
1

ModelCraft: Capturing Freehand Annotations and Edits
on Physical 3D Models

Hyunyoung Song , François Guimbretière, Chang Hu
Human-Computer Interaction Lab
Department of Computer Science,

University of Maryland,
College Park, MD 20742, U.S.A

{hsong, francois, changhu}@cs.umd.edu

Hod Lipson
216 Upson Hall

Cornell University
Ithaca, NY 14852-7501, USA

hod.lipson@cornell.edu

ABSTRACT
With the availability of affordable new desktop fabrication
techniques such as 3D printing and laser cutting, physical
models are used increasingly often during the architectural
and industrial design cycle. Models can easily be annotated
to capture comments, edits and other forms of feedback.
Unfortunately, these annotations remain in the physical
world and cannot be easily transferred back to the digital
world. Here we present a simple solution to this problem
based on a tracking pattern printed on the surface of each
model. Our solution is inexpensive, requires no tracking
infrastructure or per object calibration, and can be used in
the field without a computer nearby. It lets users not only
capture annotations, but also edit the model using a simple
yet versatile command system. Once captured, annotations
and edits are merged into the original CAD models. There
they can be easily edited or further refined. We present the
design of a SolidWorks plug-in implementing this concept,
and report initial feedback from potential users using our
prototype. We also present how this prototype could be
extended seamlessly to a fully functional system using cur-
rent 3D printing technology.

ACM CLASSIFICATION: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

GENERAL TERMS: Design, Human Factors

Keywords: Pen based interactions, Tangible interactions,
Rapid prototyping.

INTRODUCTION
In the process of designing artifacts, today’s designers al-
ternate between tangible, non-digital media such as paper or
physical 3D models and intangible, digital media such as
CAD models. An architect might start the design of a new
building with sketches on paper, then, when her ideas so-
lidify, create a rough model using cardboard, before finally

creating the corresponding digital model. Once this model is
finalized, it might be fabricated as a 3D object (either
through rapid prototyping techniques or a modeling studio)
so that her clients may have a better grasp of her vision.
While a fully digital design process has long been advo-
cated, it still seems a distant goal because tangible,
non-digital media models present unique affordances often
difficult to reproduce in digital media. Architectural models
for example offer a unique presence that is difficult to re-
produce on a screen. As a result, even projects that rely
heavily on computer assisted design techniques (such as the
recent Hearst building designed by Sir Foster) still employ

Figure 1 : Our system in action. Top: paper model of
a house with edits (a cut extrusion below the right
front corner is not visible). Bottom: the same model in
our rendering application showing the edits per-
formed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06, October 15-18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

2

tangible models both for aesthetic and structural tasks [9, 10]
(Figure 2, Top).

Interacting with models is an intrinsic part of the design
process for architects who see construction (and sometimes
deconstruction) as a fundamental part of the idea forming
process. For example, during the early phase of the design
process called “massing” - a brain storming practice that
iterates between incremental modifications and rebuilding
of models for conceptualization purposes - inexpensive,
easy-to-build models are used to better understand the shape
requirement of a building. As rapid prototyping technology
has become more commonplace, models are now employed
in other areas of design as well. Mechanical designers use
models to check form and functional compatibility with the
context of an object’s use. Models can also be extensively
annotated (Figure 2 Bottom). Unfortunately, information
captured on such models is difficult to integrate back into
the digital world.

While this problem could be addressed by a conventional
tracking system (either magnetic or optical) as proposed by
Agrawala et al. [2], that approach is limited to a relatively
small working volume. Magnetic or optical tracking systems
require infrastructure and calibration on a per-model basis,
and are somewhat expensive. They are also difficult to de-

ploy in the field where models are frequently tested. This
limits widespread adoption by architects or designers.

Noting that most annotations take place on the surface of the
model, we present a system which uses the inexpensive,
off-the-shelf Logitech io2™ digital pen [20]. This pen is
equipped with a built-in camera which captures position
information by observing a digital pattern [4] printed on
each model (Figure 1). Our system can capture not only
annotations but also editing commands that are subsequently
applied to the original digital models. Using our command
system, and auxiliary tool such as a ruler, users can alter and
adjust the shape of a model, such as modifying dimensions,
filleting corners, creating holes, or extruding portions of a
model based on requirements in the field. The information is
naturally captured in the frame of reference of the model,
without the need to worry about scale or orientation. Our
approach does not have a predefined working volume, and
can easily scale in terms of the number of objects tracked,
number of pens used, and locations of usage. Furthermore, it
does not require a per-model calibration. Because our ap-
proach advocates cohabitation of tangible and digital mod-
els, it integrates seamlessly with the current usage patterns
among architects and mechanical designers for whom in-
teracting with 3D models is a fundamental part of their
creative process. By capturing annotations and edits on
physical 3D models, our system streamlines the design
process and simplifies documentation of the design history
of a given project.

