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Abstract

Data structure visualization can increase program understanding in
an educational context and help with visual debugging. Existing
data structure visualization tools are limited in interactivity, provid-
ing mostly static views; flexibility, by restricting the layout strate-
gies users can apply; scope, by focusing on only a single language;
and fidelity, by abstracting away the actual runtime layout and size
of a program’s data. This paper presents the design and implemen-
tation of HDPV, a system for interactive, faithful, in-vivo runtime
state visualization for native C/C++ programs and Java programs.
We discuss how HDPV can be used for a number of use cases rang-
ing from understanding simple, recursive programs, to understand-
ing the visual effect of programming errors such as buffer over-
flows.

CR Categories: K.3.2 [Computing Milieux]: Computers and
Education—Computer and Information Science Education; E.2
[Data]: Data Storage Representations

Keywords: Software Visualization, Object Viewer

1 Introduction

Tools that can visualize a program’s runtime state have been shown
to be highly effective in program understanding and learning [Jain
et al. 2006]. They have been used by educators to create visual al-
gorithm animations from an algorithm’s implementation, they can
be used by students to understand the behavior of a program they
are writing, or by practitioners to find errors or anomalies within
the data structures their programs create. These tools are partic-
ularly effective for commonly used procedural and object-oriented
languages whose runtime state is composed of per-thread automatic
variables, global variables, and dynamically allocated heap objects.

Yet, existing tools such as jGRASP [Hendrix et al. 2007] or Jeliot
3 [Moreno et al. 2004] may fail to fully realize their potential impact
because they suffer from a number of significant limitations.

First, and most importantly, these tools support only limited inter-
action with the displayed state. Users may be unable to change
the layout of a visualization or its size, or cannot zoom into areas
of interest or exclude irrevelant areas from the visualization. Such
lack of interactivity severely limits the use of these tools for visual
debugging. Furthermore, the limited size of most display devices
limits scalability if users cannot focus in on areas of interest.

Second, few available tools support the user-directed application of
different layout strategies to different subsets of the program state.
For instance, if the program’s heap contains both a tree and a list

data structure, it should be possible to lay out the tree separately
from the list.

Third, most tools do not visualize the state of a program in-vivo.
Instead, an in-vitro behavior is being visualized. In such an artifi-
cial environment, important facets may be missed during visualiza-
tion. For instance, an array overflow bug may corrupt variables that
lie adjacent in memory during the actual execution, but the visual-
ization tool may not be able to visualize this fact because it lacks
information about the specific runtime layout that is used during
execution.

Fourth, most tools are tied to a single language, often to Java. Dur-
ing the past years, Java has been adopted as the first programming
language taught in many CS undergraduate programs. This trend
has had a tremendous positive impact by allowing students to de-
sign data structures and algorithms without having to worry about
low-level details such as pointers and memory management. How-
ever, shielding students from these details in introductory courses
has led to well-documented difficulties in later systems and archi-
tecture courses that use C or C++, and has led to anecdotal evi-
dence of employer dissatisfaction [Dewar and Schonberg 2008]. In
the authors’ experience teaching an undergraduate course in operat-
ing systems, students have difficulty grasping such concepts as how
a thread’s state can be saved on that thread’s stack during a con-
text switch. These difficulties could be reduced if a visualization
tool applied the same techniques to either language. For example,
students could see how Java’s references correspond to C’s point-
ers, how static fields correspond to global variables, and how C’s
struct and Java’s class are similar.

To address these shortcomings, we have developed HDPV, an ap-
plication for faithful 2D interactive, graph-based program state vi-
sualization. HDPV consists of language-dependent monitors that
create and relay a stream of events about a program’s in-vivo exe-
cution to a language-independent visualizer which displays the pro-
gram’s state to the user. A user can interact with HDPV to focus in
on areas of interest, to apply different layout strategies to parts of
the program state, or to rearrange its state for better inspection. Cre-
ated state displays can be saved and restored. To achieve language-
independent visualization, HDPV uses a canonical state model that
closely resembles the ABI targeted by compilers such as gcc or
g++. We have implemented monitors for compiled C/C++ code
and for Java bytecode.

