CSI Processing
For wireless communication, attenuation of signal
strength through a mobile radio channel is caused by
three nearly independent factors: path loss, multipath
fading, and shadowing. The path loss characterizes the
property that the signal strength decays as the distance
between the transmitter and receiver increases, which is
the foundation of our CSI-based localization. Multipath
fading is a rapid fluctuation of the complex envelope of
received signal caused by reception of multiple copies
of a transmitted signal through multipath propagation.
Shadowing represents a slow variation in a received
signal strength due to the obstacles in propagation path.
Therefore, before establishing the relationship between
CSI and distance, we need to mitigate the estimation
error introduced by multipath fading and shadowing.

4.1.1 Time-domain Multipath Mitigation
The first concentration of our design is that the sys-
tem must be capable of dealing with the challenge of
operating over a multipath propagation channel. Since
multipath effect will introduce Inter-Symbol-Interference
(ISI), cyclic prefix (CP) is added to each symbol to
combat the time delay in OFDM systems. However,
the CP technique is helpless for the multiple reflections
within a symbol time.

For narrow-band systems, these reflections will not be
resolvable by the receiver when the bandwidth is less
than the coherence bandwidth of the channel. Fortu-
nately, the bandwidth of 802.11n waveforms is 20MHz
(with channel bonding, the bandwidth could be 40MHz),
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which provides the capability of the receiver to resolve
the different reflections in the channel. We propose a
multipath mitigation mechanism that can distinguish
the LOS signal or the most closed NLOS from other
reflections in the expectation of reducing the distance
estimation error.

The commonly used profile of multipath channel in
the time domain is described as follow,

h(τ) =

Lp−1∑
k=0

αkδ(τ − τk), (3)

where Lp is the number of multipath channel componen-
t. αk and τk are the amplitude and propagation delay of
the k-th path.

In practice, OFDM technologies are efficiently imple-
mented using a combination of fast Fourier Transform
(FFT) and inverse fast Fourier Transform (IFFT) blocks.
The 30 groups of CSI represent the channel response in
frequency domain, which is about one group per two
subcarriers. With IFFT processing of the CSI, we can
obtain the channel response in the time domain, i.e.,
h(t). From Fig. 3 we can observe that the LOS signal and
multipath reflections come with different time delay, and
generally the LOS signal has higher channel gain, so we
can use a trunk window with the first largest channel
gain in the center to filter out those reflections. If LOS
doesn’t exist, we can identify the shortest path NLOS re-
flection. According to Nyquist sampling theorem, wider
spectrum leads to higher resolution in the time domain.
Due to the bandwidth limitation of WLAN, we can’t
distinguish all the reflections but we can use this method
to reduce the variance induced by multipath effects. The
time duration of the first cluster is determined by setting
the truncation threshold as 50% of the first peak value.
In doing so, we expect to mitigate the estimation error
introduced by multipath reflection.

After the time domain signal processing, we reobtain
the CSI using FFT. Fig. 3 shows the CSI results after time
domain filtering. Note that, commercial NICs embeds
hardware circuits for the FFT and IFFT processing, our
algorithm introduces ignorable latency to the whole
localization procedure.

4.1.2 Frequency-domain Fading Compensation
Moreover, since CSI represents the channel responses
of multiple subcarriers, a combination scheme is also
introduced to process the CSI value in our system for
compensation of the fading of received signals in fre-
quency domain to enhance location accuracy.

In general, when the space between two subcarriers
is larger than the coherence bandwidth, they are fading
independently. Since the channel bandwidth of 802.11n
system is larger than the coherence bandwidth in typical
indoor environment, the fading across all subcarriers are
frequency-selective. To combat such frequency selective-
ly fading of wireless signals, multiple uncorrelated fad-
ing subchannels (multiple frequency subcarriers), that is
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Fig. 3: Time Domain Channel Response.

30 groups of CSI values are combined at the receiver.
Motivation for leveraging the frequency diversity stems
from the fact that the probability of simultaneous deep
fading occurring on multiple uncorrelated fading en-
velopes (in our case, resulting from frequency diversity)
is much lower than the probability of a deep fade
occurring on a single frequency system. Thus, exploiting
the wide bandwidth of WLAN that assures sufficiently
uncorrelated subcarriers, will reduce the variance in CSIs
owing to small scale factors, which appears to be one of
the major sources of location determination error. In our
FILA system, we weighted average the 30 groups CSIs
in frequency domain so as to obtain the effective CSI,
which exploits the frequency diversity to compensate the
small-scale fading effect.

