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ABSTRACT 
With the availability of affordable new desktop fabrication 
techniques such as 3D printing and laser cutting, physical 
models are used increasingly often during the architectural 
and industrial design cycle. Models can easily be annotated 
to capture comments, edits and other forms of feedback. 
Unfortunately, these annotations remain in the physical 
world and cannot be easily transferred back to the digital 
world. Here we present a simple solution to this problem 
based on a tracking pattern printed on the surface of each 
model. Our solution is inexpensive, requires no tracking 
infrastructure or per object calibration, and can be used in 
the field without a computer nearby. It lets users not only 
capture annotations, but also edit the model using a simple 
yet versatile command system. Once captured, annotations 
and edits are merged into the original CAD models. There 
they can be easily edited or further refined. We present the 
design of a SolidWorks plug-in implementing this concept, 
and report initial feedback from potential users using our 
prototype. We also present how this prototype could be 
extended seamlessly to a fully functional system using cur-
rent 3D printing technology.  

ACM CLASSIFICATION: H5.2 [Information interfaces and 
presentation]: User Interfaces. - Graphical user interfaces. 

GENERAL TERMS: Design, Human Factors 

Keywords: Pen based interactions, Tangible interactions, 
Rapid prototyping. 

INTRODUCTION 
In the process of designing artifacts, today’s designers al-
ternate between tangible, non-digital media such as paper or 
physical 3D models and intangible, digital media such as 
CAD models. An architect might start the design of a new 
building with sketches on paper, then, when her ideas so-
lidify, create a rough model using cardboard, before finally 

creating the corresponding digital model. Once this model is 
finalized, it might be fabricated as a 3D object (either 
through rapid prototyping techniques or a modeling studio) 
so that her clients may have a better grasp of her vision. 
While a fully digital design process has long been advo-
cated, it still seems a distant goal because tangible, 
non-digital media models present unique affordances often 
difficult to reproduce in digital media. Architectural models 
for example offer a unique presence that is difficult to re-
produce on a screen. As a result, even projects that rely 
heavily on computer assisted design techniques (such as the 
recent Hearst building designed by Sir Foster) still employ 

 
Figure 1 : Our system in action. Top: paper model of 
a house with edits (a cut extrusion below the right 
front corner is not visible). Bottom: the same model in 
our rendering application showing the edits per-
formed. 
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tangible models both for aesthetic and structural tasks [9, 10] 
(Figure 2, Top).  

Interacting with models is an intrinsic part of the design 
process for architects who see construction (and sometimes 
deconstruction) as a fundamental part of the idea forming 
process. For example, during the early phase of the design 
process called “massing” - a brain storming practice that 
iterates between incremental modifications and rebuilding 
of models for conceptualization purposes - inexpensive, 
easy-to-build models are used to better understand the shape 
requirement of a building. As rapid prototyping technology 
has become more commonplace, models are now employed 
in other areas of design as well. Mechanical designers use 
models to check form and functional compatibility with the 
context of an object’s use. Models can also be extensively 
annotated (Figure 2 Bottom). Unfortunately, information 
captured on such models is difficult to integrate back into 
the digital world.  

While this problem could be addressed by a conventional 
tracking system (either magnetic or optical) as proposed by 
Agrawala et al. [2], that approach is limited to a relatively 
small working volume. Magnetic or optical tracking systems 
require infrastructure and calibration on a per-model basis, 
and are somewhat expensive. They are also difficult to de-

ploy in the field where models are frequently tested. This 
limits widespread adoption by architects or designers.  

Noting that most annotations take place on the surface of the 
model, we present a system which uses the inexpensive, 
off-the-shelf Logitech io2™ digital pen [20]. This pen is 
equipped with a built-in camera which captures position 
information by observing a digital pattern [4] printed on 
each model (Figure 1). Our system can capture not only 
annotations but also editing commands that are subsequently 
applied to the original digital models. Using our command 
system, and auxiliary tool such as a ruler, users can alter and 
adjust the shape of a model, such as modifying dimensions, 
filleting corners, creating holes, or extruding portions of a 
model based on requirements in the field. The information is 
naturally captured in the frame of reference of the model, 
without the need to worry about scale or orientation. Our 
approach does not have a predefined working volume, and 
can easily scale in terms of the number of objects tracked, 
number of pens used, and locations of usage. Furthermore, it 
does not require a per-model calibration. Because our ap-
proach advocates cohabitation of tangible and digital mod-
els, it integrates seamlessly with the current usage patterns 
among architects and mechanical designers for whom in-
teracting with 3D models is a fundamental part of their 
creative process. By capturing annotations and edits on 
physical 3D models, our system streamlines the design 
process and simplifies documentation of the design history 
of a given project.  