This paper describes HDPV’s overall architecture, provides the de-
sign rationale for our canonical state representation, and describes
the implementation strategy and challenges used for the monitors.
We present the design and describe the implementation of the vi-
sualizer and provide a cognitive walkthrough through a number of
example use cases.

2 Architecture

Figure 1 gives an overview of our architecture. Language-
dependent monitors (for compiled C/C++ code and Java bytecode)
use binary instrumentation to trace changes to a program’s state.
These state changes are expressed as events in a canonical machine
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model. Events are encoded using a dialect of XML which we de-
signed. The visualizer receives a stream of such events, and creates
and maintains a “shadow state” model of the monitored program’s
state.
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Figure 1: An overview of the HDPV system.

2.1 Canonical State Model

To accomplish our goal of providing a faithful visualization that
reflects a program’s data at run time, yet also provide the ability
to display pointer-relationships between data objects, we needed to
define a state model that reconciles the view of memory as a one-
dimensional array of bytes (or octets) with that of a graph of objects
that is suitable to a two-dimensional layout.

Our approach splits memory into intervals called blocks. These
blocks form the nodes of a state graph. Nodes are typed, and one or
more type definitions may be associated with each node. Multiple
type definitions are required to support languages that allow point-
ers to an object to be cast to a different type—for instance, new
objects in C are initially known to be of (C type) char *, and take
on a more specific type only after being assigned to a pointer that is
declared to be of that specific type (e.g., struct S * p = malloc(sizeof
S)). Memory blocks are used to capture dynamically allocated ob-
jects, global variables, and activation records (stack frames) of cur-
rently executing functions. Edges connect memory blocks and rep-
resent points-to relationships between objects. Edges are directed
and labeled with two offsets: a source offset represents the loca-
tion within the source memory block into which a pointer is stored,
and target offset represents an offset within the pointed-to memory
block.

We defined a simple type system to express memory blocks’ types.
This type system includes primitive types modeled after C99’s
<stdint> header, such as signed and unsigned single and multi-
ple byte integer types and Unicode characters. Type constructors
can be used to define derived types: we support pointer types, array
types, and record (“struct”) types. As in C++ or Java, components
of a record type are called fields. Fields may have hints associated
with them: for instance, fields within an activation record that rep-
resent function arguments are labeled differently from fields that
represent local variables.

2.2 Instrumentation Trace Protocol

Monitor and visualizer communicate via a stream-based protocol
which transmits messages that describe relevant program events.
Currently, this communication is unidirectional from the monitor
to the visualizer. Our simple protocol includes six messages.

Typedef. A typedef message defines a record type and assigns a
name to it. Each record type is represented as an ordered sequence
of typed fields. The monitor can extract such type information ei-
ther from debugging information in the executable (if available) or
from runtime information (e.g., using Java reflection), or both. The
visualizer will store all announced typedefs in a map indexed by
name and may later use them to render the contents of a memory
block using a particular type definition.

Memalloc. A memalloc message announces the creation of a new
memory block, which includes an address and size. Typically, a
monitor will instrument memory allocation routines to learn of al-
location events. Additionally, the monitor may provide a hint that
informs the visualizer of the allocated object’s kind, allowing the vi-
sualizer to apply different layout strategies to stack, heap, or global
objects. Upon receipt of a memalloc, the visualizer will add a new
node to the state graph it maintains.

Memfree. A memfree message announces that an object has been
destroyed. For instance, when a function returns or throws an ex-
ception, its activation record is destroyed. The visualizer will re-
move the node from the state graph along with all incoming and
outgoing edges.

Putfield. Putfield messages announce updates to memory blocks.
A putfield message consists of the address of the block being up-
dated, the offset within the block, and the value being written, along
with its associated type. A monitor will instrument assignments to
local variables, object fields, global variables, and array elements
to generate putfield messages. In response to a putfield event, the
visualizer must update the base object’s visual state, and may need
to add edges to the state graph.

Location. Monitors send a location message to announce that ex-
ecution has progressed to a particular source file and line number,
allowing the visualizer to focus the user’s attentions to that line.