Given a packet with 30 groups of subcarriers, the
effective CSI of this packet is calculated as

CSIeff =
1

K

K∑
k=1

fk
f0

× |Hk|, k ∈ (−15, 15), (4)

where f0 is the central frequency, fk is the frequency of
the k-th subcarrier, and |Hk| is the amplitude of the k-th
subcarrier CSI.

Note that selection of weighting factors are based
on the fact that the radio propagation is frequency-
related. According to the free space model, the received
signal strength is related to the frequency the signal is
transmitted. So by this weighting method, we transfer
the channel gain from multiple subcarriers to a single
subcarrier, i.e., the central one. Next, we will establish
the relationship between the CSIeff and distance.

4.2 Calibration

Since CSI value is obtained from the baseband on the
receiver side, the radio propagation model [7] for RSSI
is no longer suitable for our design. So we develop
a refined indoor propagation model to represent the
relationship between the CSIeff and distance by revising
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the free space path loss propagation model, given by:

d =
1

4π

[(
c

f0 × |CSIeff |

)2

× σ

] 1
n

, (5)

where c is the wave velocity, σ is the environment
factor and n is the path loss fading exponent. Both of
the two parameters are dependent on distinctive indoor
environments. The environment factor σ represents the
gain of the baseband to the RF band at the transmitter
side, inversely, the gain of RF band to baseband at the
receiver side, and the antenna gains as well. Moreover,
for NLOS AP, the σ also includes the power loss due to
wall penetration or the shadowing. The path loss fading
exponent n is varying depending on the environment.
For instance, when the RF signal is propagating along a
free space like corridor, the path loss fading exponent
n will be around 2. In other cases, such as an office
that represents a complex indoor scenario, the exponent
could be larger than 4. In an indoor radio channel with
clutter in medium, where often the LOS path is aug-
mented with the multipath NLOS at the receiver, signal
power decreases with a pass loss fading exponent higher
than 2 and is typically in the order of 2 to 4 [8]. Hence, it
is not trivial to determine the received signal power and
we need to refine the free space propagation model that
obeys the analytical and empirical methods. A widely
used simplification is to assume that all the path loss
exponents that model propagations between the specific
receiver and all the APs are equal. This simplification
in a typical indoor environment is an oversimplification,
since the channel propagation is usually very different
depending on the relative position of the mobile client
with regard to each AP. Therefore, we calibrate both
environment factor σ and the path loss fading exponent
n in a per-AP manner.

We propose a simple fast training algorithm based
on supervised learning to retrieve the parameters with
three anchors in offline phase. In the first step, CSIs of
multiple packets are collected at two of the anchors to
train the environment factor σ and the path loss fading
exponent n for the refined indoor propagation model. In
the second step, CSIs collected at the third anchor are
used to test the efficiency of the parameter estimation.
The two steps run iteratively until convergence. The
experimental results in the next section show that this
simple algorithm can achieve satisfactory accuracy, more
sophisticated training method will be able to obtain
better performance.

5 CSI-BASED FINGERPRINTING

In this section, we introduce the methodology of CSI-
based location fingerprinting approach. We start by us-
ing a mobile device equipped with 802.11 NICs to re-
ceive the beacon message from nearby APs at each sam-
ple position. The message contains CSI that represents
the channel response of multiple subcarriers. We modify

the driver and divide the CSIs into 30 groups. Hence,
N = 30 groups CSI values are collected simultaneously
at the receiver that represented as

H = [H1,H2, · · · ,Hi, · · · ,HN ]T , i ∈ [1, 30], (6)

where each subcarrier Hi is defined as

Hi = |Hi|ej sin{∠Hi}, (7)

where |Hi| is the amplitude response and ∠H is the
phrase response of the ith subcarrier.

Then, it comes to CSI processing which is the prerequi-
site of calculating position likelihood in the positioning
phase. We quantify the power of a package, denoted as
summational CSI, by adding up the power with respect
to 30 groups of subcarriers. Specifically,

He =

I∑
i=1

|Hi|2, i ∈ [1, 30], (8)

5.1 CSI-based Fingerprinting Generation
As the foundation of fingerprinting approach, the mea-
sured CSI values are processed to construct a radio
map. Since most of the RF-based fingerprint methods
consider two spatial dimensions for localization [9], we
also follow the principle. Therefore, the two-dimension
physical space coordinate of a sample position lj is
lj = (lj,x, lj,y). To generate a radio map, we first extract
the statistic determine the number of detectable APs
for a sample position. At each reference point, we will
estimate the signal strength distribution for each access
point at each location. In our location system, the signal
strength over all the subcarriers is represented by He.