In this paper, we present the first prototype of such a system 
developed as a plug-in for SolidWorks [31], a commercial 
CAD application. Starting from a model inside SolidWorks, 
users can print and build simple, paper-based 3D models (or 
create water transfers to be applied on an existing 3D 
model). They can then use a digital pen to annotate them or 
draw gestures that will be executed upon pen synchroniza-
tion. After describing the system architecture as well as our 
editing system, we report on our experiences while design-
ing this system. We also report initial feedback gathered 
from potential users, professional architects and teachers. 
Finally, we explore in detail possible paths for the imple-
mentation of such a system using current 3D prototyping 
technology.   

PREVIOUS WORK 
Several systems allow users to draw (or paint) on digital 
models. Hanrahan and Haeberli [8] described a WYSIWYG 
system to paint on 3D models using a standard workstation. 
This approach has also been adapted to annotate CAD 
drawings [17, 30]. While drawing on a virtual object has 
many advantages, such as the ability to work at any scale, 
we believe that physical models will always play an im-
portant role in the design process because of their appeal to 
designers (Figure 2). In that respect, our approach is closely 
related to Agrawala et al.’s [2] 3D painting system. Our 
approach extends this work in several ways: By using a 
tracking system based on an optical pattern printed on the 
surfaces of the object, we offer a very short setup time re-
quiring no calibration on a per-object basis. Our tracking 

 

Figure 2 : 3D models are used extensively in design. 
Top: a structural model used during the design of the 
Hearst building (from [10]). Bottom: Annotations on 
a 3D model from a ZCorp printer (from [35]). Used 
with permission. 
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approach also provides greater flexibility for users as an-
notations can be captured at any location. Finally, our ap-
proach is inherently scalable, both in terms of number of 
models and in terms of annotating devices – a property 
difficult to achieve by either optical or magnetic tracking 
techniques. Using a different approach, Grasset et al. [6] 
proposed  to use augmented reality techniques to annotate 
objects directly. On the one hand, by relying on passive 
props, our system is less powerful than such systems as it 
does not offer direct feedback. On the other hand, the sim-
plicity of our system makes its cost of use very low (no need 
to wear or set up any equipment) – a key aspect for accep-
tance by designers and architects. 

We believe that future systems should allow users to interact 
directly with the representation of a given object that is most 
convenient for the task at hand — be it a digital model on a 
screen or a 3D printout of that model, or a combination of 
the field sketching proposed here with augmented reality 
feedback. In that respect, our work is similar in spirit to the 
work by Guimbretiere [7] on digital annotations of docu-
ment printouts. 

Our work is also related to the large body of work on 3D 
sketching in systems like Sketch [37], Teddy [14], SketchUp 
[1] and the 3D Journal project [23]. Our system comple-
ments these systems by addressing the need to capture 
modifications sketched directly on the models at later stages 
of the design process. In particular, our system makes it easy 
for users to capture real world geometric information. Our 
command system is also quite different. While the systems 
mentioned above focus on a gesture-based interface, we 
adopt a syntax-based approach inspired by recent work on 
Tablet-PC-based interfaces such as Scriboli [13], Fluid 
Inking [36] and paper-based interfaces such PapierCraft 
[18]. We believe that this approach allows for a more flexi-
ble and extensive command set while retaining a sketch-
ing-like style.  

