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Abstract. DataScript is a language to describe and manipulate bi-
nary data formats as types. DataScript consists of two components: a
constraint-based specification language that uses DataScript types to de-
scribe the physical layout of data and a language binding that provides a
simple programming interface to script binary data. A DataScript com-
piler generates Java libraries that are linked with DataScript scripts.

DataScript specifications can be used to describe formats in a program-
matic way, eliminating the vagaries and ambiguities often associated with
prosaic format descriptions. The libraries generated by the DataScript
compiler free the programmer from the tedious task of coding input and
output routines. More importantly, they assure correctness and safety by
validating both the input read and the output generated. We show ex-
amples that demonstrate that DataScript is simple, yet powerful enough
to describe many commonly used formats. Similar to how scripting lan-
guages such as Perl allow the manipulation of text files, the libraries gen-
erated by the DataScript compiler can be used to quickly write scripts
that safely manipulate binary files.

1 Introduction

Currently, binary data formats are typically described in English prose in design
documents and standards. This method is inefficient, prone to ambiguities and
misunderstandings, and does not lend itself to easy reuse and sharing of these
metadata specifications between applications. As a result, some applications may
produce incompatible output that cannot be read by other applications, or worse,
causes other applications to crash.

Casual scripting of binary data is also cumbersome. While there are many
tools to validate and manipulate high-level textual data formats such as XML,
there are no tools for binary formats. Currently, a programmer has to choose a
language, convert the prosaic description into language-specific data structures
such as C structures; then he must implement input routines to read the data
into memory, and output routines to write the data back to external storage.
The programmer has to account for alignment and byte-order issues, which are
notorious for their potential for bugs when such programs are ported to different
architectures.



Even where libraries or tools to read a given file format are available, a
programmer has to learn those libraries’ APIs first, and there may be limitations
in what they can do. The necessary feature to perform the task at hand may
not be provided, because the developers of the tool or library did not foresee a
need for it. Where libraries are not available, programmers tend to “whip up”
input and output routines that often only provide partial implementations, do
not validate their input, or produce nonconforming output that causes problems
when it is processed in the future.

Many binary formats include constraints that guarantee the consistency of
the data, such as parameter ranges, length constraints, checksums and others.
Like the layout of the data itself, these constraints are also typically expressed
in prose rather than in a form suitable for automatic translation into programs.

DataScript’s specification language solves these problems by describing bi-
nary data formats as types. The specification language has the following prop-
erties:

– simple and intuitive. DataScript is designed to be a simple solution to
what is conceptually a simple problem. DataScript types are easily read-
able; we kept the number of abstractions needed to understand a DataScript
specification to a minimum.

– architecture-independent. Unlike C header files, DataScript types are
described in a architecture-independent way. The developer is responsible
for specifying the size and byte order of any and all data elements—since
DataScript is a language to describe the physical layout of data, no attempt
is made to hide such details from the programmer.

– constraint-based. Each component of a DataScript type can have con-
straints associated with it. These constraints must be fulfilled if a given
piece of binary data corresponds to a type. They can be used to discrimi-
nate between types, or they can be used to express invariants that hold if
the data is consistent.

– declarative. DataScript types are purely declarative, i.e., the specification
of a type does not include any side effects. Purely declarative descriptions
allow the same format description to be used for input (parsing binary data)
and output (generating binary data according to a given format).

– practical. DataScript provides direct support for commonly used idioms.
For instance, some file formats store length and offset parameters in headers.
Such dependencies can be directly expressed in DataScript.

2 The DataScript Language

A typical situation in which binary data are read and processed is the loading
of Java class files by a class loader in a Java Virtual Machine (JVM) [4]. Java
is often used for mobile code, which a virtual machine may load from untrusted
sources, hence the class loader must verify the well-formedness of the class file.
It must be prepared to handle corrupted or malformed class files gracefully.



The loader reads a class file’s bytes into memory, parses them and creates
and populates data structures that correspond to the data stored in the file. This
process involves identifying constants that are stored as multibyte integers in the
file, reading parameters such as lengths and offsets, reading arrays of simple and
variable-record types, reading flags and indices and checking that they are valid
and within range, and the verification of constraints that ensure the internal
consistency of a class file.

The set of rules that govern the internal structure and consistency of a class
file are described in the DataScript specification shown in Fig. 1. A class file
starts with magic integers that describe its version, which are followed by the
constant pool, which is a linear array of variable-sized structures of union type
“ConstantPoolInfo”. A variable record or union type can take on different alter-
natives, which must be discriminated. In this case, the choice taken depends on
the value of a “tag” field contained in each of the options, which include class
entries, utf8 (string) entries, and others not shown in the figure.