In this paper, we present the first prototype of such a system
developed as a plug-in for SolidWorks [31], a commercial
CAD application. Starting from a model inside SolidWorks,
users can print and build simple, paper-based 3D models (or
create water transfers to be applied on an existing 3D
model). They can then use a digital pen to annotate them or
draw gestures that will be executed upon pen synchroniza-
tion. After describing the system architecture as well as our
editing system, we report on our experiences while design-
ing this system. We also report initial feedback gathered
from potential users, professional architects and teachers.
Finally, we explore in detail possible paths for the imple-
mentation of such a system using current 3D prototyping
technology.

PREVIOUS WORK
Several systems allow users to draw (or paint) on digital
models. Hanrahan and Haeberli [8] described a WYSIWYG
system to paint on 3D models using a standard workstation.
This approach has also been adapted to annotate CAD
drawings [17, 30]. While drawing on a virtual object has
many advantages, such as the ability to work at any scale,
we believe that physical models will always play an im-
portant role in the design process because of their appeal to
designers (Figure 2). In that respect, our approach is closely
related to Agrawala et al.’s [2] 3D painting system. Our
approach extends this work in several ways: By using a
tracking system based on an optical pattern printed on the
surfaces of the object, we offer a very short setup time re-
quiring no calibration on a per-object basis. Our tracking

Figure 2 : 3D models are used extensively in design.
Top: a structural model used during the design of the
Hearst building (from [10]). Bottom: Annotations on
a 3D model from a ZCorp printer (from [35]). Used
with permission.

3

approach also provides greater flexibility for users as an-
notations can be captured at any location. Finally, our ap-
proach is inherently scalable, both in terms of number of
models and in terms of annotating devices – a property
difficult to achieve by either optical or magnetic tracking
techniques. Using a different approach, Grasset et al. [6]
proposed to use augmented reality techniques to annotate
objects directly. On the one hand, by relying on passive
props, our system is less powerful than such systems as it
does not offer direct feedback. On the other hand, the sim-
plicity of our system makes its cost of use very low (no need
to wear or set up any equipment) – a key aspect for accep-
tance by designers and architects.

We believe that future systems should allow users to interact
directly with the representation of a given object that is most
convenient for the task at hand — be it a digital model on a
screen or a 3D printout of that model, or a combination of
the field sketching proposed here with augmented reality
feedback. In that respect, our work is similar in spirit to the
work by Guimbretiere [7] on digital annotations of docu-
ment printouts.

Our work is also related to the large body of work on 3D
sketching in systems like Sketch [37], Teddy [14], SketchUp
[1] and the 3D Journal project [23]. Our system comple-
ments these systems by addressing the need to capture
modifications sketched directly on the models at later stages
of the design process. In particular, our system makes it easy
for users to capture real world geometric information. Our
command system is also quite different. While the systems
mentioned above focus on a gesture-based interface, we
adopt a syntax-based approach inspired by recent work on
Tablet-PC-based interfaces such as Scriboli [13], Fluid
Inking [36] and paper-based interfaces such PapierCraft
[18]. We believe that this approach allows for a more flexi-
ble and extensive command set while retaining a sketch-
ing-like style.

Our work is also closely related to tangible interfaces [12,
16, 32-34] which let users interact with digital information
through the use of tangible artifacts. All these systems lev-
erage users’ familiarity with spatial interactions to allow
them to perform complex interactions with ease. Our system
extends and complements these systems by offering a tighter
correspondence between the tangible proxy and its digital
representation. In doing so, we offer users the opportunity to
modify the digital representation in the real world. In that
respect, our system is also closely related to the Illuminating
Clay system [26] and Liu’s work on editing digital models
using physical material [19], as they allow users to see
modifications made in the real world applied to the equiva-
lent 3D model. Sheng’s thesis on modeling shapes using
fingers and physical props [29] is also related to our ap-
proach, but Sheng’s work focuses on free form shapes such
as shaping clay. All these system require the use of some-
what complex tracking equipment only available in a lab
setting, while our approach is very light-weight.

MODELCRAFT IN ACTION
While our vision is to have a traceable pattern generated
automatically while 3D-printing a model, our current pro-
totype uses simple paper models instead. While building a
paper model seems arduous, interviews with architects con-
firmed that they often build model out of paper (Figure 3),
sometimes starting from a printout of an unfolded CAD
model. Hence our approach augments current practice.

Each SolidWorks model is printed as an unfolded paper
cutout on a page of paper that has been pre-printed with a
unique Anoto pattern [4]. This pattern provides a very large
space of uniquely identifiable pages (in excess of 248 letter
sized pages). Importantly, this makes it possible to interact
with different objects or different printouts of the same
object at once. Practical paper models are usually quite
simple since early designs often rely on a vocabulary of
basic shapes (cube, cylinder, pyramid, cone, sphere) as
proposed by D. K. Ching [5]. We show a typical example in
Figure 3. Moreover, complex shapes are currently supported
by printing the object with a 3D printer and printing a slide
transfer to be applied to each face.