Our work is also closely related to tangible interfaces [12, 
16, 32-34] which let users interact with digital information 
through the use of tangible artifacts. All these systems lev-
erage users’ familiarity with spatial interactions to allow 
them to perform complex interactions with ease. Our system 
extends and complements these systems by offering a tighter 
correspondence between the tangible proxy and its digital 
representation. In doing so, we offer users the opportunity to 
modify the digital representation in the real world. In that 
respect, our system is also closely related to the Illuminating 
Clay system [26] and  Liu’s work on editing digital models 
using physical material [19], as they allow users to see 
modifications made in the real world applied to the equiva-
lent 3D model. Sheng’s thesis on modeling shapes using 
fingers and physical props [29] is also related to our ap-
proach, but Sheng’s work focuses on free form shapes such 
as shaping clay. All these system require the use of some-
what complex tracking equipment only available in a lab 
setting, while our approach is very light-weight. 

MODELCRAFT IN ACTION 
While our vision is to have a traceable pattern generated 
automatically while 3D-printing a model, our current pro-
totype uses simple paper models instead. While building a 
paper model seems arduous, interviews with architects con-
firmed that they often build model out of paper (Figure 3), 
sometimes starting from a printout of an unfolded CAD 
model. Hence our approach augments current practice.  

Each SolidWorks model is printed as an unfolded paper 
cutout on a page of paper that has been pre-printed with a 
unique Anoto pattern [4]. This pattern provides a very large 
space of uniquely identifiable pages (in excess of 248 letter 
sized pages). Importantly, this makes it possible to interact 
with different objects or different printouts of the same 
object at once. Practical paper models are usually quite 
simple since early designs often rely on a vocabulary of 
basic shapes (cube, cylinder, pyramid, cone, sphere) as 
proposed by D. K. Ching [5]. We show a typical example in 
Figure 3. Moreover, complex shapes are currently supported 
by printing the object with a 3D printer and printing a slide 
transfer to be applied to each face. 

All interactions are carried out with the Logitech io2™ pen 
[20], a commercial implementation of the Anoto system. As 
each Anoto digital pen has a unique ID, it is also possible to 
distinguish several different pens interacting on one object. 
Our system also lets us designate special objects as tools. 
For example, we instrumented one of our rulers by taping a 
strip of Anoto pattern onto it (Figure 6). Making marks on 
this ruler is interpreted by the system as making measure-
ments during command operation. 

Annotations 
Annotating a model is straightforward: Simply pick up the 
model and annotate directly on any surface (Figure 4a). 
Upon pen synchronization, the marks will be merged onto 
the corresponding surface of SolidWorks model. Users can 
use several pens for different colors. Marks created by an-
notation pens are not interpreted by the system. 

 
Figure 3 : A typical paper-based massing model used 
to refine the shape of a building (this example was 
provided to us during our interview with a professional 
architect)  
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Form Editing 
Our objective here is not to suggest that our interface can 
replace the standard (and far more accurate) CAD con-
struction process, but instead to address two different needs. 
First, in the early stages of design, an approximate solution 
is often good enough to allow the designer to move to the 
next stage. For instance, if after 3D printing it is found that a 
piece conflicts with another element in the design, simply 
marking the conflicting area and cutting it away may be all 
that is needed. Second, we found that when a large number 
of marks are made on the prototype (during massing work, 
for example), it is somewhat difficult upon synchronization 
to understand how the marks relate to each other. In that 
context, providing a tentative execution of the operations 
helps the users understand the structure of the marks. Fur-
thermore, since all annotations and command parameters are 
created as first class objects inside the SolidWorks features 
tree, each annotation and command parameter can be easily 
modified inside SolidWorks. A simple update of the model 
will automatically reflect these changes. 

Command Syntax. All commands are performed with a 
command pen which lays ink in a different color (red in our 
system). We choose a “command” pen approach as it fits 
well with the current practice of using color coded annota-
tions. Other solutions such as having a command button on 
the pen are also possible. 

All commands follow a uniform syntax (Figure 5) inspired 
by Scriboli [13] and PapierCraft [18]. First, users draw on 
objects or on tools (like our ruler) a set of strokes that rep-
resent the parameters of the action to be performed (Figure 
5a). Then they draw a pigtail gesture which is used as a 
separator between the parameter strokes and the command 
name, (Figure 5b). Next, they write the name of the com-
mand they wish to execute (a simple letter in our current 
implementation) on top of the pigtail (Figure 5c). During 
pen synchronization, the command is then executed using 
the area on which the pigtail started as the primary command 
parameter. For example, to create a hole though an object 
(Figure 5), the user would draw the shape of the hole onto 
the object surface, then draw a pigtail starting inside the 
shape, and then write a C (for cut) on top of the pigtail. Note 
that starting the pigtail outside of the shape would have 
created a pillar instead. 