Fields in a composite DataScript type can have constraints associated with
them. For instance, the “magic” constant at the beginning of ClassFile must al-
ways be equal to 0xCAFEBABE. However, DataScript allows for the expression
of more complex constraints: for instance, the Java virtual machine specification
requires that the “super class” field in a class file is either zero or the index of a
constant pool entry with a tag value of “CONSTANT Class”. In general, a field’s
constraints can be an arbitrary boolean predicate. Predicates that are used in
multiple places, such as “clazz”, can be defined using the constraint keyword.
“clazz” uses the is operator, which checks whether the union representing the
specified constant pool entry represents an external reference to another class.

The DataScript compiler takes this specification and generates a set of Java
classes and interfaces that can read and write Java class files. On input, the
generated code checks that all constraints are satisfied. When reading union
types, it uses constraints to discriminate between the different choices of a union,
similar to how a top-down parser uses look-ahead tokens to decide on the next
nonterminal during parsing. On output, it performs the same set of checks,
which ensures the well-formedness of the generated output.

2.1 DataScript Types

In this section, we provide a more formal description of DataScript’s types.
DataScript types are defined recursively as follows. A DataScript type is either

– a primitive type, or
– a set type, which can be either a enumerated type or a bitmask type, or
– a linear array of a type, or
– a composite type, which can either be a record type or variant-record type.

We describe each of these types in turn.



const uint8 CONSTANT_Utf8 = 1;

const uint8 CONSTANT_Class = 7; // ...

const uint16 ACC_PUBLIC = 0x0001;

const uint16 ACC_ABSTRACT = 0x0400; // ...

ClassFile {

uint32 magic = 0xCAFEBABE;

uint16 minor_version = 3;

uint16 major_version = 45;

uint16 cp_count;

ConstantPoolInfo constant_pool[1..cp_count];

bitmask uint16 ClassFlags {

ACC_PUBLIC, ACC_FINAL, ACC_ABSTRACT, ACC_INTERFACE, ACC_SUPER

} access_flags;

uint16 this_class : clazz(this_class);

uint16 super_class : super_class == 0 || clazz(super_class);

uint16 interfaces_count;

{

uint16 ifidx : clazz(ifidx);

} interfaces[interfaces_count];

uint16 fields_count;

FieldInfo fields[fields_count];

uint16 methods_count;

MethodInfo methods[methods_count];

uint16 attributes_count;

AttributeInfo attributes[attributes_count];

constraint clazz(uint16 x) { constant_pool[x] is cp_class; }

};

union ConstantPoolInfo {

{

uint8 tag = CONSTANT_Class;

uint16 name_index;

} cp_class;

Utf8 {

uint8 tag = CONSTANT_Utf8;

uint16 length;

uint8 bytes[length];

} cp_utf8;

// ... other choices ...

};

Fig. 1. DataScript description of Java class files. The complete description is 237 lines
long.



Primitive Types Primitive types form the basic blocks upon which more com-
plex types can be built. They include bit fields, 8-bit integers (bytes), 16-bit,
32-bit, 64-bit, and 128-bit integers. All primitive types are interpreted as inte-
gers, which can be either signed or unsigned. The size and signedness is encoded
in the keyword, i.e., uint32 is a 32-bit unsigned integer, while int16 is a signed
16-bit integer.

The byte order for multibyte integers can be specified by an optional at-
tribute prefix, which can be either little or big. By default, a primitive type
inherits the byte order attribute of its enclosing composite type. If the enclosing
composite type has no byte order attribute, big endian or network byte order is
assumed (as is the case for Java class files).

Set Types DataScript supports two types of set types: enumerated types (enum)
and bitmask types (bitmask). A set type forms a subset of an underlying prim-
itive type, which specifies the byte order and signedness used to store and in-
terpret its values. This example was taken from the DataScript specification of
IEEE 802.11b [2] packets:

enum bit:4 ControlPacketType {

CTRL_PS_POLL = 1010b, // Power Save (PS) Poll

CTRL_RTS = 1011b, ... // Request To Send

};

Composite Types DataScript uses a C-like style to describe composite types.
DataScript’s composite types are similar to C structs and unions, and the intu-
itions match. However, unlike in C, the struct keyword can be omitted, because
it describes the default composition mode. Unlike C structs and unions, however,
there is no implementation-dependent alignment, packing, or padding. As such,
the size of a union may vary depending on which choice is taken.

