
Application-Specific System Customization on Many-Core Platforms:
The VT-ASOS Framework

Position paper

Godmar Back and Dimitrios S. Nikolopoulos
Center for High-End Computing Systems

Department of Computer Science
Virginia Tech

{gback,dsn}@cs.vt.edu

Abstract

Dense shared-memory multiprocessors built with
several interconnected multi-core chips, a computer
organization which was recently coined as a many-
core system, are emerging as a dominant architec-
tural paradigm in high-performance computing. As
many-core systems will scale to tens of cores in 2007
and hundreds of cores in the near future, effective re-
source allocation and scalability across the applica-
tion and system software stacks become paramount.
Virtualization is a technology that can potentially ad-
dress this issue, as well as the issue of productiv-
ity in high-performance software development, via
the provision of encapsulated and customized hard-
ware execution environments to parallel applica-
tions. We currently explore the challenges and the
opportunities of virtualization in high-end comput-
ing, in the VT-ASOS (Virtualization Technologies
for Application-Specific Operating Systems) frame-
work.

1 Introduction

This paper outlines VT-ASOS, a framework for
application-specific customization of the entire sys-
tem software stack of multi-core systems. VT-ASOS
provides components to configure a multi-core sys-
tem and build an execution environment with the
minimum necessary mechanisms and policies, all
tailored to the application at hand. In VT-ASOS, the
tasks comprising a parallel application are encapsu-
lated in their own runtime execution environment.
The execution environment consists of user-level

runtime libraries, combined with a minimal, cus-
tom guest operating system that knows those appli-
cation’s requirements and implements only the func-
tionality that the application needs. The primary ben-
efit of our approach lies in harvesting the known ad-
vantages of virtualization, e.g., increased robustness
and reliability through better isolation, portability,
and easier software maintenance, while at the same
time providing targeted support for performance-
enhancing customization and optimization.

VT-ASOS uses an enhanced virtual machine mon-
itor, built on the existing Xen VMM [1], that can op-
timize the allocation of such resources as CPU cores
and co-processing accelerators to parallel applica-
tions, so that interference due to resource contention
is minimized and applications can deploy their own
customized schedulers with highly tuned parame-
ters. This enhanced VMM supports also application-
specific physical memory management policies. A
performance monitoring infrastructure allows the dy-
namic learning of application properties, which can
be subsequently communicated as resource requests
to the underlying VMM.

Our preliminary results as well as those of oth-
ers [5, 8] indicate that current VMM technology can
support high-end computing applications with toler-
able, small overhead. Figure 1 shows the execution
times of 9 NAS Benchmarks, using the Class B prob-
lem size, on an Intel QX6700 quad-core Xeon pro-
cessor. Execution times were collected with Linux
FC6 (2.6.19 kernel) and XenLinux running on Xen
3.0 (2.6.16 kernel). We observe that Xen introduces
perceptible overhead only in three benchmarks run-
ning on two or three out of the four cores. This

1



   

1 2 3 4

0
50

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

BT Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

e
cs

)

   

1 2 3 4

0
20

4
0

6
0

8
0

1
00

1
20

14
0

CG Class B

B_native B_xen

Threads

E
xe

cu
tio

n
 ti

m
e

 (
se

cs
)

   

1 2 3 4

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
14

0

EP Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

   

1 2 3 4

0
10

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

FT Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

   

1 2 3 4

0
1

2
3

4
5

6
7

8
9

IS Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

   

1 2 3 4

0
5

0
10

0
2

00
30

0
4

00
5

00

LU Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

   

1 2 3 4

0
50

15
0

2
5

0
35

0
4

50
5

5
0

LU-hp Class B

B_native B_xen

Threads

E
xe

cu
tio

n 
tim

e 
(s

ec
s)

   

1 2 3 4

0
2.

5
5

7
.5

1
0

12
.5

1
5

1
7.

5

MG Class B

B_native B_xen

Threads

E
xe

cu
tio

n
 ti

m
e

 (
se

cs
)

   

1 2 3 4

0
5

0
10

0
15

0
20

0
25

0
30

0
35

0

SP Class B

B_native B_xen

Threads
E

xe
cu

tio
n 

tim
e 

(s
ec

s)

Figure 1: Execution times of NAS Benchmarks (Class B) on a quad-core Xeon QX6700 processor, using
Xen 3.0 and XenLinux (kernel 2.6.16) and native Linux FC6.

overhead is likely attributed to implications of thread
placement in relation to the L2 cache organization of
the processor and not to inherent overhead of virtu-
alization.