The use of the pigtail proved to be very reliable for 
pen-based interaction [13] and is well-adapted to our case as 
it does not require any feedback besides the ink laid on the 
surface [18]. For our system, the pigtail has two advantages. 
First, it serves as a natural callout mark when one needs to 
execute a command on a small area (like cutting a hole for a 
screw). Under such conditions, it would be difficult to write 
the name of the command directly on the area of interest 
because the area is too small or too close to the surface 
border. Second, the pigtail provides a natural orientation for 
the surface. While up and down are well understood in a 
Tablet-PC context, this is not the case on 3D objects which 
people may place in arbitrary orientations to facilitate the 
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Figure 4 : Current command set. Annotations are done with a black pen, edits are done with a red pen.  

 

Figure 5 : Command syntax. a) main parameter; a’) 
secondary parameter; b) pigtail delimiter; c) com-
mand name; d) reference line for character recogni-
tion. 
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annotation process. Accordingly, when interpreting a com-
mand, we consider the pigtail as the baseline for the com-
mand name (Figure 5d).  

As shown in Figure 4, some operations may require several 
sets of strokes. For example, to create a groove on an object 
(Figure 4d) one first draws the profile of the groove on one 
surface, then the extent of the groove on an adjacent surface, 
then one uses a pigtail to indicate the inner region, and fi-
nally one writes a G (for “groove”) on top of the pigtail. 
Another example is the creation of a cut of a given depth. To 
do so, the user first creates the shape of the cut, then marks 
the depth of the cut on another face, and then uses a pigtail to 
issue the cut command. As shown in Figure 6, top, this 
syntax makes it very easy to use real world objects as ref-
erences without the need for further measurements. 

So far, we have considered cut operations, as they are easily 
specifiable by drawing on the available sides of the models. 
Our system also provides a way to create extrusions through 
the use of our “digital” ruler. For example, to extrude a 
shape from a surface, one simply draws the shape on the 
surface, then draws a mark on the ruler to indicate the ex-
trusion length, and finally, using the pigtail, issues the ex-
trude command (E) on the area to extrude. Figure 4e pro-
vides an example of such an operation. As in the case of 
cutouts, this command facilitates the process of using 
real-world objects as references (Figure 6 bottom). 

Together the Cut, Groove and Extrude operations represent 
the fundamental modification tools (removing material and 
adding material) defined by D. K. Ching [5], these are also 
the interactions most frequently described by architects. But 

of course our system is easily extendable to more complex 
commands as we will describe later. 

Dealing with Errors in Batch Processing. In our system, the 
annotations and commands are captured in batch mode. 
There are several reasons for this choice. First, as explained 
previously, it is important for the intended pattern of use of 
our system that interactions can take place away from a 
computer. Second, by delaying execution, a batch approach 
might help keeping users in the “flow” of their task by 
avoiding unnecessary interruptions. 

Of course, errors will need to be corrected eventually. Our 
interface offers two main mechanisms to deal with errors. 
For marking errors in annotations and commands we use a 
simple scratch out gesture to indicate that the underlying 
gestures should be removed, or that the underlying com-
mand should not be performed. For execution errors, it is 
important to remember that while our system might mis-
recognize gestures and command names, it accurately cap-
tures the parameters of the commands on the correct faces. 
Since this information is directly transferred to SolidWorks, 
it becomes a trivial matter to make corrections because all 
the relevant command parameters are already in place which 
saves transcription time. 

In our system it is also possible to issue several “alternative” 
commands by simply drawing the new command over the 
last command, a common pattern in practice. Each com-
mand will be recognized as a different operator (or “feature” 
in SolidWorks terminology) and appear in the feature tree 
managed by SolidWorks. Once the strokes have been 
transferred to SolidWorks, the user can compare the results 
of different commands, pick the best of them, and delete 

Figure 6 : Using external references to perform a command. Top: a cube is cut extruded to fit a door frame. First we mark 
the thickness of the frame, and then the width before executing. Bottom: a side of a cube is extruded to cover the same 
door frame. First we mark the thickness of the frame, and then use our ruler to mark the width of the frame before exe-
cuting. 
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alternative executions. Also, to document the design proc-
ess, each of the alternative commands could be applied in a 
different configuration using the configuration management 
provided by SolidWorks. 

