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Abstract.

Recently, a method for removing shadows from colour images waslapee [Finlayson, Hordley, Lu, and Drew,
PAMI2006] that relies upon finding a special direction in a 2D chromati@gtdre space. This “invariant direction” is that
for which particular colour features, when projected into 1D, producgegscale image which is approximately invariant
to intensity and colour of scene illumination. Thus shadows, which are eEnessa particular type of lighting, are greatly
attenuated. The main approach to finding this special angle is a camenatiatiba colour target is imaged under many
different lights, and the direction that best makes colour patch imaged agross illuminants is the invariant direction. Here,
we take a different approach. In this work, instead of a camera cttihrave aim at finding the invariant direction from
evidence in the colour image itself. Specifically, we recognize that pindwclD projection in the correct invariant direction
will result in a 1D distribution of pixel values that have smaller entropy thamegting in the wrong direction. The reason
is that the correct projection results in a probability distribution spike, foelgirll the same except differing by the lighting
that produced their observed RGB values and therefore lying along avitheorientation equal to the invariant direction.
Hence we seek that projection which produces a type of intrinsic, indiepeiof lighting reflectance-information only image
by minimizing entropy, and from there go on to remove shadows as pgyiolo be able to develop an effective description
of the entropy-minimization task, we go over to the quadratic entropy,rétha Shannon'’s definition. Replacing the observed
pixels with a kernel density probability distribution, the quadratic entropyteawritten as a very simple formulation, and can
be evaluated using the efficient Fast Gauss Transform. The entifign in this embodiment, has the advantage that it is
more insensitive to quantization than is the usual definition. The resultingtalyas quite reliable, and the shadow removal
step produces good shadow-free colour image results wheneveg siradow edges are present in the image. In most cases
studied, entropy has a strong minimum for the invariant direction, rexgalimew property of image formation.

Keywords: lllumination, reflectance, intrinsic images, illumination invariants, colordskss, entropy, quadratic entropy

1. Introduction

lllumination conditions confound many computer vision algorithms. In particaladows in an image
can cause segmentation, tracking, or recognition algorithms to fail. An illuminati@miant image is
therefore of great utility in a wide range of problems in both computer visiahcamputer graphics.

An interesting feature of this problem is tteitadowsare approximately but accurately described as a
change of lightindFinlayson et al., 2002). Hence, it is possible to cast the problem of riegelhadows
from images into an equivalent statement about removing (and possiblyréatering) the effects of
lighting in imagery.

* This work was supported by the Leverhulme Trust.
T This work was supported by the Natural Sciences and EngineeringiRes@ouncil of Canada
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Removal of outdoor cast shadows has been addressed before inrdaei@dout typically not based
on a photometric approach. For example, (Cho et al., 2005) uses backgsubtraction in YCbCr
colour space and gradient thresholding to extract moving blobs in colalatéxt cast shadows in traffic
surveillance video. The objective is to find a moving blob that is not in a shadgion. In (Liu et al.,
2006), another method based on time-varying data and a Gaussian mixtueeuses the early video-
based model in (Stauder et al., 1999) to partially remove effects of lightorg Bequences (and cf.
(Weiss, 2001)) but the proposed insensitivity to illumination depends orvdysthanging penumbra
and does not work for strong shadows. In fact, a substantial améuwbr& on shadow detection has
been concerned with moving shadows (Prati et al., 2003; Nadimi anduB2094; Martel-Brisson
and Zaccarin, 2007), whereas here we concentrate on single still imagtés paper we focus on a
physically-based rather than image-processing approach in ordentargderstanding of the underlying
image formation process.

A method was recently devised (Finlayson et al., 2002; Finlayson andeyp&D01; Finlayson and
Drew, 2001; Drew et al., 2003; Finlayson et al., 2006) for the regowéran invariant image from
a 3-band colour image. The invariant image, originally 1D greyscale gesjuently derived as a 2D
chromaticity, is independent of lighting, and also has shading removednrisfa type ofntrinsic image
independent of illumination conditions, that may be used as a guide in réogwalour images that are
independent of illumination conditions. While the essential definition of an imtrins&age is one that
captures full reflectance information (Barrow and Tenenbaum, 18¥8)ding albedo information, here
we claim only to capture only chromaticity information, not full reflectanceveétiheless, invariance to
illuminant colour and intensity means that such images are free of shadomellato a good degree
(Finlayson et al., 2006). Although shadow removal is not always pertee effect of shadows is so
greatly attenuated that many algorithms can easily benefit from the new metlgoda shadow-free
active contour based tracking method shows that the snake can withiieultiffollow an object and
not its shadow, using the new approach to illumination colour invarianceg(diad Drew, 2003; Jiang
and Drew, 2007). In place of standard luminance images used in visiorgrifapplication the effects of
lighting would usefully be removed then arguably the greyscale versioreaftiariant image should be
used instead.