The reason for the small overhead of Xen is the
use of paravirtualization. Unlike full virtualization
techniques, in which the hosted guest operating sys-
tems are entirely unaware of the underlying VMM
or hypervisor, paravirtualization relies on the coop-
eration between the guest operating system and the
hypervisor. This cooperation reduces overheads be-
cause it eliminates layers of indirection. In addition
to being feasible, virtualization can also be benefi-
cial for high-end computing applications. We believe
that virtualization can provide services to not only
sustain, but also improve the performance of HPC
applications. We discuss some application-specific
system customization examples that leverages par-

avirtualization in the next paragraphs.

1.1 Application-specific core configurations

The introduction of multi-core execution in proces-
sors affects parallel applications in subtle and non-
trivial ways. Parallel applications do not necessar-
ily scale gracefully to any number of cores on a
multi-core system (see Figure 1 for several examples
among the NAS Benchmarks, such as MG, CG, IS
and SP). This problem will become acute if hard-
ware platforms move to tens of cores per chip and
hundreds of cores per node in the near future. Cur-
rently, some system administrators opt to deactivate
multi-core execution throughout large-scale clusters,
due to undiagnosed performance anomalies in sys-
tem software 1.

1See http://www.nersc.gov/nusers/resources/bassi/

2



cores

cpus

memory

runtime

apps

Xen VMM 

APPA=BT,SP,LU,MG

OSA

C1,2C1,1 C2,2C2,1 C3,2C3,1 C4,2C4,1

CPU1 CPU2 CPU3 CPU4

gcc OpenMP RTL

OS

APPB=FT,CG,UA,IS

OSB

gcc OpenMP RTL

C1,2C1,1 C2,2C2,1 C3,2C3,1 C4,2C4,1

CPU1

Linux FC5

gcc OpenMP RTL

APPB=FT,CG,UA,IS

CPU2 CPU3 CPU4

APPA=BT,SP,LU,MG

gcc OpenMP RTL

Node1 Node
2

Node
3

Node
4 Node1 Node

2
Node

3
Node

4

Figure 2: Workloads executed with space sharing on an
Iwill blade with four dual-core AMD Socket-F proces-
sors, using Linux FC5 (left) and Xen VMM (right).

   
BT FT SP CG LU UA MG IS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

FC6

Xen

Figure 3: Normalized execution times of NAS bench-
marks in multiprogram workloads with Linux FC5 and
Xen.

Figure 3 illustrates the results of an experiment in
which we show how paravirtualization can alleviate
such a problem, by configuring cores using feedback
from the application. In this experiment, we execute
a multi-program workload on an Iwill AMD Opteron
blade (see Figure 2) with a total of eight cores, dis-
tributed between four AMD Socket-F Opteron pro-
cessors. Xen enables customized space sharing of
the system, so that each partition has a core config-
uration which makes the best use of the available
memory bandwidth for the guest OS and the appli-
cation running in it. The times are obtained from
four tests, each of which loads a pair of benchmarks
(BT+FT, SP+CG, LU+UA, MG+IS) on the system.

Each benchmark runs with four threads, so that no
core is time-shared between threads. A script en-
forces repeated executions of each benchmark for
30 minutes. In each pair of bars, the left bar cor-
responds to the mean execution time of the bench-
marks running in a Linux FC5 host OS (normalized
to 1.0), whereas the right bar shows the mean execu-
tion times of the benchmarks running in a Linux FC5
guest OS, hosted by Xen 3.0 VMM. In the paravirtu-
alized executions, Xen’s configuration is aware of the
dual-core processor memory bandwidth limitations
in some of the benchmarks (FT, CG and IS) and uses
a customized VM configuration, whereby each guest
is isolated in two sockets and selectively uses either
one core per socket or two cores per socket, depend-
ing on the application demand for memory band-
width. Several benchmarks actually benefit from vir-
tualization and isolation, by achieving higher perfor-
mance.

In VT-ASOS, the application/runtime/guest OS
entity are directly communicated to the VMM hyper-
visor. Rather than adjusting policies at the runtime or
guest OS layer, the hypervisor itself computes an as-
signment of guest domains to hardware threads that
optimizes resource use.