Moreover, another component of the radio map will
be normalized CSI values at each subcarrier for each
AP. The motivation of leveraging the frequency diversity
stems from the fact that CSI benefits from the mul-
tipath effects, because the received signal at different
positions will be the combination of different reflections.
Therefore, these normalized CSI values will reflect the
combination result ignoring the large scale fading.

5.2 Positioning Phase
For object location estimation, the target is required to
be accurately mapped to the radio map.

Previous works show that the probabilistic approaches
such as maximum likelihood provide more accurate
results than deterministic ones do in indoor environ-
ments [9]. Therefore, we adapt the probability model
in [10] except that we use He instead of RSS value.
Similarly, we treat He observed from the AP to the
receiver at a fixed location as a Gaussian variable. In the
proposed system, we will select K best APs to calculate
the probability of the MS at each reference point. The
criteria for the best AP selection is that those APs with
highest He values, because they are more reliable. In our
experiment, we fix the K to be 3.
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The selected K He values obtained by the terminal to
be located form a vector He = [He,1, · · · ,He,K ]. Then,
the position estimation problem is equivalent to finding
the l that maximizes the posteriori probability P (lj |He).
According to Bayes’ law,

P (lj |He) =
P (lj)P (He|lj)∑
i P (li)P (He|li)

=
P (lj)P (He|lj)

P (He)
(9)

Note that P (lj) is the prior probability that the termi-
nal located at the reference point li. In [9], [10], uniform
distribution is assumed. In contrast, we will leverage the
spatial correlation of the CSI to determine the P (lj).

Recall that CSI is a fine-grained information, we can
observe channel response over multiple subcarriers rep-
resented by Hk = [H1,H2, · · · ,Hi, · · · ,HN ]T for the kth
AP. We denote the observed CSI with normalization for
each AP as H(O) ∈ CN×K , and the CSI recorded in the
radio map for the same set of APs at position lj as H(lj).
To quantify the similarity of the observed CSI and the
stored “fingerprints” for all the APs, we use the Pearson
correlation between them which is defined as

ρH(O),H(lj) =
K∏

k=1

cov(Hk(O),Hk(lj))

σHk(O)σHk(lj)

, (10)

where each AP is considered to be independent. Ac-
cording to the measurement, the spatial channel cor-
relation will decrease as the distance between the two
receiver increases. Therefore, with higher ρ, the position
of the terminal will be closer to the reference point. Then,
the probability of the terminal on each candidate point
is defined as

P (lj) =
ρH(O),H(lj)∑J
i=1 ρH(O),H(li)

(11)

where J is the size of the candidate reference points set.
Considering uncorrelated property between each AP,

the likelihood P (He|lj) can be calculated as,

P (He|lj) =
K∏

k=1

P (He,k|lj), (12)

Since the signal strength at each reference point is
modeled as a Gaussian variable which requires less sam-
plings than the histogram approach [11]. At the offline
phase, we can obtain the expectation H̄e,k and variance
σe,k corresponding to the He,k, and the P (He,k|lj) is
obtained as

P (He,k|lj) =
1√

2πσe,k

exp
−(He,k − H̄e,k)

2

2σe,k
. (13)

The location estimation of the terminal is the weighted
average over the whole candidate set,

l̂ =
J∑
j

P̄ (lj |He)lj (14)

For the fingerprinting method, the terminal can pro-
cess CSI by itself and then check the globe or local

database for localization. It doesn’t need to rely on one
pubic server.

The performance of the proposed fingerprinting
methodology is evaluated in the following section.

6 EXPERIMENTAL RESULTS

In this section, we present the implementation and ex-
perimental evaluation of FILA. First, we describe the
experimental setup which can be found in the supple-
mental file. Then we illustrate the validation results for
our refined propagation model. Finally, we evaluate the
performance of CSI-based propagation model and its fin-
gerprinting. In our evaluation, we use the performance
of corresponding RSSI-based approach based on radio
propagation model and trilateration as baseline .