DataScript unions are always discriminated. The first choice in a union whose
constraints match the input is taken, hence the textual ordering in the specifi-
cation is important. DataScript does not require that the constraints associated
with the different choices of a union be disjoint, which allows for a default or
fall-back case that is often used in specifications to allow room for future exten-
sions.

Composite types can be lexically nested, which provides each type with its
own lexical scope. Scoping provides a namespace for each type, it does not pro-
vide encapsulation. If a type is referenced from outside its confining type, a full
qualification can be used, such as ClassFile.ClassFlags. Anonymous com-
posite types can be used to define a fields whose types are never referenced, such
as “cp class” in Fig. 1.

Array Types DataScript arrays are linear arrays that use integer indices. Like
record types, there is no alignment or padding between elements. An array’s



lower and upper bounds are given as two expressions: [lower.. upper], which
includes lower, but excludes upper. If lower is omitted, it defaults to zero.

The expressions used to specify the lower and upper bounds must be con-
structed such that their values can be determined at the time the array is read.
Typically, an array’s length will depend in some form on fields that were previ-
ously read. Hence, frequently used idioms such as a length field followed by an
array of the specified length can be easily expressed.

2.2 DataScript Constraints

Each field in a composite type can have a constraint associated with it, which
is specified as an arbitrary boolean predicate separated from the field name by
a colon. Constant fields form a special case of constraints that can be written
like an initializer in C and Java. Thus, the field definition uint32 magic =
0xCAFEBABE is a shorthand for uint32 magic : magic == 0xCAFEBABE.

Constraints are used in three cases: first, constraints that are attached to
fields in a union type are used to discriminate that type. Second, constraints are
used to express consistency requirements of a record type’s fields. In a record
type, a specification designer can choose the field to which a predicate is at-
tached, with the restriction that a predicate can only refer to fields that lexically
occur before the field to which the constraint is attached. This restriction was
introduced to facilitate straightforward translation and to encourage readable
DataScript specifications.

Third, constraints can be attached to array elements to limit the number
of items in an array when its length is not known beforehand. Arrays with
unspecified length grow until an element’s constraints would be violated or until
there is no more input.

Because DataScript constraints cannot have side effects, the DataScript com-
piler is free to generate code that evaluates constraints as soon as their con-
stituents are known; the generated code can also evaluate a constraint predicate
multiple times if needed.

DataScript predicates are boolean expressions. DataScript borrows its set of
operators, associativity, and precedence rules from Java and C in the hope that
doing so will facilitate adoption by tapping into programmers’ existing skill sets.
It includes arithmetic operations such as integer addition, multiplication, etc.;
logical and arithmetic bit operations, relational and comparison operators, and
so on.

DataScript requires additional operators. In many formats, the interpretation
of a piece of data depends on descriptors that occurred earlier in the file. If the
descriptor was modeled as a union type, the constraints used to discriminate the
data will need to inquire which alternative of the descriptor was chosen. The is
operator is a boolean operator that can be used to test whether an instance of
a union type took on a specified choice.

Another common situation is for a field to express the length of an array not
as the number of elements, but as its total size in bytes. The sizeof operator can
be used to compute the number of elements. sizeof returns a field’s or type’s



ClassFile {

constraint compare_utf8(uint16 idx, string str) {

constant_pool[idx] is cp_utf8;

constant_pool[idx].cp_utf8.bytes.compare_to_string(str);

} // rest omitted ...

}

union AttributeInfo {

Code {

uint16 name_idx: ClassFile.compare_utf8(name_idx, "Code");

uint32 length;

uint16 max_stack;

uint16 max_locals;

uint32 code_length;

uint8 code[code_length];

uint16 exception_table_length;

{

uint16 start_pc;

uint16 end_pc;

uint16 handler_pc;

uint16 catch_t: catch_t == 0 || ClassFile.clazz(catch_t);

} exception_table[exception_table_length];

uint16 attributes_count;

AttributeInfo attributes[attributes_count];

} code : sizeof(code) == sizeof(code.name_idx)

+ sizeof(code.length) + code.length;

LineNumberTable {

uint16 name_idx: ClassFile.compare_utf8(name_idx,"LineNumberTable");

uint32 length;

uint16 line_number_table_length;

{

uint16 start_pc: start_pc < Code_attribute.code_length;

uint16 line_number;

} line_number_table[line_number_table_length];

} lnr_table: sizeof(lnr_table) == sizeof(lnr_table.length)

+ sizeof(lnr_table.name_idx) + lnr_table.length;

};

Fig. 2. Recursive description of attributes in Java class files.

size in bytes, similar to the same-named operator in C. If sizeof is applied to
a field, it will evaluate to the actual size of that field after it is read. If sizeof
is applied to a composite type, the type must have a fixed size. A record type
has a fixed size if all its elements have fixed sizes; a union type’s size is fixed if
all its elements have the same size, and an array type has a fixed size if all its



elements have the same size and the number of elements is a constant. Figure 2
provides an example for the sizeof operator: the “length” field in a Code type
must contain the length of the attribute, not including the number of bytes used
for the “name idx” and the “length” fields.