1.2 Application-specific scheduling

The schedulers in current hypervisors, such as Xen,
are primarily designed for commercial server vir-
tualization application scenarios in which different
guest domains are isolated from each other and do
not frequently communicate with each other. In
such scenarios, achieving fairness and maximizing
the utilization of a machine are paramount. Cur-
rent schemes do not provide gang scheduling, or
any synchronization-aware scheduling, both neces-
sary features for parallel applications running on
multi-core systems. Moreover, the interaction be-
tween the hypervisor’s scheduler and the schedulers
of the guest domains is not understood well, as is ev-
idenced by the frequent turnover of often experimen-
tal scheduling algorithms in these systems. In VT-
ASOS, a guest domain’s scheduling requirements
(such as capacity and latency requirements and syn-
chronization patterns) are directly communicated to
and enforced by the hypervisor.

3



   

Domain 
Control

Interface

Application-
specific

core
configuration

Application-
specific

 schedulers and
co-scheduling 

Many-core 
scheduler

Cell BE
scheduler

Virtual
CPU

Virtual
phys. mem

Virtual
network

Virtual
block. dev.

NUMA
placement/
migration

Cache-aware 
placement

Hardware
event

monitor

Hardware
event

monitor

Guest 
customization

Figure 4: VT-ASOS modules.

1.3 Application-specific guest domain cus-
tomizations

Multi-core HPC applications often experience per-
formance degradation and scalability bottlenecks
that are caused by other interfering OS components,
in particular system programs implementing services
and interrupts OS use for time keeping. By creating
minimalistic guest OS that only provide the services
needed by a particular application, VT-ASOS aims
to eliminate these bottlenecks.

Figure 4 summarizes the primary VT-ASOS com-
ponents. The rest of this position paper outlines these
components in the early VT-ASOS design.

2 Application-specific processor
core configurations

VT-ASOS will extend Xen to provide multi-core
aware processor configuration and assignment. The
current Xen provides only very limited support for
placing guest domain threads onto physical cores:
it enumerates all hardware (SMT) threads in depth-
first fashion, and supports a ”pin” operation that fixes
a domain’s virtual thread(s) to one or more SMT
threads. Based on this assignment, it blindly at-
tempts to keep all SMT threads busy.

VT-ASOS will extend XenLinux (the guest do-
main OS) such that applications can directly com-
municate their optimal processor allocation to it. We
will extend Xen such that guest domains can directly

communicate their processor requirements. Specif-
ically, guest domains should be able to specify, the
number of virtual CPUs (VCPUs) that would provide
optimal concurrency, and for each VCPU, whether
this VCPU would be able to coexist with others in
the same core, socket, and node. In addition to such
constraints, guest domains can request affinities for
sets of VCPUs if they desire to place them on the
same core or node.

The extended hypervisor will use the allocation re-
quests to compute a mapping of VCPUs to physical
cores; this computation can be formulated as a sim-
ple constraint-solving problem. Subsequently, this
mapping will remain fixed - the hypervisor will not
perform dynamic load-balancing.

Although we expect that frequently run appli-
cations will have known interference patterns, our
framework will also provide a reasonable default as-
signment for applications for which the resource in-
terference patterns are not known. We will include a
diagnosis and monitoring framework, based on soft-
ware and hardware counters, to monitor those appli-
cations’ behavior. The results of the monitoring can
then be used to perform a dynamic reassignment if
needed.

3 Application-specific scheduling

The current Xen’s scheduler is targeted at commer-
cial server scenarios in which the hypervisor must
provide fair sharing of the CPU resources for the
guest domains it hosts, while being oblivious to the
applications being run inside these domains and their
specific requirements. Moreover, the Xen scheduler
has no way to communicate with the guests’s sched-
ulers: the only information that is communicated
from the guest to the hypervisor is whether a guest
domain is runnable or blocked. Consequently, the
hypervisor is relegated to guess work as to what its
scheduling strategy should be. Xen can be config-
ured, at boot time, to use a specific scheduler. As Xen
evolved, different schedulers have been preferred in
the past: borrowed-virtual time, simple EDF, and
most recently a credit-based fair scheduler that bases
CPU assignments on per-VPCU weights and a cap.
This experimentation proves the difficulty of finding
a hypervisor scheduling policy that serves all guest

4



domain configurations equally well.
Our approach is to tear down the abstraction wall

between hypervisor and guest OS and allow the guest
OS to directly communicate its preferred schedul-
ing policy to the hypervisor. We will implement a
configurable scheduler for Xen that has the ability
to receive scheduling hints from the guest domains.
For instance, a guest domain may request that all its
virtual CPUs be subject to a gang scheduling policy,
or a guest domain may request specific latency con-
straints for its threads.