All interactions are carried out with the Logitech io2™ pen
[20], a commercial implementation of the Anoto system. As
each Anoto digital pen has a unique ID, it is also possible to
distinguish several different pens interacting on one object.
Our system also lets us designate special objects as tools.
For example, we instrumented one of our rulers by taping a
strip of Anoto pattern onto it (Figure 6). Making marks on
this ruler is interpreted by the system as making measure-
ments during command operation.

Annotations
Annotating a model is straightforward: Simply pick up the
model and annotate directly on any surface (Figure 4a).
Upon pen synchronization, the marks will be merged onto
the corresponding surface of SolidWorks model. Users can
use several pens for different colors. Marks created by an-
notation pens are not interpreted by the system.

Figure 3 : A typical paper-based massing model used
to refine the shape of a building (this example was
provided to us during our interview with a professional
architect)

4

Form Editing
Our objective here is not to suggest that our interface can
replace the standard (and far more accurate) CAD con-
struction process, but instead to address two different needs.
First, in the early stages of design, an approximate solution
is often good enough to allow the designer to move to the
next stage. For instance, if after 3D printing it is found that a
piece conflicts with another element in the design, simply
marking the conflicting area and cutting it away may be all
that is needed. Second, we found that when a large number
of marks are made on the prototype (during massing work,
for example), it is somewhat difficult upon synchronization
to understand how the marks relate to each other. In that
context, providing a tentative execution of the operations
helps the users understand the structure of the marks. Fur-
thermore, since all annotations and command parameters are
created as first class objects inside the SolidWorks features
tree, each annotation and command parameter can be easily
modified inside SolidWorks. A simple update of the model
will automatically reflect these changes.

Command Syntax. All commands are performed with a
command pen which lays ink in a different color (red in our
system). We choose a “command” pen approach as it fits
well with the current practice of using color coded annota-
tions. Other solutions such as having a command button on
the pen are also possible.

All commands follow a uniform syntax (Figure 5) inspired
by Scriboli [13] and PapierCraft [18]. First, users draw on
objects or on tools (like our ruler) a set of strokes that rep-
resent the parameters of the action to be performed (Figure
5a). Then they draw a pigtail gesture which is used as a
separator between the parameter strokes and the command
name, (Figure 5b). Next, they write the name of the com-
mand they wish to execute (a simple letter in our current
implementation) on top of the pigtail (Figure 5c). During
pen synchronization, the command is then executed using
the area on which the pigtail started as the primary command
parameter. For example, to create a hole though an object
(Figure 5), the user would draw the shape of the hole onto
the object surface, then draw a pigtail starting inside the
shape, and then write a C (for cut) on top of the pigtail. Note
that starting the pigtail outside of the shape would have
created a pillar instead.

The use of the pigtail proved to be very reliable for
pen-based interaction [13] and is well-adapted to our case as
it does not require any feedback besides the ink laid on the
surface [18]. For our system, the pigtail has two advantages.
First, it serves as a natural callout mark when one needs to
execute a command on a small area (like cutting a hole for a
screw). Under such conditions, it would be difficult to write
the name of the command directly on the area of interest
because the area is too small or too close to the surface
border. Second, the pigtail provides a natural orientation for
the surface. While up and down are well understood in a
Tablet-PC context, this is not the case on 3D objects which
people may place in arbitrary orientations to facilitate the

 a) Note taking b) Cut through c) Cut extrusion d) Grooving e) Extrusion
Ph

ys
ic

al
 m

od
el

C
om

pu
te

r

Figure 4 : Current command set. Annotations are done with a black pen, edits are done with a red pen.

Figure 5 : Command syntax. a) main parameter; a’)
secondary parameter; b) pigtail delimiter; c) com-
mand name; d) reference line for character recogni-
tion.

5

annotation process. Accordingly, when interpreting a com-
mand, we consider the pigtail as the baseline for the com-
mand name (Figure 5d).

As shown in Figure 4, some operations may require several
sets of strokes. For example, to create a groove on an object
(Figure 4d) one first draws the profile of the groove on one
surface, then the extent of the groove on an adjacent surface,
then one uses a pigtail to indicate the inner region, and fi-
nally one writes a G (for “groove”) on top of the pigtail.
Another example is the creation of a cut of a given depth. To
do so, the user first creates the shape of the cut, then marks
the depth of the cut on another face, and then uses a pigtail to
issue the cut command. As shown in Figure 6, top, this
syntax makes it very easy to use real world objects as ref-
erences without the need for further measurements.

So far, we have considered cut operations, as they are easily
specifiable by drawing on the available sides of the models.
Our system also provides a way to create extrusions through
the use of our “digital” ruler. For example, to extrude a
shape from a surface, one simply draws the shape on the
surface, then draws a mark on the ruler to indicate the ex-
trusion length, and finally, using the pigtail, issues the ex-
trude command (E) on the area to extrude. Figure 4e pro-
vides an example of such an operation. As in the case of
cutouts, this command facilitates the process of using
real-world objects as references (Figure 6 bottom).