Showas. A showas message, which takes as argument a memory
block, is sent as a hint by the monitor to the visualizer to signal
that a particular block should be displayed using a specific type, if
multiple types are associated with a block. For instance, if a local
variables goes into or out of scope inside a function, the monitor
may signal this fact by sending a typedef message, and directing
the visualizer to display the current activation record using this type
definition.

3 Monitor Implementation

Program monitoring can be implemented using a number of meth-
ods: by using custom interpreters or compilers, using source-to-
source transformation, using executable rewriting, or using debug-
ging interfaces. Interestingly, closer examination reveals that none
of these approaches supports our goal of providing faithful, in-vivo
program monitoring: either because the method requires source
code, or because it changes relevant aspects of the program’s run-
time state, such as memory addresses. We have found existing
debugging interfaces such as JPDA to be unsuitable because they
do not support notification for all relevant events that update state
(e.g., JPDA does not support notifications when an array’s content
is being updated), thus requiring extensive polling. Therefore, we
implemented our monitors using binary runtime instrumentation
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methods that exactly reproduce the state the program would have
if run without the monitor.

3.1 Native Code (viztop)

For compiled executables, we built a monitor using a layered ar-
chitecture consisting of three components. At the bottom layer,
we use Pin [Luk et al. 2005], a toolkit that allows the creation of
low-level binary instrumentation tools for ARM, Itanium, and x86-
compatible processors. We refer to Pin as “low-level” because it
requires a tool writer to think in terms of machine instructions and
registers. We developed and use Top [Gopal 2006] on top of Pin.
Top is a C++ class library that facilitates the creation of higher-level
instrumentation applications such as the viztop monitor. Top pro-
vides an event-based framework that allows clients such as viztop
to register for such events as function entry or exit, memory allo-
cations, and accesses to allocated objects. Based on these events, it
creates the state-related events described in Section 2.2. Most of the
events can be straightforwardly created from the events provided by
Top, but some required additional work. In particular, in order to
correctly compute putfield events for variable assignments and ob-
ject or array updates, viztop needs to maintain an interval tree data
structure that can map an address to its containing object.

To announce the allocation of stack frames as activation records,
and to map memory accesses on a thread’s stack to accesses to lo-
cal variables, viztop must compute the layout of each stack frame,
and announce this layout as a type definition to the visualizer. We
adopted a substantially extended version of the Fjalar library, which
is part of the Daikon system [Ernst et al. 2007], to retrieve such
type and local variable information from the DWARF debugging
information section of native executables, if available. To provide
a faithful image of a process’s stack, we include elements such as
the memory location in which the return address left by a CALL
instruction is being stored.

Issues and Limitations. Our current implementation does not trace
register values, although we plan on extending it to do so to provide
higher levels of resolution. From the user’s point of view, data that
is held solely in registers will not appear in the visualization until it
is written to memory. From a practical point of view, our approach
works best if a compiler produces code that allocates all local vari-
ables on the stack and issues a load/store instruction before every
operation—which is the behavior of most compilers, including gcc,
when producing unoptimized code. We also currently do not re-
port and relay temporaries, such as the arguments being passed to a
function call, while they are being computed. The user will see such
values appear in the visualization when the function being called is
entered.

3.2 Java Code (vizasm)

Our Java monitor (vizasm) uses dynamic bytecode rewriting to in-
ject code that reports on a program’s execution. vizasm can be used
as a replacement system class loader, which instruments loaded
Java classes’ bytecode during the JVM’s class loading process. It
can also be used as a Transformer with Java 6’s instrumentation
framework, allowing it to redefine already loaded classes. We used
the ASM library [Bruneton et al. 2002] to parse and instrument
class files.

The runtime state of the Java virtual machine, which Java byte-
code targets, consists of a dynamic heap of objects, global vari-
ables (in the form of static class variables), and per-thread stacks of
activation records. Each activation record contains local registers,
representing local variables, and a stack area that is used by byte-
code for intermediate computation results. Our monitor intercepts

all updates to objects’ instance fields, classes’ static fields, local
registers, and arrays, and reports putfield events to the visualizer.
Method entry and exits are reported as allocation and deallocation
events of their respective stackframes. Each method is wrapped
in a try/catch clause that catches all exceptions and errors thrown
and issues the required memfree events to allow the visualizer to
unwrap the stack. If the bytecode contains debugging information
about local variables, vizasm will compute a type definition for a
stack frame layout and issue appropriate showas messages when a
particular local variable goes into scope.