II. Experimental Scenarios
We conduct experiments to show the performance and
robustness of our FILA system in four different scenarios
in the campus of Hong Kong University of Science and
Technology as follows:

1) Chamber First, we set up a testbed in a 3m × 4m
Chamber to collect the RSSI and CSI as shown in
Fig. 4. In general, Chamber is an enclosure that
used as environmental conditions for conducting
testing of specimen. In our experiment, chamber
represents the ideal free space indoor environment
which means only LOS signal exists without other
multipath reflection or external interference.

2) Research Laboratory Then, we deployed FILA in
an identical indoor scenario – a 5m × 8m research
laboratory as shown in Fig. 5. In the laboratory
region, we place three APs on the top of three shel-
ters in three dimensions. The experiment was con-
ducted on a weekday afternoon when there were
a couple of students sitting or walking around,
which will show the robustness of our system to
temporal dynamics of the environment. The laptop
was placed at a fixed position at the beginning of
the experiment and then moved to the next point
along a pre-measured path.

3) Lecture Theatre In addition, we chose a larger
lecture hall to conduct the localization experiments,
which is a 20m × 20m lecture theatre. Since the
space is relatively large, the influence of the room
size can be explored.

4) Corridor Finally, we performed experiments in a
corridor environment with multiple offices aside
in our academic building, which is 32.5m × 10m
covering corridors, rooms and cubicles. In this
scenario, we expect to illustrate the impact of the
absence of LOS APs on the location accuracy.

6.1 Validate the Refined Model
As the target for precise indoor localization, two most
important metrics are used to testify FILA: the accuracy
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Fig. 4: Chamber Fig. 5: Research Laboratory
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and the temporal stability of location estimation. After-
wards, we compared the performance of our CSI-based
localization system with the corresponding RSSI-based
approach.

6.1.1 Robustness of the Refined Model
One essential aspect that needs to be determined before
the localization experiments is whether CSI value can
build a relationship with distance. In general, indoor
RF signal strength is a non-monotonic function with
distance due to multipath and shadowing effects. Fig. 6
illustrates the CSI value approximated by a power func-
tion of distance according to our refined propagation
model. In diverse scenarios with corresponding environ-
ment factor σ, the path loss fading exponent n varies in
a range of [2, 4]. It is shown that our refined model prop-
erly fits the relationship between CSIeff and distance.

6.1.2 Temporal Stability of CSI
Temporal stability is a fundamental criteria in validating
the robustness of the localization systems. We thus set
out to examine the stability of the proposed new metric
CSIeff and RSSI value in time series. It is well-known
that RSSI is a fickle measurement of the channel gain
because of its coarse packet-level estimation and easily
varied by multipath effect. As CSI is fine-grained PHY
layer information that provides detailed channel state
information in subcarrier level, it is of great importance
to figure out whether it will remain in a stable manner
in practical environment.

Fig. 7 and Fig. 8 illustrate both the interactions of
CSIeff and RSSI values on temporal variance, respec-
tively. It is shown that the received signal power cal-
culated by RSSI has a variance up to 5 dBm, while
the variance of CSIeff is within 1 dBm. Therefore,
the proposed new matric is much more stable in time
domain compared with RSSI.

In Fig. 9, we further investigate the CSIeff value
and RSSI value in the chamber and research laboratory
so as to discover the effect of any temporal instability
on distance estimation. Chamber provides a free space-
like environment as it uses specific material that can
absorb the non-LOS signals. Thus, multipath effect can
be eliminated in chamber environment. However, the
result from our experiment shows that even in chamber
the RSSI is also varied significantly from time to time
due to the inaccurate measurement. In contrast, research
lab is a typical multipath environment. Both the static
obstacles and dynamic walking around individuals exert
the influence on multipath and bring in more intense
path loss. In this way, the variance of RSSI becomes even
larger and the performance of distance estimation is even
worse.

Fig. 7, Fig. 8 and Fig. 9 lead to an essential conclusion:
in comparison with RSSI, CSI is more temporally stable
in different environments and helps maintain the per-
formance over time. Therefore, FILA can achieve accu-
rate location more quickly than the RSSI-based scheme,
which is very crucial for some location-based application
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Fig. 10: Mean distance error.

like search and rescue.

6.2 Performance Evaluation of CSI-based Propaga-
tion Model
As a target for precise and fast indoor localization, two
most important metrics are used to testify this model: the
accuracy and the latency of localization, afterwards, we
compared the performance of our CSI-based localization
systemwith the corresponding RSSI-based approach by
using the propagation model.