Together the Cut, Groove and Extrude operations represent
the fundamental modification tools (removing material and
adding material) defined by D. K. Ching [5], these are also
the interactions most frequently described by architects. But

of course our system is easily extendable to more complex
commands as we will describe later.

Dealing with Errors in Batch Processing. In our system, the
annotations and commands are captured in batch mode.
There are several reasons for this choice. First, as explained
previously, it is important for the intended pattern of use of
our system that interactions can take place away from a
computer. Second, by delaying execution, a batch approach
might help keeping users in the “flow” of their task by
avoiding unnecessary interruptions.

Of course, errors will need to be corrected eventually. Our
interface offers two main mechanisms to deal with errors.
For marking errors in annotations and commands we use a
simple scratch out gesture to indicate that the underlying
gestures should be removed, or that the underlying com-
mand should not be performed. For execution errors, it is
important to remember that while our system might mis-
recognize gestures and command names, it accurately cap-
tures the parameters of the commands on the correct faces.
Since this information is directly transferred to SolidWorks,
it becomes a trivial matter to make corrections because all
the relevant command parameters are already in place which
saves transcription time.

In our system it is also possible to issue several “alternative”
commands by simply drawing the new command over the
last command, a common pattern in practice. Each com-
mand will be recognized as a different operator (or “feature”
in SolidWorks terminology) and appear in the feature tree
managed by SolidWorks. Once the strokes have been
transferred to SolidWorks, the user can compare the results
of different commands, pick the best of them, and delete

Figure 6 : Using external references to perform a command. Top: a cube is cut extruded to fit a door frame. First we mark
the thickness of the frame, and then the width before executing. Bottom: a side of a cube is extruded to cover the same
door frame. First we mark the thickness of the frame, and then use our ruler to mark the width of the frame before exe-
cuting.

6

alternative executions. Also, to document the design proc-
ess, each of the alternative commands could be applied in a
different configuration using the configuration management
provided by SolidWorks.

IMPLEMENTATION
As shown in Figure 7, the life cycle of a model in our pro-
totype can be broken down into 3 phases: 1) print the 3D
model as a paper prototype with a unique pattern on each
side; 2) capture the strokes made on the paper prototype and
map the strokes onto the correct virtual 3D model’s face; 3)
execute the commands themselves. We are now considering
each phase in turn.

Printing the Model
To print the paper model or water slide paper patch, we start
from a SolidWorks file and unfold it as described below.
The unfolded model is then printed on paper pre-printed
with the Anoto pattern. During printing, we use the PADD
infrastructure [7] to maintain the relationship between a
given model and the unique page ID on which it has been
printed, and to record the calibration data and the geometric
transformation used during printing. This information is
used during the synchronization process, to identify on
which digital model a stroke has been made. Note that we
are using the Anoto system as it is the only commercially
available tracking system at this time, but other systems
such Data Glyphs [11] could have been used as well.

Unfolding the Model. While many unfolding approaches are
possible, such as [24] (see [27] for a review), we focused on

limiting the number of discontinuities because they interfere
with the tracking system. We use a heuristic approach which
starts at the triangle with the longest perimeter, and trans-
forms it onto a plane. Then it recursively visits all
neighboring triangles and attempt to repeat the transforma-
tion, while maintaining adjacency of neighboring triangles
and disallowing triangle overlap in the plane. Since the level
of discontinuity is proportional to the length of seams, the
recursion order follows a greedy heuristic of taking the next
untransformed triangle sharing the longest boundary with
transformed triangles that can be transformed without cre-
ating an overlap in the plane. When no such triangle is
found, a new pattern is initiated and the process repeats.
Once a set of patterns is generated, the patterns are collected
and nested in a page by recursively packing pattern bound-
ing boxes.

Importing Back Captured Strokes
During pen synchronization, our application receives all the
strokes captured by a pen. Strokes are recorded with a time
stamp and the page ID on which they were made. We use
this ID to recover the model that the strokes were drawn on
as well as the calibration and geometric transformation
stored during the printing process. Once the user is ready to
process the strokes, they are imported from our application
onto the unfolded model; each stroke point is mapped from
page coordinates back into 3D coordinates by applying the
inverse of the transformation that was originally used to
move the local triangle from 3D onto the plane.

Executing Commands
As pointed out above, all command strokes have been made
by a special “command” pen, so it is easy for our system to
distinguish them. Our first step in processing these strokes is
to segment the stream of command strokes into individual
commands. To do so, we first detect strokes that might look
like a valid pigtail using a set of simple heuristics such as
looking for gestures with a relatively small loop and large
outside tails. Once these are detected, we observe if there is
a stroke recognizable as a character that has been drawn
above the candidate pigtail within a pre-set time out. If this
is the case, the stroke is recognized as a valid pigtail, and the
strokes drawn since the last command are used as parame-

Figure 7 : Life cycle of a model using our system. Here we present the cycle for paper-based model construction, but a
similar cycle would be used for applying water slide transfers onto existing 3D models.