Unlike the native code monitor, vizasm produces state updates in
the context of a type-safe virtual machine, which does not expose
the actual memory layout or addresses. For this reason, we as-
sign addresses to Java objects for the purposes of visualization.
These addresses are designed to mimic the addresses and layout
that would be encountered had the Java code been compiled with
a Java ahead-of-time compiler such as gcj. For the runtime stack,
we chose a downward growing stack and assumed Pascal parameter
passing style.

Issues and Limitations. Similar to our native monitor, our current
implementation does not trace the values of the Java stack area, so
temporary values are not visible to the user until they are assigned
to a local variable. Since the Java stack area is also used to compute
method call arguments, the computed arguments will not be visible
until the method called is being entered. Our current implementa-
tion of vizasm cannot currently instrument Java classes on which
it itself depends, such as java.lang.System. As a consequence, our
implementation may encounter references to object whose creation
it did not observe; in this case, it must use reflection to recursively
explore those objects, and announce their type and existence to the
visualizer. Finally, because the code instrumented by vizasm must
pass bytecode verification, it cannot operate on new objects until
after the superclass constructor has been invoked.

4 Visualizer

We implemented our visualizer using the prefuse toolkit [Heer et al.
2005]. Prefuse is an extensible software framework for creating in-
teractive information visualization applications. It supports the in-
teractive visualization of tables, graphs, and trees, implementing
necessary components such as layout algorithms and input con-
trols. It is written in Java in an object-oriented style that makes
heavy use of design patterns, allowing users to adapt and extend its
components via subclassing and substitution. Since our canonical
state model represents a graph data structure at its core, we used
prefuse’s graph visualization components, which we heavily cus-
tomized. We implemented specific renderers, specific layouts, and
designed an interaction strategy.

4.1 Rendering Memory Blocks

Memory blocks are rendered either horizontally or vertically as
record diagrams. We display the current type definition used for
rendering, the names of each field, and the value in a format cor-
responding to that field. A tooltip displays the currently chosen
type definition. Figure 2 shows an example object of type java.-
lang.String. It has four fields: a reference field ‘value’ that
points to a Java ‘char[]’ array, and three 32-bit integers ‘offset,’
‘count,’ and ‘hash.’ In order to convey information about the rela-
tive and absolute size of fields to the user, we decided on drawing all
objects to scale with respect to the memory they occupy. For large
blocks such as arrays, the user has the option of seeing the entire
object, or only a truncated version of it. The user has the option of
choosing between a Java-style view and a C/C++-style view, which
respects the type naming conventions of the chosen language.
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Figure 2: Rendering of a java.lang.String instance. A
tooltip displays the type definition. A user can collapse any object
by clicking on the© located at the top right corner of an object.

4.2 Layout Strategy
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Figure 3: Initial positions and forces in force-directed layout.

We designed a layout strategy that both provides reasonable behav-
ior for small heaps in the absence of any user interaction and that
performs well also when the user interactively assigns positions to
some memory blocks. Figure 3 shows our strategy. In this lay-
out, nodes may be either fixed or floating. A fixed node’s position
will not change when a layout is recomputed. When a stack node
or global variable is allocated and added to the visualization, its
position is initially fixed. The coordinates are computed from the
underlying memory block’s address. We lay out globals left to right
in increasing address order. Stack nodes, which correspond to ac-
tivation records, are laid out top down. Alternatively, the user can
choose a collapsed, or stacked, layout of the currently active frames,
as shown in the figure. Heap objects, on the other hand, are placed
initially in the center of the layout; they are placed in the floating
state.