DataScript provides a forall operator that can be attached to arrays, and
whose use is necessary when constraints cannot be attached to an array element
because they refer to the array itself, whose definition occurs lexically after the
element’s definition. For instance, the following construction can be used to
ensure that an array is sorted:

uint32 a[l] : forall i in a : i < l-1 ? a[i] < a[i+1] : true;

The index check is necessary because any expression that causes out-of-bound
array accesses will evaluate to false.

Constraints that are used in multiple places can be defined once and reused
as part of predicates. A constraint defined in this way can only be applied to in-
stances that are contained inside an instance of the type defining the constraint.
For example, the constraint “compare utf8” shown in Figure 2 can be used from
inside AttributeInfo if the instance is contained in a ClassFile instance shown
in Figure 1. Because both ClassFile and AttributeInfo are top-level defini-
tions, this decision cannot be made statically, but must be made at run time. If
at run time the instance is not contained, the expression containing the reference
will evaluate to false. The DataScript compiler will reject type references if the
specification provides no possible way for the referring type to be contained in-
side the referred type. This property can be checked by considering reachability
in the graph that results from the “contained-in” relation between types.

2.3 Type Parameters

Each composite type can have a list of parameters associated with it. Param-
eters can be arbitrary DataScript types, either primitive or composite. Consider

Padding(uint32 size, uint32 align) {

uint8 padding[(align - (size % align)) % align];

};

SomeDirectoryEntry {

uint16 namesize;

uint8 fname[namesize];

Padding(sizeof fname, 4) pad; // align to 4-byte boundary

...

};

Fig. 3. Use of type parameters for padding.



the example in Figure 3, which shows how type parameters can be used to imple-
ment a padding type that can be inserted to ensure that alignment constraints
are not violated. Padding takes two parameters: the size of the unaligned struc-
ture that needs alignment, and the boundary at which it should be aligned.
A variable-length byte array whose length is computed from these parameters
serves to insert appropriate padding.

2.4 Labels

Many data formats are not sequential, but contain headers or directories whose
entries store offsets into the file at which other structures start. To support such
constructs, DataScript allows fields to be labeled. Unlike C labels, DataScript
labels are integer expressions. When they are evaluated at run time, the resulting
value is used as an offset at which the labeled field is located in the data.

Figure 4 shows part of the DataScript specification for an ELF [9] object
file. ELF object files contain a number of sections with symbolic and linking
information necessary to load a program or library into memory and to execute
it. These sections are described in a section header table. However, the location
of the section header table is not fixed; instead, the ELF specification states that
the offset at which the section header table starts is given by the field “e shoff”,
which is stored at a known offset in the ELF header at the beginning of the
file. The DataScript specification expresses this by labeling the “sh header” field
with the expression “e shoff”.

Labels are offsets relative to the beginning of the record or union type in
whose scope they occur. They can only depend on fields that occur lexically
before them. On some occasions, it is necessary for a label to refer to a different
structure. In these circumstances, a label base can be specified before the label

Elf32_File {

Elf_Identification {

uint32 magic = 0x7f454c46;

...

} e_ident;

...

uint32 e_shoff;

uint32 e_flags;

uint16 e_ehsize;

uint16 e_phentsize;

uint16 e_phnum;

uint16 e_shentsize;

uint16 e_shnum;

uint16 e_shtrndx;

...

e_shoff:

Elf32_SectionHeader {

uint32 sh_name;

uint32 sh_type;

uint32 sh_flags;

uint32 sh_addr;

uint32 sh_offset;

uint32 sh_size;

uint32 sh_link;

uint32 sh_info;

uint32 sh_addralign;

uint32 sh_entsize;

} hdrs[e_shnum];

ElfSection(hdrs[s$index]) s[e_shnum];

};

Fig. 4. Use of labels in ELF object file description.



ElfSection (Elf32_File.Elf32_SectionHeader h) {

Elf32_File:: h.sh_offset:

union {

{ } null : h.sh_type == SHT_NULL;

StringTable(h) strtab : h.sh_type == SHT_STRTAB;

SymbolTable(h) symtab : h.sh_type == SHT_SYMTAB;

SymbolTable(h) dynsym : h.sh_type == SHT_DYNSYM;

RelocationTable(h) rel : h.sh_type == SHT_REL;

...