Figure 8 : Example of our unfolding algorithm.

7

ters for the command execution. We also check for natural
command separators (such as creating an annotation) and
check that the parameter set matches the command. For
example, the face IDs associated with shape and pigtail
delimiter and command character should all be the same. In
practice, this approach worked well for our prototype. Once
command syntax has been validated, the command is exe-
cuted. Commands that use input from tools as parameters
are processed in a similar way, but the strokes that were
performed on the tool are processed in a tool-dependent
way. If a command is not recognized, it is skipped, but its
strokes are still presented on the surface of the model.

DISCUSSION
As we were developing our prototype we conducted several
formative studies about the potential use of our approach. So
far, we have conducted six semi-structured interviews, in-
cluding a demonstration and a hands-on test. Our participant
population covered a wide range of architectural back-
grounds and included a student in an architecture school
working as a drafter, several young architects, a senior ar-
chitect, a senior partner and a faculty member at a school of
architecture. Despite the current shortcomings of our pro-
totype (such as the requirement that each contour parameter
uses only one stroke, and the use of handwriting recognition
without training) seasoned architects’ reaction to the system
was very positive. Several architects pointed out that our
system would be perfect for massing a building. During
massing, new models are built based on marks or shapes that
were suggested in the previous iterative cycle. This type of
practice is well suited for the ModelCraft interactions.

The professor remarked that our system would allow stu-
dents to explore prototyping and develop 3D thinking skills.
For example, visualizing the 3D results of subtractive op-
erations drawn on a face of a cube is a common task in
architecture training. ModelCraft might also create a natural
bridge between the traditional approach to architecture
(based mostly on paper-based sketching) and the use of
modern applications such as SketchUp [1]. Architects fur-
ther pointed out that annotations on paper models could be
useful for capturing feedback from some of their clients who
might be intimidated by digital models. The response to the
system was more muted for younger participants (one a
student drafter and one a CAD modeler), since their work
did not require extensive use of tangible 3D models. Yet, the
architecture student pointed out that the system would be
very useful for teaching and would support current practice
taught at school. The CAD modeler, while skilled in build-
ing models, was not using them at work. This participant
also pointed out that she often “deconstructed” her models in
order to reconfigure them, so annotations did not seem as
useful for her. We are considering ways to support this type
of approach with our system.

Several users were concerned about the limitations of the
digital pen (mainly that one has to remember to aim the pen
correctly). One user suggested that this problem could be
alleviated by slightly modifying the design of the pen.
Overall, our interviews confirmed our hypothesis that a

system bridging the gap between the digital and physical
worlds would be useful for practitioners and teachers alike.

Editing the Models
The design of our command language followed a different
path than that of Teddy and Sketch. While those systems
adopted a gesture-based approach well-suited for sketching,
we used a structured approach based on a simple extendable
command structure and a pigtail as a separator between
parameter strokes and command selection [13, 18]. One of
the strengths of our approach is that, while keeping an in-
formal feel, it can be easily extended to more complex
commands and a wider set of commands by using longer
command names. We implemented a Window (W) com-
mand to create windows of a certain depth in buildings
(Figure 1). Two additional commands supported by Solid-
Works were implemented as part of our system: first,
(S)hell, a command that creates a shell given a volume, and
second, a (F)illet command used to round out a selected
edge. Using techniques described in the PapierCraft system
[18], we could also transfer a shape captured on transfer
paper onto a given surface and extrude it. It would also be
easy to extend the system to accept post command parame-
ters like numerical arguments.

Another important difference to other systems is that in our
system, there is not always a plane on which to draw. This
limitation is not merely the result of our tracking technol-
ogy. Even if more complex tracking systems were used, it
would still be difficult for people to draw in free space. This
makes several techniques (such as free form extrusion) that
were used by Teddy more difficult to implement in the
present system. However, as discussed above, we were able
to address this problem through the use of simple tools such
as rulers. We are also exploring how users could use
sketches drawn on a drawing board to create new geometry.

Tracking Performance and Limitations
One of our goals during this project was to better understand
the limitations of a tracking method based on a pattern
printed on the model surface. We now discuss our observa-
tions derived from working with our prototype.

Printing Models. Our current prototype used only printed,
paper-based models. For simple models, this approach
worked extremely well. Cutting and scoring (to simplify
folding) the models by hand proved to be easy and accurate.
Using a laser cutter would greatly simplify and increase the
accuracy of this process. As shown Figure 4 this approach
works well with basic shapes such as a cube, cone, cylinder,
pyramid, and tetrahedron. Using a more advanced unfolding
algorithm like the one proposed by Mitani and Suzuki [24]
would allow for more complex shapes. Yet, it is clear that
the paper-based approach seriously limits the complexity of
objects. One simple alternative is to add the pattern to ex-
isting models once they have been built. For example, using
our system, one can print the unfolded surface on a water
slide transfer paper, and apply the transfer onto the model.
Our tests showed that this technique is a viable option for
models printed with a ZCorp printer. This approach allows

8

for more complex shapes to be built rapidly and only adds a
small time to the production process. Yet, for the system to
stay accurate, one needs to be careful while applying the
transfer.