The position of floating nodes is computed via a simple force sim-
ulation consisting of multiple forces. A repelling n-body force acts
on all floating nodes. In addition, a spring force acts between nodes
that are connected via an edge. A drag force acts in the direction
opposite of that towards which the node currently moves, which
leads to smoother animated behavior. In addition to these three
forces, which are provided by prefuse’s default force layout imple-
mentation, we added two additional forces: a circular wall force
that acts radially from the insertion point, and a directional gravita-
tional force that acts horizontally to the right. A preferences panel
allows the user to adjust the strength of all forces if desired.

public class ATree {
static class Node {

Node left, right;
Node(Node left, Node right) {

this.right = right;
this.left = left;

}
Node() { this(null, null); }

}
public static void main(String []av) {

Node root =
new Node(

new Node(
new Node(),
null),

new Node(
new Node(

new Node(),
new Node()),

new Node(
new Node(),
new Node())));

}
}

Figure 4: Default layout for simple tree. This layout was produced
via force simulation from the code shown above, without user in-
teraction. The stack frame on the left contains parameter av and
local variable root.

public class AList {
static class Cell {

Cell next;
Cell(Cell next) { this.next = next; }
Cell() { this(null); }

}
public static void main(String []av) {

Cell list =
new Cell(

new Cell(
new Cell(

new Cell(
new Cell()))));

}
}

Figure 5: Default layout for a simple linked list prior to user inter-
action. The program that produced this layout is shown as well.
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Combined, these initial positions and initial states lead to reason-
able default behavior. For instance, Figures 4 and 5 show the lay-
outs computed for a toy tree and list implementation.

4.3 Interaction Strategy

Prefuse provides a number of controls that allow user input via the
mouse. These include controls for panning, zooming, and resiz-
ing the display. A drag control supports dragging of individual
nodes as well as of subtrees of nodes, which are computed from
the graph’s underlying spanning tree. If a floating node is dragged,
it will become fixed in the new position. We implemented addi-
tional controls to allow a user to fix and unfix a node’s position as
well as controls that allow a user to highlight, expand or collapse
all nodes within the subtree emanating from a node. To highlight,
the user simply has to hover over a node. A user can choose to ap-
ply a node-link tree layout diagram [Buchheim et al. 2002] to any
particular subtree. HDPV keeps track of which nodes are currently
subject to a node-link tree layout. When a new object is created and
added to a tree, the layout is rerun, moving the node in the position
it should have according to the tree layout. There may be multi-
ple, independent node-link tree layouts in effect for different areas
of the program’s state graph. A preference panel allows the user
to adjust breadth and depth spacings for each node-link tree layout
individually.

To control the overall progress of the visualization, we provide but-
tons that allow a user to skip forward to the next visual change in
the state graph, or to skip forward until execution returns from the
current function or method, or an exception is thrown. If source
code is available, we display the code using a syntax-coloring ed-
itor, and highlight the current source code location. In that case, a
button is provided that allows the user to skip forward to the next
reported source code location. Lastly, we implemented an anima-
tion mode in which the visualization processes events in fixed time
intervals. The user can start and stop the animation and change its
speed. Users can save a given layout to disk and restore it from
there.

Issues and Limitations. Our implementation exhibits a number
of limitations, which we are currently addressing. First, it lacks
a “rewind” functionality. Second, we have not prepared a sensible
initial layout strategy for multi-threaded programs. Third, the node-
link tree layout is unaware of “null” fields, resulting in a sometimes
non-intuitive layout of trees.

5 Example Use Cases

To evaluate the usability of our systems, we present a brief cogni-
tive walkthrough through a number of hypothetical tasks for which
a user may wish to use our system. These tasks may be encoun-
tered by students in introductory programming classes when doing
assignments or debugging their code, or they may be tasks an in-
structor may face when creating illustrations of concepts. From our
teaching experience, we believe that a faithful visualization of run-
time state could become an important teaching tool in an introduc-
tory compilers or operating systems class. For instance, students
implementing a compiler must understand how to lay out stack
frames and objects by assigning offsets to local variables and fields,
respectively.