IMPLEMENTATION 
As shown in Figure 7, the life cycle of a model in our pro-
totype can be broken down into 3 phases: 1) print the 3D 
model as a paper prototype with a unique pattern on each 
side; 2) capture the strokes made on the paper prototype and 
map the strokes onto the correct virtual 3D model’s face; 3) 
execute the commands themselves. We are now considering 
each phase in turn. 

Printing the Model 
To print the paper model or water slide paper patch, we start 
from a SolidWorks file and unfold it as described below. 
The unfolded model is then printed on paper pre-printed 
with the Anoto pattern. During printing, we use the PADD 
infrastructure [7] to maintain the relationship between a 
given model and the unique page ID on which it has been 
printed, and to record the calibration data and the geometric 
transformation used during printing. This information is 
used during the synchronization process, to identify on 
which digital model a stroke has been made. Note that we 
are using the Anoto system as it is the only commercially 
available tracking system at this time, but other systems 
such Data Glyphs [11] could have been used as well. 

Unfolding the Model. While many unfolding approaches are 
possible, such as [24] (see [27] for a review), we focused on 

limiting the number of discontinuities because they interfere 
with the tracking system. We use a heuristic approach which 
starts at the triangle with the longest perimeter, and trans-
forms it onto a plane. Then it recursively visits all 
neighboring triangles and attempt to repeat the transforma-
tion, while maintaining adjacency of neighboring triangles 
and disallowing triangle overlap in the plane. Since the level 
of discontinuity is proportional to the length of seams, the 
recursion order follows a greedy heuristic of taking the next 
untransformed triangle sharing the longest boundary with 
transformed triangles that can be transformed without cre-
ating an overlap in the plane. When no such triangle is 
found, a new pattern is initiated and the process repeats. 
Once a set of patterns is generated, the patterns are collected 
and nested in a page by recursively packing pattern bound-
ing boxes. 

Importing Back Captured Strokes  
During pen synchronization, our application receives all the 
strokes captured by a pen. Strokes are recorded with a time 
stamp and the page ID on which they were made. We use 
this ID to recover the model that the strokes were drawn on 
as well as the calibration and geometric transformation 
stored during the printing process. Once the user is ready to 
process the strokes, they are imported from our application 
onto the unfolded model; each stroke point is mapped from 
page coordinates back into 3D coordinates by applying the 
inverse of the transformation that was originally used to 
move the local triangle from 3D onto the plane. 

Executing Commands 
As pointed out above, all command strokes have been made 
by a special “command” pen, so it is easy for our system to 
distinguish them. Our first step in processing these strokes is 
to segment the stream of command strokes into individual 
commands. To do so, we first detect strokes that might look 
like a valid pigtail using a set of simple heuristics such as 
looking for gestures with a relatively small loop and large 
outside tails. Once these are detected, we observe if there is 
a stroke recognizable as a character that has been drawn 
above the candidate pigtail within a pre-set time out. If this 
is the case, the stroke is recognized as a valid pigtail, and the 
strokes drawn since the last command are used as parame-

 

Figure 7 : Life cycle of a model using our system. Here we present the cycle for paper-based model construction, but a 
similar cycle would be used for applying water slide transfers onto existing 3D models. 

   

Figure 8 : Example of our unfolding algorithm. 
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ters for the command execution. We also check for natural 
command separators (such as creating an annotation) and 
check that the parameter set matches the command. For 
example, the face IDs associated with shape and pigtail 
delimiter and command character should all be the same. In 
practice, this approach worked well for our prototype. Once 
command syntax has been validated, the command is exe-
cuted. Commands that use input from tools as parameters 
are processed in a similar way, but the strokes that were 
performed on the tool are processed in a tool-dependent 
way. If a command is not recognized, it is skipped, but its 
strokes are still presented on the surface of the model.  