Of course the preferred solution would be to have the 3D
printer print the pattern at the same time as the 3D object
itself. Some 3D printers (ZCorp Z510) can already print at a
resolution up to 600 dpi in the plane of the printing bed and
540 dpi vertically [35]. This is in the same range as for laser
printers able to reproduce the Anoto pattern. Unfortunately,
our tests showed that a pattern printed with the ZCorp Z510
printer was not recognized by the digital pen. To understand
why, we show in Figure 9 segments of patterns printed on a
laser printer and on a Z510. As can be seen on Figure 9, left,
the dots produced by our laser printer are of somewhat ir-
regular shape but use black ink to provide a highly con-
trasted image. The dots printed on the Z510 (Figure 9, right)
are diffuse and do not use true black ink but a combination
of C, M, and Y inks to simulate black. As a result, they are
likely invisible to the infrared pen sensor. We believe that
this problem can be readily addressed by introducing a truly
CMYK printing process and using finer grained printing
material. Another solution would be to use another tracking
system like the Data Glyph designed for 300 dpi printing on
par with the minimum layer thickness of .089 mm (286
layers per inch) of the ZCorp process, or a more robust
encoding scheme.

Accuracy. The Anoto tracking system reports points with
678 dpi accuracy, but, taking into account the errors intro-
duced by pen orientation and the printing process, the sys-
tem’s maximum error is around 1 mm. Of course, the overall
accuracy of the system also depends on the accuracy at
which the paper is cut and folded (around 1 mm in our cur-
rent manual process). Using a laser cutter would further
improve accuracy.

Optical Tracking of Passive Patterns. Another problem in-
herent to optical tracking is that the system might lose
tracking because the pen camera overhangs on a face or
because users are trying to draw inside a groove or on an
indented face. At overhangs, the pen looses track when the
tip is about 3mm from the border, at which point it vibrates.
As a result, the smallest square surface on which a command

can be issued is 12mm wide. For indented faces the problem
is exacerbated by the fact that the Anoto firmware is ex-
pecting a continuous pattern in the field of view. In our tests,
the pen was able to track a pattern at the bottom of a 4.8 mm
x 4.8 mm groove or mark a 6.4 mm diameter circle using a
1.6 mm thick template. Finally, because the pen was de-
veloped for tracking on flat surfaces, the system cannot track
strokes on cylinders (or cones) whose radius of curvature is
smaller than 12 mm. It is not clear how significant these
limitations will be in practice and future work will be nec-
essary to evaluate their impact. Other 3D encoding schemes
may remediate this.

Another limitation of our tracking system is that it cannot
track in free space. As demonstrated above, instrumentation
of traditional tools used by wood workers (such as rulers,
squares, tracing paper) may help to address this problem.
For example, we used our instrumented ruler to indicate the
height of an extrusion.

Finally, the current version of our digital pen does not pro-
vide orientation information for the object itself. So far, this
limitation proved to be mainly relevant for handwriting
recognition and our use of the pigtail as a reference mark
addressed the problem successfully.

Character Recognition. Character recognition and pigtail
recognition determine the total number of successfully
recognized editing commands. Several problems might
affect the recognition rate: first the pen provides samples at a
relatively low temporal resolution which might influence the
recognizer. To address this problem we add/subtract points
so that the points are sampled not according to the time
stamp but equidistantly. The orientation of the command
might also have some effects. Our informal tests showed
that using the pigtail as a baseline of character recognition
was quite successful as the orientation of the characters
seems to have little influence over the recognition rate.
Finally, we observed that when users write on curved sur-
faces, letters are slightly deformed. This is due to users
writing from a planar surface perspective. This problem can
easily be addressed by projecting each letter on the plane
normal to the surface at the centroid of the letter. Overall our
tests show that our pigtail recognition rate is about 99% and,
given our small dictionary of commands, we could reach a
command recognition rate of about 92%. Further empirical
evaluation will be needed to confirm these numbers.

FUTURE WORK
The system presented in this paper is built as an exploration
tool allowing us to investigate the feasibility of our approach
and provide us with a hands-on demonstration for potential
users. In the near future we are planning to expand the sys-
tem so that it can accommodate more complicated models
and can be used during long term studies.

Dealing with Non-Developable Surfaces
Non-developable surface are problematic for our system
because unfolding of such surfaces leads to multiple dis-
continuities in the pattern space (Figure 10) and creates gaps
in tracking. Our tests suggest that the pen’s field of view is

Figure 9 : Printing the Anoto pattern (all prints from a
600pdi rendering). Left: Anoto pattern printed using a
2400 dpi laser printer in black and white mode; Right:
A pattern printed using a ZCorp Z510 printer (600
dpi). All pictures were taken at about x200 magnifi-
cation.