5.1 Understanding Recursion

We studied how HDPV could contribute to understanding how lo-
cal variables contained in activation records are being used to store
the state of a recursive program. A classic example of a recursive

program is the computation of the factorial of a number, as shown
in Figure 6. In this example, as the recursion progresses, new stack
frames are being added. Once the end condition to stop the re-
cursion is reached, the stack is gradually unwound and computed
results appear in the stack frame of the calling method. Failure to
include a proper end condition would be visualized by an indefi-
nitely growing number of activation records.

public class Factorial {
static int factor(int n) {

int result = 1;
if (n > 1)

result = n * factor(n-1);
return result;

}

public static void main(String []av) {
int f7 = factor(7);
System.out.println(f7);

}
}

Figure 6: A simple factorial routine, as shown in the code below.
The left shows the visualization after 7 calls to ‘factor’ have been
made, the snapshot on the right shows the state after 3 of these 7
calls have returned. Note that the stack frame of method ‘main’ is
collapsed, hiding the String [] av array.

5.2 Understanding Pointers

Understanding Call-By-Reference. In C, call-by-reference se-
mantics is implemented using pointers. Figure 7 shows that HDPV
can accurately produce this relationship.

Understanding ‘this’. ‘this’ is typically implemented as an
additional, invisible argument to each method call, which is how
we visualize it. For instance, consider the following extension to
the program shown in Figure 4:

public class ATree {
static class Node {

...
void traverse() {

if (this.left)
this.left.traverse();

if (this.right)
this.right.traverse();

}
}

}

In this traversal algorithm, the current traversal position in the tree
is kept track of by the ‘this’ pointer pointing to the node currently
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Figure 8: Understanding ‘this.’ During a recursively implemented tree traversal, the ‘this’ pointer refers to the current node. As the user
hovers over stack frames (shown left), the subtree reachable from the ‘this’ pointer in this stack frame is highlighted.

int f(int *p) {

*p = 3;
}

int g() {
int x;
f(&x);
return x;

}

int main()
{

int v = g();
printf("%d\n", v);

}

Figure 7: A simple example to visualize the concept of passing
arguments by reference. Function f() accepts a single argument,
which points to a location in g’s activation record.

being traversed. A user could use our system to visualize this fact.
After creating the tree ‘root,’ the user could activate a vertical layout
for the subtree emanating from ‘root’. For the display of the runtime
stack, the user may choose a vertical (e.g. non-collapsed view).
When subsequently following the updates made by the program,
the user will see how new stack frames are added, each consisting
of a single ‘this’ pointer pointing to the root of the subtree that is
currently being traversed. By using the hover control, the user can
go through the stack, at which point all nodes within the subtree
being traversed at this particular point in the activation stack will be
highlighted. Figure 8 shows a snapshot of what a user sees during
this interaction.

5.3 Making Sense of Larger Data Structures

If we extend the program shown in Figure 5 as follows:

static class Cell {
ATree.Node tree = new ATree.Node(

new ATree.Node(
new ATree.Node(),
null),

new ATree.Node(
new ATree.Node(

new ATree.Node(),
new ATree.Node()),

new ATree.Node(
new ATree.Node(),
new ATree.Node())));

...
}

we obtain a heap with 55 objects. This heap represents a linked
list of trees. Initially, these nodes will appear as a crowded accu-
mulation of nodes. However, by using the subtree drag control and
applying tree layouts in a trial and error fashion, a user can quickly
arrange those objects as shown in Figure 9.
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Figure 9: A list of trees. This arrangement was created interactively.

5.4 Programming Errors

Certain programming errors can only be understood by realizing
how they impact a program’s runtime state. Two examples include
buffer overflow errors and memory leaks.

5.4.1 Buffer Overflows

Figure 10: An object of type ’Message’, shown using two type def-
initions. This snapshot shows the state of the object before a buffer
overrun error. Uninitialized memory (such as the memory returned
from malloc()) is shown using a ?. The user can switch between the
left and right view by double-clicking on the object.

Figure 11: The buffer overflow overwrote the least significant byte
of ‘flag,’ changing its value to zero. A user can observe the overlap
between flag and the zero sentinel placed by strcpy() when copying
the string "Four" into a buffer that was too small.