} section;

};

SymbolTable(Elf32_File.Elf32_SectionHeader h) {

Elf32_Sym {

uint32 st_name;

uint32 st_value;

uint32 st_size;

uint8 st_info;

uint8 st_other;

uint16 st_shndx;

} entry[h.sh_size / sizeof Elf32_Sym];

};

Fig. 5. Use of a label base to express offsets that are relative to another structure.

that refers to the structure relative to which the label is to be interpreted.
Figure 5 provides an example.

Figures 4 and 5 also demonstrate a more involved use of type parameters.
Since each section is described by its header, the definition for the ElfSection
type is parameterized by the Elf32 SectionHeader type. The type definition
then uses fields such as “sh offset” and “sh type” to compute the offset and to
discriminate the section type. The parameter “h” passed to the type can be
passed on to other types. For instance, the SymbolTable type uses the “sh size”
field to compute the number of entries in the table if the section contains a
symbol table.

3 Java Language Binding

We chose Java for our reference implementation because its object-oriented na-
ture provides for a straighforward mapping of DataScript types to Java classes,
because it provides architecture-independent primitive types, and because it has
rich runtime support for reading from and writing to data streams. The Data-
Script compiler generates a Java class for each composite type, which includes
accessor methods for each field. Each DataScript type’s class provides a con-
structor that can construct an instance from a seekable input stream.



3.1 Prototype Implementation

Our current prototype code generator does not perform any optimizations. When
parsing input, it simply sets a mark in the input stream and reads the necessary
numbers of bytes for the next field, performs byte-order swapping if necessary,
and initializes the field. It then checks the constraints associated with that field.
If the constraint is violated, an exception is thrown. A catch handler resets the
stream to the earlier set mark and aborts parsing the structure. For union types,
a try/catch block is created for each choice. If a constraint for one choice is
violated, the next choice is tried after the stream is reset until either a matching
choice is found or there are no choices left, in which case the constructor is
aborted.

3.2 Using Visitors

The DataScript code generator also creates the necessary interfaces to implement
the visitor design pattern [1]. This generated visitor interface contains methods
for each composite and primitive type in the specification. A default visitor
implementation is generated that provides a depth-first traversal of a type. For
a record type, it visits all fields in sequence. For a union type, it visits only the
incarnated choice.

4 Related Work

PacketTypes. McCann and Chandra present a packet specification language
called PacketTypes that serves as a type system for network packet formats [6].
It provides features that are similar to DataScript’s: composite types, union
types, and constraints. In addition, it provides a way for a type to overlay fields
in other types, as is needed for protocol composition. PacketTypes’s focus is
on performing one operation well: matching a network packet received from the
network to a specified protocol. For this reason, it generates stubs in C. Unlike
DataScript, PacketTypes does not address generating data, it also does not
provide an visitor interface for writing scripts the way DataScript’s Java binding
does. PacketTypes also does not support different byte orders, labels for non-
sequential types such as ELF, nor type parameters.

OMG’s Meta Object Facility. The OMG’s Meta Object Facility or MOF [8] is a
framework for standardizing the exchange of metadata. It defines a framework
with which to describe metadata; a Java language binding [3] in the form of
interfaces has been proposed recently. However, it does not address the physical
layout of the actual data nor does it provide a way to automatically generate
code to read and write data.



XML. XML is an extensible markup language used to store structured infor-
mation as marked-up text while providing support for syntactic and limited
semantic checking. In a world in which everybody used XML to exchange data,
there would be no need for DataScript, yet this scenario is unlikely not only
because of the large number of existing non-XML formats, but because XML
has shortcomings, such as lack of space efficiency.

Interface Definition Languages (IDL). IDL languages such as RPC-XDR [5] or
CORBA-IDL [7] provide a way to exchange data between applications. They
typically consist of a IDL part that is independent of the physical layout of the
data, and a physical layer specification such as IIOP that describes the physical
layout of the data. By contrast, DataScript does not prescribe how applications
lay out data, it merely provides a language to describe how they do.

5 Conclusion

We have introduced DataScript, a specification language for describing physical
data layouts, and we presented a Java language binding for DataScript specifica-
tions. DataScript specifications allow casual scripting with data whose physical
layout have been described in DataScript. DataScript is a simple-to-understand
constraint-based language. We believe that such a specification language should
become a standard part of the tool and skill set of developers, in the same
way that compiler-compilers such as yacc or the use of regular expressions in
languages such as Perl have become tools that are in everyday use.
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