Conversely, the hypervisor scheduler will have the
ability to communicate back to the guest domain
information. For instance, if the machine is heav-
ily loaded, an application running in such a domain
could then dynamically reduce the degree of paral-
lelism it uses and turn off gang scheduling, making
it easier for the underlying scheduler to meet its re-
quirements and reducing turn-around time. In ef-
fect, this approach paravirtualizes the CPU by de-
stroying the illusion that each virtual CPU is backed
by a physical CPU, but does so for the purposes of
allowing the guest domain to make more intelligent
decisions.

4 Application-specific guest domain
customizations

Interference from operating systems components is
a major known source of performance degradation
for high-performance computing applications [3, 6,
7], particularly on multi-core systems. Sources of
such interference include interrupts that are used for
time keeping, system daemons such as the page-
out or update daemon, and other daemons such as
those used to implement communication protocols
such as MPI. This “noise” can adversely affect syn-
chronicity, making it particularly difficult for bulk-
synchronous applications to achieve good perfor-
mance. Researchers have proposed a variety of so-
lutions to address this problem, ranging from radi-
cal approaches such as the use of specialized, custom
kernels to ad hoc approaches such as disabling dae-
mons or keeping processors idle to absorb the noise.

We believe that the use of virtualization opens an
entirely new venue to address this issue, and we pro-
pose to address both problems using guest domain

customization. First, we create for every application
a “right-weight” [2] system image — including li-
braries, guest kernel version, and system configura-
tion parameters — that meets the needs of this ap-
plication; for instance, it may or may not include
virtual memory support, it may or may not include
multi-threaded versions of a library, and it will only
include the system programs an application needs.
We envision this customization to be done at a high
level, using commonly available build and runtime
parameters in stock kernels, rather than using a OS
library approach as in [5], because this approach is
more likely to provide the type of complete appli-
cation environment to which developers are accus-
tomed.

Second, we will address the issue of noise due to
timer interrupts. Others have shown that for unipro-
cessors, hypervisor control can reduce the impact of
timer interrupt noise [4]. However, for guest OS
that use multiple cores, the traditional, polling-based
implementation of OS timer interrupts is more diffi-
cult because the time keeping of the different virtual
CPUs must be kept in synch. Instead, we will adopt
smart timers [7], an implementation of timers that
does not rely on polling, but rather sets timers di-
rectly for the next event only as needed. We believe
this approach to be particularly suitable in the con-
text of a paravirtualization environment where the
underlying hypervisor provides a virtual timer device
for the guest domain running inside it. We will adopt
the existing Linux implementation of smart timers
and port it to XenLinux to test our hypothesis.

5 Conclusion

We believe that virtual machine monitors can pro-
vide the necessary customization and performance
for multi-core systems software that supports par-
allel applications. We have outlined the prelimi-
nary design of VT-ASOS, a system that provides
application-specific core configuration, scheduling,
and guest domain customization.

Acknowledgement

This research is partially supported by the DOE grant
DE-FG02-06ER25751.

5



References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’03: Proceed-
ings of the nineteenth ACM symposium on Operating
systems principles, pages 164–177, New York, NY,
USA, 2003. ACM Press.

[2] Ronald G. Minnich et al. Right-weight kernels: an
off-the-shelf alternative to custom light-weight ker-
nels. SIGOPS Oper. Syst. Rev., 40(2):22–28, 2006.

[3] T. Jones et al. Improving the scalability of paral-
lel jobs by adding parallel awareness to the operat-
ing system. In SC ’03: Proceedings of the 2003
ACM/IEEE conference on Supercomputing, page 10,
Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[4] Eric Van Hensbergen. The effect of virtualiza-
tion on os interference. In Workshop on Operat-
ing System Interference in High Performance Ap-
plications. http://research.ihost.com/osihpa/osihpa-
hensbergen.pdf.

[5] Eric Van Hensbergen. P.r.o.s.e.: partitioned reliable
operating system environment. SIGOPS Oper. Syst.
Rev., 40(2):12–15, 2006.

[6] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of asci
q. In SC ’03: Proceedings of the 2003 ACM/IEEE
conference on Supercomputing, page 55, 2003.

[7] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirk-
patrick. System noise, os clock ticks, and fine-grained
parallel applications. In ICS ’05: Proceedings of the
19th annual international conference on Supercom-
puting, pages 303–312, New York, NY, USA, 2005.
ACM Press.

[8] L. Youssef, R. Wolski, B. Gorda, and C. Krintz. Par-
avirtualization for HPC Systems. In Proc. Workshop
on Xen in High-Performance Cluster and Grid Com-
puting, December 2006.

6