Consider the following buffer overflow:

class Message {
char buf[4];
int flag;

}

const char * msg4 = "Four";

Message * m = (Message*)malloc(sizeof *m);
m->flag = 1;
strcpy(m->buf, msg4);

In this example, the programmer failed to account for the trailing
zero sentinel that terminates a C string. As a result, the first byte
following buf[3] will be set to 0, which happens to be part of the
‘flag’ field. As a result, the value of flag will be changed to 0 (as-
suming a little-endian machine such as the x86). Figures 10 and 11

show a snapshot of how HDPV visualizes the object in question
before and after the call to strcpy().

5.4.2 Memory Leaks, Churn, and Anomalies

for (int i = 0; i < 4; i++) {
int [] squares = new int[] { 1, 4, 9, 16 };
System.out.println(squares[i]);

}

Figure 12: Visual representation of unreachable objects created by
the loop shown below. The objects not connected to main’s activa-
tion record will slowly drift to the right.

In a language such as C/C++ that uses explicit memory manage-
ment, memory leaks can arise if an object is not freed before the
last pointer to this object is overwritten or deallocated. In our vi-
sualization, nodes that are unreachable from either the stack or a
global object tend to drift off towards the right because of the gravi-
tational directed force we added to the layout force simulation. Ob-
jects that are still reachable are being held via a chain of springs
from the root or roots keeping them alive. Thus, leaked objects will
appear to be floating to the right. Any drifting object in C is a pro-
gramming error. A user can see and understand how the leak was
created by observing the moment in time at which the object was
detached from an object that was still reachable. In Java, such drift-
ing objects become subject to garbage collection (which a user can
perform manually using a button we provide).

However, understanding the memory impact of one’s code is impor-
tant even in languages such as Java in order to avoid churn. Churn is
the repeated (and unnecessary) allocation of objects. For example,
consider the Java code shown in Figure 12. This code repeatedly al-
locates an array of integers when the loop’s body is entered. In our
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visualization, this fact becomes clear because the objects represent-
ing those arrays do not escape the loop — thus, ‘squares’, which
holds the only reference to each array, will always point to the last
allocated instance. As soon as ‘squares’ is reassigned, the previous
instance will drift away. (An author of this paper, who is an expe-
rienced Java programmer, was surprised to learn of this aspect of
Java when he saw it within the visualization HDPV provided; he
initially suspected an error within the vizasm monitor his coauthor
had written.)

import viz.java.util.HashMap;

public class DegHash {
public static void main(String []av) {

HashMap<Object, Boolean> map
= new HashMap<Object, Boolean>();

for (int i = 0; i < 8; i++)
map.put(new Object() {

public int hashCode() { return 0; }
}, new Boolean (true));

}
}

Figure 13: Graphical display of a memory anomaly introduced
by a bad choice of a hash function. The figure at the top shows
an instance of type viz.java.util.HashMap, which is a clone of
java.util.HashMap. After inserting 8 elements and applying a hori-
zontal tree layout, the resulting structure appears deep, rather than
tall (as it would be if the hash function distributed entries evenly
across the slots used to hold the anchors of each list of colliding
hash entries). The snapshot shown at the bottom shows a zoomed
view of a HashMap.Entry instance that is part of the HashMap
shown above.

An example of a memory anomaly that can have severe impact on
the performance of an application is shown in Figure 13. In this ex-
ample, a user chose a hash function that incurs a high rate of colli-
sions (in this admittedly contrived example, the rate of collisions is
100%). Consequently, instead of evenly distributing hash map en-
tries across the anchors in the anchor table, all hash map entries will
accumulate in a singly-linked list anchored at slot 0. As a result,
this hash map will provide linear rather than near-constant lookup
time. Such “degenerate maps” have been observed as a source of
performance degradation in large application frameworks.