9

about 5mm wide and that the current pen firmware only
decodes the pattern correctly if there is only one continuous
pattern in its field of view. A closer look at the design of the
Anoto pattern [21] reveals that this is merely a limitation of
the current implementation. In principle, one could uniquely
resolve a position if any 2.4 mm x 2.4 mm patch is visible.
We believe that if the firmware were modified to detect the
edge of each continuous pattern region (maybe by recog-
nizing printed edges) and each face of the model was wider
than 2.4mm, the pen would be able to uniquely identify its
position even around discontinuities in the pattern. Another
solution to this problem would be to adopt a different ap-
proach to tracking altogether. Instead of mapping a 2D pat-
tern onto our models, we could tile them with small
(2-3mm) optical tags which can be tracked by the pen. For
example, one could use the system proposed by Sekendur
[28], or the Data Glyph system [25], or, of course, the Anoto
position pattern itself. All of these provide the large number
of unique identifiers that is necessary. In all cases, the re-
quirement of the minimum patch size can be accomplished
using subdivision-based techniques such as the one used in
the Skin system [22] and extended by Igarashi and Hughes
[15].

We would also like to examine in more detail how our sys-
tem could be adapted to 3D printing systems. In particular,
we would like explore the feasibility of a 3D version of the
Anoto pattern. This would not only simplify the printing
process and alleviate the pattern discontinuity problem but
also allow for annotations on newly exposed, cut, or frac-
tured surfaces of objects.

Extended Feature Set
Our interviews with architects pointed to several directions
in which the current system could be extended. One of them
is to provide a better support for “free space” sketching by
using information sketched on free paper to be incorporated
as parameters to commands. Another one is to provide an
operation to “glue” objects together. This multiple object
operation will be very useful in early design phases as it is
often the case that architects create new designs by stacking
or joining available building blocks. This will provide a
functionality similar with Anderson et al.’s system [3].

Finally, while our current system focuses on batch proc-
essing, new Anoto pens can transmit the strokes they capture
in near real-time. One of the appeals of our system is that it
can be used without a nearby computer. Nevertheless, sev-
eral applications might benefit from streaming capabilities

(for example by combining our system with the Urp system
[34]). It will be a simple matter to adapt our system to
streaming-based interactions.

With these new functionalities in place we intend to conduct
longer term usability studies to better understand how our
system will be accepted and how it might change current
design practices.

CONCLUSION
We presented a new system which lets users capture anno-
tations and editing commands on physical 3D models and
transfer them onto the corresponding digital models. Our
system is inexpensive and easily scalable in term of objects,
pens, and interaction volume. Our command system reflects
current practices of model builders and integrates seam-
lessly with current practice. Our system allows users to
bridge the gap between the digital and the physical worlds
by allowing them to deploy resources of both media for the
task at hand. We believe that our approach will provide an
efficient tool for the early phases of design in both archi-
tecture and product design.

ACKNOWLEDGEMENTS
This work was supported in by NSF Grant IIS-0447703 and
Microsoft Research (as part of the Microsoft Center for
Interaction Design and Visualization at the University of
Maryland) and a graduate fellowship from the department of
Computer Science at the University of Maryland. We would
like to thank the architectural and interiors firm of BeeryRio
for their support during the interview process (with special
thanks to Rosana Keleher), Irena Savakova of DMJM H&N
and all our participants. Corinna Löckenhoff and Adam
Bender provided many useful comments to help improve
this document. We would also like to thank Ben Bederson,
Bobby Bhattacharjee and Bill Pugh for their support. Foster
& Partners kindly provided us with the picture shown in
Figure 2 top. ZCorp kindly provided us with the picture
shown in Figure 2 bottom.

REFERENCES
1. @Last Software, SketchUp. 2005.

2. Agrawala, M., A.C. Beers, and M. Levoy. 3D painting
on scanned surfaces. Proceedings of I3D'95, pp. 145 -
150.

3. Anderson, D., J.S. Yedidia, J.L. Frankel, J. Marks, A.
Agarwala, P. Beardsley, J.H.D. Leigh, K. Ryall, and E.
Sullivan. Tangible interaction + graphical interpretation:
a new approach to 3D modeling. Proceedings of Sig-
Graph'00, pp. 393 - 402.

4. Anoto, Development Guide for Service Enabled by
Anoto Functionality. 2002, Anoto.

5. Ching, F.D.K., Architecture: Form, Space, and Order.
2nd ed. 1996: Wiley.

6. Grasset, R., L. Boissieux, J.D. Gascuel, and D. Schmal-
stieg. Interactive mediated reality. Proceedings of Pro-

Figure 10 : An example of a non-developable sur-
face creating many discontinuities in the pattern
space.