DISCUSSION 
As we were developing our prototype we conducted several 
formative studies about the potential use of our approach. So 
far, we have conducted six semi-structured interviews, in-
cluding a demonstration and a hands-on test. Our participant 
population covered a wide range of architectural back-
grounds and included a student in an architecture school 
working as a drafter, several young architects, a senior ar-
chitect, a senior partner and a faculty member at a school of 
architecture. Despite the current shortcomings of our pro-
totype (such as the requirement that each contour parameter 
uses only one stroke, and the use of handwriting recognition 
without training) seasoned architects’ reaction to the system 
was very positive. Several architects pointed out that our 
system would be perfect for massing a building. During 
massing, new models are built based on marks or shapes that 
were suggested in the previous iterative cycle. This type of 
practice is well suited for the ModelCraft interactions. 

The professor remarked that our system would allow stu-
dents to explore prototyping and develop 3D thinking skills. 
For example, visualizing the 3D results of subtractive op-
erations drawn on a face of a cube is a common task in 
architecture training. ModelCraft might also create a natural 
bridge between the traditional approach to architecture 
(based mostly on paper-based sketching) and the use of 
modern applications such as SketchUp [1]. Architects fur-
ther pointed out that annotations on paper models could be 
useful for capturing feedback from some of their clients who 
might be intimidated by digital models. The response to the 
system was more muted for younger participants (one a 
student drafter and one a CAD modeler), since their work 
did not require extensive use of tangible 3D models. Yet, the 
architecture student pointed out that the system would be 
very useful for teaching and would support current practice 
taught at school. The CAD modeler, while skilled in build-
ing models, was not using them at work. This participant 
also pointed out that she often “deconstructed” her models in 
order to reconfigure them, so annotations did not seem as 
useful for her. We are considering ways to support this type 
of approach with our system. 

Several users were concerned about the limitations of the 
digital pen (mainly that one has to remember to aim the pen 
correctly). One user suggested that this problem could be 
alleviated by slightly modifying the design of the pen. 
Overall, our interviews confirmed our hypothesis that a 

system bridging the gap between the digital and physical 
worlds would be useful for practitioners and teachers alike. 

Editing the Models 
The design of our command language followed a different 
path than that of Teddy and Sketch. While those systems 
adopted a gesture-based approach well-suited for sketching, 
we used a structured approach based on a simple extendable 
command structure and a pigtail as a separator between 
parameter strokes and command selection [13, 18]. One of 
the strengths of our approach is that, while keeping an in-
formal feel, it can be easily extended to more complex 
commands and a wider set of commands by using longer 
command names. We implemented a Window (W) com-
mand to create windows of a certain depth in buildings 
(Figure 1). Two additional commands supported by Solid-
Works were implemented as part of our system: first, 
(S)hell,  a command that creates a shell given a volume, and 
second, a (F)illet command used to round out a selected 
edge. Using techniques described in the PapierCraft system 
[18], we could also transfer a shape captured on transfer 
paper onto a given surface and extrude it. It would also be 
easy to extend the system to accept post command parame-
ters like numerical arguments. 

Another important difference to other systems is that in our 
system, there is not always a plane on which to draw. This 
limitation is not merely the result of our tracking technol-
ogy. Even if more complex tracking systems were used, it 
would still be difficult for people to draw in free space. This 
makes several techniques (such as free form extrusion) that 
were used by Teddy more difficult to implement in the 
present system. However, as discussed above, we were able 
to address this problem through the use of simple tools such 
as rulers. We are also exploring how users could use 
sketches drawn on a drawing board to create new geometry.  

Tracking Performance and Limitations 
One of our goals during this project was to better understand 
the limitations of a tracking method based on a pattern 
printed on the model surface. We now discuss our observa-
tions derived from working with our prototype.  

Printing Models. Our current prototype used only printed, 
paper-based models. For simple models, this approach 
worked extremely well. Cutting and scoring (to simplify 
folding) the models by hand proved to be easy and accurate. 
Using a laser cutter would greatly simplify and increase the 
accuracy of this process. As shown Figure 4 this approach 
works well with basic shapes such as a cube, cone, cylinder, 
pyramid, and tetrahedron. Using a more advanced unfolding 
algorithm like the one proposed by Mitani and Suzuki [24] 
would allow for more complex shapes. Yet, it is clear that 
the paper-based approach seriously limits the complexity of 
objects. One simple alternative is to add the pattern to ex-
isting models once they have been built. For example, using 
our system, one can print the unfolded surface on a water 
slide transfer paper, and apply the transfer onto the model. 
Our tests showed that this technique is a viable option for 
models printed with a ZCorp printer. This approach allows 
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for more complex shapes to be built rapidly and only adds a 
small time to the production process. Yet, for the system to 
stay accurate, one needs to be careful while applying the 
transfer. 