6.2.1 Accuracy
Accuracy over a Single Link
As the premise of indoor localization, we first inves-
tigated the distance determination accuracy of FILA
compared with the corresponding RSSI-based approach.
The primary source of error in indoor localization is
multipath propagation caused by multiple reflections
that overlap with the direct LOS subcarrier at the re-
ceiver. FILA takes advantage of the fine-grained trait
to mitigate such multipath effect, and exploits the fre-
quency diversity to compensate the frequency-selective
shading. We repeated the distance measurement experi-
ments across 10 different locations in chamber, research
laboratory and lecture theatre, respectively. For some
positions with serious multipath effect, FILA achieves up
to 10 times accuracy gain over the corresponding RSSI-
based scheme. Fig. 10 illustrates the mean distance errors
in three different environments. Our evaluation shows
that FILA can outperform the corresponding RSSI-based
scheme by around 3 times for the distance determination
of a single link.

To assess the effectiveness of the CSI-based localiza-
tion approach, in the following we evaluate the accuracy
of FILA in different typical indoor environments.

Localization Accuracy in Single Room
In the experiments conducted in the research laboratory,
we fix three APs on the top of the shelters. The mobile
laptop with iwl5300 NICs is first fixed at one location
and then moved to another. We repeated this process and
placed the device at 10 different positions respectively.
Fig. 11(a) illustrates the cumulative distribution (CDF) of

localization errors across the 10 positions. In our experi-
ments, for over 90% of data points, the localization error
falls within the range of 1 meter, and the 50% accuracy
is less than 0.5 m. In such a dynamic environment with
lots of factors interfering the propagation of signals,
FILA exhibits a preferable property indicating that the
fine-grained nature of CSI is beneficial to improve the
accuracy of corresponding RF-based approach.

Fig. 11(b) depicts the cumulative distribution function
errors per location detected at the university lecture
theatre. Even for such a much larger space, FILA can
locate objects in the range within 1.8 meters of their
actual position with 90 percent probability, which is
acceptable for most location-based applications.

Across the above two typical single room indoor sce-
narios, FILA achieves median accuracy of 0.45 m and 1.2
m, respectively. It is therefore safe to conclude that the
proposed CSI-based scheme performs much better than
RSSI-based one when locating objects in a typical indoor
building with multipath effect.

Localization Accuracy in Multiple Rooms
In our previous experiments, the APs and client are
placed in the same room. We also examined the corridor
scenario where several APs are deployed in the multiple
rooms. Specially, we take into consideration both the
complicated multipath effect and the shadowing fading
brought by wall shield. We first fix the position of the
object at some reference nodes, and collects the AP
coordinate and CSI value for offline training. Then, we
move the object to arbitrary positions for online tracking.
The moving speed is around 1m/s and we collect 20 CSIs
and RSSIs at each position.

In Fig. 11(c), we plot the cumulative distribution of
location errors across 10 positions. It is shown that
multipath propagation does degrade the accuracy of
object localization as well as the shadowing in the mul-
tiple rooms scenarios. However, FILA is robust enough
to maintain the degradation. More importantly, FILA
can achieve median accuracy of 1.2 m in this corridor
environment. This result indicates that FILA is able to
effectively estimate and compensate for gain differences
across multiple rooms.

6.2.2 Latency of CSI-based propagation model localiza-
tion
Two main phases contribute to the latency of FILA,
the calibration phase and location determination phase.
Since the environment factor and the fading exponent
vary in different environments, we need to conduct
calibration to train these two parameters for the refined
propagation model. We should collect CSIs at some pre-
known positions to calculate these two parameters using
our fast training algorithm. Actually, this process can
be finished before localization as an offline task since
the APs can use each other’s information for the cali-
bration. In our FILA system, the AP takes about 0.8ms
to transmit a packet with 100 bytes beacon message in
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Fig. 11: CDF of localization error in different indoor environments.

IEEE 802.11n. Each time we collect 20 CSIs and the time
will be 0.8 × 20 = 16ms. The calibration process can be
done within 2ms according to our measurement on a
HP laptop with 2.4GHz dual-core CPU. In the location
determination phase, the IFFT and FFT process can lever-
age the according hardware blocks in the wireless NICs
whose running time is ignorable. While we conduct
these signal processing on laptop consuming around
2ms, including the time needed for the trilateration
location calculation. Therefore, the time consumption
for both training and location determination is within
several ms. In our experiment, the walking speed of user
is around 1m/s. The average tracking error is around
1.2m as shown in Figure 11(c). For multiple rooms envi-
ronment, the simple alpha-tracking algorithm [12] can be
applied for triggering the training. We only need to train
these parameters once unless the environment changes
greatly. In summary, our system can reach the average
time tracking latency to as fast as about 0.01s, which
significantly outperforms previous RSSI-based tracking
systems [4] (usually 2− 3s).
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Fig. 12: Mean distance error.