10

ceedings of the Sixth Australasian conference on User
interface (2005), pp. 21 - 29.

7. Guimbretiere, F. Paper Augmented Digital Documents.
Proceedings of UIST'03, pp. 51 - 60.

8. Hanrahan, P. and P. Haeberli. Direct WYSIWYG
painting and texturing on 3D shapes. Proceedings of
SigGraph'90, pp. 215 - 223.

9. Hart, S., Building a State-of-the Art Home: Part II.
Achitectural Record Innovation, 2005: p. 24 - 29.

10. Hart, S., An Icon is Completed After 80 Years: Part I.
Achitectural Record Innovation, 2005: p. 20 - 23.

11. Hecht, D.L. Embedded Data Glyph Technology for
Hardcopy Digital Documents. Proceedings of SPIE
Color Hard Copy and Graphic Arts III, pp. 341 - 352.

12. Hinckley, K., R. Pausch, J.C. Goble, and N.F. Kassell.
Passive real-world interface props for neurosurgical
visualization. Proceedings of CHI'94, pp. 452 - 458.

13. Hinckley, K., P. Baudisch, G. Ramos, and F. Guimbre-
tiere. Design and analysis of delimiters for selec-
tion-action pen gesture phrases in scriboli. Proceedings
of CHI'05, pp. 451 - 460.

14. Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: a
sketching interface for 3D freeform design. Proceedings
of SigGraph'99, pp. 409 - 416.

15. Igarashi, T. and J.F. Hughes. Smooth meshes for
sketch-based freeform modeling. Proceedings of I3D'03,
pp. 139 - 142.

16. Ishii, H. and B. Ullmer. Tangible bits: towards seamless
interfaces between people, bits and atoms. Proceedings
of CHI'97, pp. 234-241.

17. Jung, T., M.D. Gross, and E.Y.-L. Do. Sketching anno-
tations in a 3D web environment. Proceedings of CHI'02
Extended Abstracts, pp. 618 - 619.

18. Liao, C., F. Guimbretière, and K. Hinckley. PapierCraft:
a command system for interactive paper. Proceedings of
UIST'05, pp. 241 - 244.

19. Liu, X., Editing Digital Models Using Physical
Materails, PhD thesis, University of Toronto. 2004

20. Logitech, IO digital pen. (http://www.logitech.com).
2005.

21. Lynggard, S. and M.P. Pettersson, Devices Method and
Computer Program For Position Determination, in US
Patent Office. 2005, Anoto AB: USA.

22. Markosian, L., J.M. Cohen, T. Crulli, and J. Hughes.
Skin: a constructive approach to modeling free-form
shapes. Proceedings of SigGraph'99, pp. 393 - 400.

23. Masry, M., D. Kang, and H. Lipson, A Pen-Based
Freehand Sketching Interface for Progressive Construc-
tion of 3D Objects. Computer & Graphics, 2005. 29: p.
563 - 575.

24. Mitani, J. and H. Suzuki, Making papercraft toys from
meshes using strip-based approximate unfolding. ACM
Transactions on Graphics, 2004. 23(3): p. 259 - 263.

25. Petrie, G.W. and D.L. Hecht, Parallel propagating em-
bedded binary sequences for characterizing objects in
N-dimensional address space, in US Patent Office. 1999,
Xerox Corporation.

26. Piper, B., C. Ratti, and H. Ishii. Illuminating clay: a 3-D
tangible interface for landscape analysis. Proceedings of
CHI'02, pp. 355 - 362.

27. Polthier, K., Imaging maths - Unfolding polyhedra. Plus
Magazine, 2003. 27.

28. Sekendur, O.F., Absolute Optical Position Determina-
tion, in US Patent office. 1998: USA.

29. Sheng, J., A Gestural 3D modeling Interface using Fin-
gers and a Physical Prop Traceked in 3D, PhD thesis,
University of Toronto. 2005

30. Solid Concepts Inc, SolidView. 2004.

31. SolidWorks, SolidWorks. 2005.

32. Ullmer, B. and H. Ishii. The metaDESK: models and
prototypes for tangible user interfaces. Proceedings of
UIST'97, pp. 223 - 232.

33. Underkoffler, J. and H. Ishii. Illuminating light: an op-
tical design tool with a luminous-tangible interface.
Proceedings of CHI'98, pp. 542-9.

34. Underkoffler, J. and H. Ishii. Urp: a luminous-tangible
workbench for urban planning and design. Proceedings
of CHI'99, pp. 386 - 393.

35. ZCorp, ZCorp 3D printing system. 2005.

36. Zeleznik, R. and T. Miller. Fluid inking: augmenting the
medium of free-form inking with gestures. Proceedings
of GI'06, pp. 155 - 162.

37. Zeleznik, R.C., K.P. Herndon, and K.P. Herndon.
SKETCH: an interface for sketching 3D scenes. Pro-
ceedings of SigGraph'96, pp. 163 - 170.