Of course the preferred solution would be to have the 3D 
printer print the pattern at the same time as the 3D object 
itself. Some 3D printers (ZCorp Z510) can already print at a 
resolution up to 600 dpi in the plane of the printing bed and 
540 dpi vertically [35]. This is in the same range as for laser 
printers able to reproduce the Anoto pattern. Unfortunately, 
our tests showed that a pattern printed with the ZCorp Z510 
printer was not recognized by the digital pen. To understand 
why, we show in Figure 9 segments of patterns printed on a 
laser printer and on a Z510. As can be seen on Figure 9, left, 
the dots produced by our laser printer are of somewhat ir-
regular shape but use black ink to provide a highly con-
trasted image. The dots printed on the Z510 (Figure 9, right) 
are diffuse and do not use true black ink but a combination 
of C, M, and Y inks to simulate black. As a result, they are 
likely invisible to the infrared pen sensor. We believe that 
this problem can be readily addressed by introducing a truly 
CMYK printing process and using finer grained printing 
material. Another solution would be to use another tracking 
system like the Data Glyph designed for 300 dpi printing on 
par with the minimum layer thickness of .089 mm (286 
layers per inch) of the ZCorp process, or a more robust 
encoding scheme. 

Accuracy. The Anoto tracking system reports points with 
678 dpi accuracy, but, taking into account the errors intro-
duced by pen orientation and the printing process, the sys-
tem’s maximum error is around 1 mm. Of course, the overall 
accuracy of the system also depends on the accuracy at 
which the paper is cut and folded (around 1 mm in our cur-
rent manual process). Using a laser cutter would further 
improve accuracy.  

Optical Tracking of Passive Patterns. Another problem in-
herent to optical tracking is that the system might lose 
tracking because the pen camera overhangs on a face or 
because users are trying to draw inside a groove or on an 
indented face. At overhangs, the pen looses track when the 
tip is about 3mm from the border, at which point it vibrates. 
As a result, the smallest square surface on which a command 

can be issued is 12mm wide. For indented faces the problem 
is exacerbated by the fact that the Anoto firmware is ex-
pecting a continuous pattern in the field of view. In our tests, 
the pen was able to track a pattern at the bottom of a 4.8 mm 
x 4.8 mm groove or mark a 6.4 mm diameter circle using a 
1.6 mm thick template. Finally, because the pen was de-
veloped for tracking on flat surfaces, the system cannot track 
strokes on cylinders (or cones) whose radius of curvature is 
smaller than 12 mm. It is not clear how significant these 
limitations will be in practice and future work will be nec-
essary to evaluate their impact. Other 3D encoding schemes 
may remediate this. 

Another limitation of our tracking system is that it cannot 
track in free space. As demonstrated above, instrumentation 
of traditional tools used by wood workers (such as rulers, 
squares, tracing paper) may help to address this problem. 
For example, we used our instrumented ruler to indicate the 
height of an extrusion.  

Finally, the current version of our digital pen does not pro-
vide orientation information for the object itself. So far, this 
limitation proved to be mainly relevant for handwriting 
recognition and our use of the pigtail as a reference mark 
addressed the problem successfully. 

Character Recognition. Character recognition and pigtail 
recognition determine the total number of successfully 
recognized editing commands. Several problems might 
affect the recognition rate: first the pen provides samples at a 
relatively low temporal resolution which might influence the 
recognizer. To address this problem we add/subtract points 
so that the points are sampled not according to the time 
stamp but equidistantly. The orientation of the command 
might also have some effects. Our informal tests showed 
that using the pigtail as a baseline of character recognition 
was quite successful as the orientation of the characters 
seems to have little influence over the recognition rate. 
Finally, we observed that when users write on curved sur-
faces, letters are slightly deformed. This is due to users 
writing from a planar surface perspective. This problem can 
easily be addressed by projecting each letter on the plane 
normal to the surface at the centroid of the letter. Overall our 
tests show that our pigtail recognition rate is about 99% and, 
given our small dictionary of commands, we could reach a 
command recognition rate of about 92%. Further empirical 
evaluation will be needed to confirm these numbers.  