6.3 Performance Evaluation of CSI-based Finger-
printing
6.3.1 Accuracy
First, we evaluate the accuracy of the proposed CSI-
based probability algorithm and compared with Horus,

the widely used RSSI-based fingerprinting system. The
mean distance error in the two different environments
is shown in Fig. 12. Our evaluation shows that CSI-
based method can achieve the median accuracy of 0.65m,
which outperforms Horus by about 0.2m, and the gain
is about 24%. Moreover, in the corridor scenario, where
covered by 6 APs and 3 APs were taken into computa-
tion, the mean accuracy of our approach is 1.07m which
is 0.35m lower than Horus system, about 25% gain over
Horus.

In addition, we compare the two approaches con-
cerning different numbers of APs in corridor. Fig. 14
depicts the average accuracy according to the amount
of APs varying from 1 to 6. Since richer information to
estimate the location can be obtained from the more APs,
both lines demonstrate the accuracy improvement. In
particular, our approach reduced the mean distance error
by 29% on the average. Obviously, these results show the
effectiveness of the proposed CSI-based location system
and indicate the benefits from indoor environment with
dense-deployed APs. When the AP is sparse, our scheme
performs much better than the RSS-based one.

6.3.2 Precision
Fig. 15 illustrates the cumulative distribution (CDF) of
localization errors in the laboratory. The data were col-
lected across the 28 positions in the laboratory. From
Fig. 15, we can observe that the confidence interval with
confidence level 90% for the error is (-1.3m, +1.3m),
which means the CSI-based localization error falls within
the range of 1.3 meters, and the 50% accuracy is less than
0.6 m. However, the Horus can locate objects in the range
within 1.6 meters of their actual position with 90 percent
probability, and the median accuracy is 0.8.

Unlike the first scenario that 3 APs and client are
placed in the same room, we also examined the corridor
testbed where the 6 APs are deployed in the multiple
rooms. Fig. 13 depicts the cumulative distribution of
positioning errors across 20 positions. We can easily ob-
serve that both our approach and Horus can achieve the
median accuracy less than 1.25m. However, the accuracy
improvement of our approach over Horus for 90% of
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Fig. 13: CDF of localization error in
Corridor.
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Fig. 14: Mean distance error with dif-
ferent numbers of APs.
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Fig. 15: CDF of localization error in
Laboratory.

data points is 0.55m. We can conclude that our approach
exhibits a preferable property since the fine-grained and
frequency diversity nature of CSI is beneficial to improve
the precision of location fingerprinting.

7 CONCLUSIONS AND FUTURE WORK
Localization is one of the most appealing applications
and becomes increasingly common in our daily life.
RSSI-based schemes have been widely used to provide
location-aware services in WLAN. However, in this pa-
per, we observe that RSSI is roughly measured and easily
affected by the multipath effect which is unreliable. We
then use the fine-grained information, that is, Channel
State Information (CSI), which explores the frequency
diversity characteristic in OFDM systems to build the
indoor localization system FILA. In FILA, we process the
CSI of multiple subcarriers in a single packet as effective
CSI value CSIeff , and develop a refined indoor radio
propagation model to represent the relationship between
CSIeff and distance. Based on the CSIeff , we then
design a new fingerprinting method which leverages
the frequency diversity. To demonstrate the effectiveness
of FILA, we implemented it on the commercial 802.11n
NICs. We then conducted extensive experiments in typ-
ical indoor environments and the experimental results
show that the accuracy and speed of distance calculation
can be significantly enhanced by using CSI.

In this work, we just use the simplest trilateration
method to illustrate the effectiveness of CSI in indoor
localization. The future research in the new and largely
open areas of wireless technologies can be carried out
along the following directions. First, we can leverage the
available multiple APs to improve the location accuracy
in some extent. Second, in this paper we only leverage
the frequency diversity, however, the spatial diversity
can also be exploited in MIMO to enhance the indoor
localization performance. Third, since some of the smart
phones have 802.11n chipset, the next step of our work
is to implement FILA in smart phone.
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