6 Related Work

Price et al [Price et al. 1993] includes a review of pioneering work
in the area of software visualization (SV) and provides a prin-
cipled taxonomy for such systems. HDPV shares features with
the data view capabilities of such systems as BALSA [Brown and
Sedgewick 1984], Zeus [Brown 1991], Incense [Myers 1983], Pas-
cal Genie [Myers et al. 1988; Chandhok and Miller 1989], AN-
IM [Bentley and Kernighan 1991], UWPI [Henry et al. 1990], and
ObjectCenter [Cen 1991]. It also shares features with such tools
as JInsight [De Pauw et al. 2002], JavaVis [Oechsle and Schmitt
2002], Cacti [Reiss 1997], Jive [Reiss 2003], Jove [Reiss and Re-
nieris 2005] and DDD [Zeller and Lütkehaus 1996]. Tools origi-
nally developed for algorithm animation have also been applied to
further visual program understanding and debugging, such as the

LENS [Mukherjea and Stasko 1994; Mukherjea and Stasko 1993]
or VCC [Yates et al. 1996] systems, or as learning aids such as
Samba [Stasko 1997]. The ALVIS [Hundhausen and Brown 2005a]
system provides data structure visualizations for programs written
in a teaching language. The prefuse toolkit has been used for data
structure visualization in [Erkan et al. 2007].

Jeliot 3 [Moreno et al. 2004] and jGRASP [Hendrix et al. 2004;
Hendrix et al. 2007] are the two currently available systems that
are most related to our work. Unlike these systems, HDPV cur-
rently lacks integration into an Integrated Development Environ-
ment (IDE). Aside from such integration, the jGRASP system sup-
ports additional features that can visualize a program’s control
structure via Control Structure Diagrams (CSD). Jeliot’s strengths
lie in its ability to visualize the evaluation of expressions by visu-
alizing how expressions map to the grammatical structure of a Java
program. We attempted to run the simple examples in Section 4.2
in jGRASP and Jeliot, but were unable to obtain meaningful data
structure visualizations that would have allowed a user to grasp the
essence of the data structures being built.

Although jGRASP implements animated object viewers, these
viewers can visualize only objects (and their descendants) that are
rooted in a variable that is currently in scope. Each viewer visual-
izes the objects reachable from a single variable; as a result, aliases
to objects are not considered. Both jGRASP’s object viewers and
Jeliot abstract away the actual layout of an object in memory. On
the other hand, jGRASP’s object viewers have built-in knowledge
on how to display specific structures such as trees or lists and can
therefore provide abstracted views for them. Jeliot, on the other
hand, lays out all objects in a linear fashion, which appears to re-
strict its usability to very small structures. Neither of these tools
support the interactivity we provide and both of these tools are re-
stricted to the Java language (or a subset thereof).

7 Future Work and Conclusion

Although we hope that the effectiveness that was demonstrated in
previous studies on data structure visualization [Goldenson 1989;
Jain et al. 2006] and, albeit it to a lesser extent, in studies that in-
vestigated the use of interactive algorithm animations [Hundhausen
et al. 2002; Hundhausen and Brown 2005b], will hold for our sys-
tem as well, we will need to perform an empirical usability study
to confirm or reject this hypothesis. Two usability questions are
of particular interest: first, we will need to investigate if the inter-
action options we provide (layouts, repositioning, collapsing and
expanding subtrees) are sufficient to allow the successful naviga-
tion of larger heaps (say several thousand objects), or if the alias-
ing relationships between objects make such navigation impossible.
Second, we will need to investigate if our focus on concreteness
(e.g., drawing objects to scale, displaying all points-to relation-
ships, etc.) helps or obscures a user’s understanding of their pro-
gram’s data structures. If so, we could introduce degree-of-interest
(DOI) functions that determine the visibility of edges in the ob-
ject graph. The infrastructure we have built could also be extended
to support program or algorithm animation. A scripting interface
could add similar functionality as that provided in such systems as
TANGO [Stasko 1990].

This paper presented our design and implementation of an inter-
active, faithful, in-vivo 2D visualization system for native C/C++
as well as Java programs. The focus of our work lies on provid-
ing concrete views of a program’s stack, heap, and global variables
that accurately reflect the content and points-to relationship of all
objects manipulated by a program. We have discussed a number
of possible use cases related to common program understanding
tasks, including the visualization of the effects of programming er-
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rors. HDPV’s focus on concrete, faithful visualization for programs
in multiple languages, and its focus on providing the user an oppor-
tunity to actively interact with their program’s data set it apart from
existing tools.
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