FUTURE WORK 
The system presented in this paper is built as an exploration 
tool allowing us to investigate the feasibility of our approach 
and provide us with a hands-on demonstration for potential 
users. In the near future we are planning to expand the sys-
tem so that it can accommodate more complicated models 
and can be used during long term studies. 

Dealing with Non-Developable Surfaces 
Non-developable surface are problematic for our system 
because unfolding of such surfaces leads to multiple dis-
continuities in the pattern space (Figure 10) and creates gaps 
in tracking. Our tests suggest that the pen’s field of view is 

 
Figure 9 : Printing the Anoto pattern (all prints from a 
600pdi rendering). Left: Anoto pattern printed using a 
2400 dpi laser printer in black and white mode; Right: 
A pattern printed using a ZCorp Z510 printer (600 
dpi). All pictures were taken at about x200 magnifi-
cation. 
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about 5mm wide and that the current pen firmware only 
decodes the pattern correctly if there is only one continuous 
pattern in its field of view. A closer look at the design of the 
Anoto pattern [21] reveals that this is merely a limitation of 
the current implementation. In principle, one could uniquely 
resolve a position if any 2.4 mm x 2.4 mm patch is visible. 
We believe that if the firmware were modified to detect the 
edge of each continuous pattern region (maybe by recog-
nizing printed edges) and each face of the model was wider 
than 2.4mm, the pen would be able to uniquely identify its 
position even around discontinuities in the pattern. Another 
solution to this problem would be to adopt a different ap-
proach to tracking altogether. Instead of mapping a 2D pat-
tern onto our models, we could tile them with small 
(2-3mm) optical tags which can be tracked by the pen. For 
example, one could use the system proposed by Sekendur 
[28], or the Data Glyph system [25], or, of course,  the Anoto 
position pattern itself. All of these provide the large number 
of unique identifiers that is necessary. In all cases, the re-
quirement of the minimum patch size can be accomplished 
using subdivision-based techniques such as the one used in 
the Skin system [22] and extended by Igarashi and Hughes 
[15]. 

We would also like to examine in more detail how our sys-
tem could be adapted to 3D printing systems. In particular, 
we would like explore the feasibility of a 3D version of the 
Anoto pattern. This would not only simplify the printing 
process and alleviate the pattern discontinuity problem but 
also allow for annotations on newly exposed, cut, or frac-
tured surfaces of objects. 

Extended Feature Set 
Our interviews with architects pointed to several directions 
in which the current system could be extended. One of them 
is to provide a better support for “free space” sketching by 
using information sketched on free paper to be incorporated 
as parameters to commands. Another one is to provide an 
operation to “glue” objects together. This multiple object 
operation will be very useful in early design phases as it is 
often the case that architects create new designs by stacking 
or joining available building blocks. This will provide a 
functionality similar with Anderson et al.’s system [3]. 

Finally, while our current system focuses on batch proc-
essing, new Anoto pens can transmit the strokes they capture 
in near real-time. One of the appeals of our system is that it 
can be used without a nearby computer. Nevertheless, sev-
eral applications might benefit from streaming capabilities 

(for example by combining our system with the Urp system 
[34]). It will be a simple matter to adapt our system to 
streaming-based interactions.  

With these new functionalities in place we intend to conduct 
longer term usability studies to better understand how our 
system will be accepted and how it might change current 
design practices. 

CONCLUSION 
We presented a new system which lets users capture anno-
tations and editing commands on physical 3D models and 
transfer them onto the corresponding digital models. Our 
system is inexpensive and easily scalable in term of objects, 
pens, and interaction volume. Our command system reflects 
current practices of model builders and integrates seam-
lessly with current practice. Our system allows users to 
bridge the gap between the digital and the physical worlds 
by allowing them to deploy resources of both media for the 
task at hand. We believe that our approach will provide an 
efficient tool for the early phases of design in both archi-
tecture and product design. 
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