The method works in a very simple way: Suppose we form chromaticity batiasr e.g.(G/R, B/G
for a colour 3-band RGB image, and suppose we further take logarithmisitéresting feature to note is
that, under simplifying assumptions set out below, the scatterplot valupsds from the same surface,
but under different lighting fall on a straight line; and every such linedifferent surfaces, has the same
slope. This remarkable fact still hold true approximately even when the gyigiimplifying assumptions
are broken. Since shadowing is a result of a difference in lighting, wausa this physics-based insight
to devise a shadow-removal scheme. This paper uses evidence itbeanglparticular image, based on
an entropy measure, to find the slope of such lines. Projection orthogotiéd special direction results
in a 1D greyscale image that has shadows approximately removed. We dlsoal2D colour version
of such an invariant image.

The method devised finds an intrinsic reflectivity image motivated by the assumsatid.ambertian
reflectance, approximately Planckian lighting, and fairly narrowband casensors. Nevertheless, the
method still works well when these assumptions do not hold. A crucial pieicdosmation is the angle
for an “invariant direction” in a log-chromaticity space. Originally, this inf@tion was gleaned via a
preliminary calibration routine, using the camera involved to capture imagesofoar target under
different lights. Subsequently, it was shown in principle (Finlayson et28l04) that we can in fact
dispense with the calibration step, by recognizing a simple but important factatinect projection is
that which minimizes entrogg the resulting invariant greyscale image. In this paper, the entropy based
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method is examined in detail, and in order to carry out an efficient seahsovooth values that are
not subject to quantization problems, we replace the Shannon’s entraggunee used previously, by
a Quadratic Entropy measure such that a Gaussian mixture model of thebpitybdensity function
(pdf) produces an analytic formula. We show that such quadratic gnsadpes are much smoother and
usually produce only a single minimum, making this approach the most efficiemigddratic entropy
can be evaluated in linear time using a Fast Gauss Transform, leading to a siatpted for finding the
invariant direction. Shadow removal in full colour, by means of compagiiges in the original and in
the invariant image and then subsequent re-integration, follows.

The paper is organized as follows. §2, we briefly recapitulate the motivation for a projection-
based definition of an illuminant invariant, and set out the relevant eq@atsattion 3 looks at how the
entropy minimization scheme plays out for a set of synthetic colour patchéhemne hand, and then
for a set of actual paint patches in a calibration chart. Section 4 coaditeissue of how an effective
entropy-minimization algorithm should proceed, and argues that an effajimnoach is possible, based
on replacing the definition of entropy by the quadratic form of Renyi'sagytr Finally, we apply the
method devised to unsourced images, from unknown cameras undeswmkighting, with unknown
processing having been applied. Results are again strikingly good, ¢easlto conclude, i§8, that the
method indeed holds great promise for developing a stand-alone appmaemoving shadows from
(and therefore conceivably re-lighting) any image, e.g. images frorsuwroar cameras.

2. Thelnvariant Image

2.1. LOG-CHROMATICITY PROJECTION ANDENTROPY MINIMIZATION

In order to motivate the study, we first briefly set out the strategy foeldging an illumination invariant
image, and the rationale determining entropy minimization as the key insight fandisdch an image.

Consider a calibration scheme, for a particular colour camera, whereiget Bbmposed of coloured
patches (or just images of a rather colourful scene) are imaged uiffdgent illuminants — the more
illuminants the better. Then knowledge that these are registered images affitbessene, under differing
lighting, is put to use by plotting the capture RGB values, for each of the gaitiebed, as the lighting
changes. If pixels are first transformed from 3D RGB triples into a 2Ddbatio chromaticity colour
space{G/R, B/R} say, and then logarithms are taken, the values across different illuminadtsote
fall on straight linesin a 2D scatter plot. And in fact all such lines gvarallel, for a given camera
(Finlayson and Hordley, 2001), as illustrated in Fig. 1(a).

So change of illumination simply amounts to movement along such a line. Thus itightkoavard
to devise a 1D, greyscale, illumination-invariant image by projecting the 2Bneaticity points into a
direction perpendicular to all such lines. The result is hence a greysgoatge that is independent of
lighting, and is, therefore, a type of intrinsic image (Barrow and Tenembdi978) that portrays only
the inherent reflectance properties in the scene. Since shadows dlganedo change in the illuminant
intensity and colour — i.e., differing lighting — such an image also has shadawswved.

Below, we discuss the restrictions on this straight-line model, but it may belusdbok at shadows
and lighting colour in an example. Fig. 2(a) shows a typical consumeegrachera TIFF image, with a
strong shadow present. Here, the image processing software appligicelliyyaimed at a “preferred”
(i.e., pleasing) rendition, rather than photometric accuracy, and the nurhipeocessing steps in the
camera software can be substantial (Ramanath et al., 2005).

The standard definition athromaticity i.e., colour contents without intensity, is defined in an L
norm:r = {r,g,b} = {R,G,B}/(R+ G + B). Fig. 2(b) shows this colour content for the image.
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Figure 1. Intuition for finding best direction via minimizing the entropy. (a); Log-rdeature space values for paint patches
fall along parallel lines, as lighting is changed. Each patch correspmndssingle probability peak when projected in the
direction orthogonal to the direction of lighting change. (b): Projecting intheng direction leads to a 1D pdf which is less
peaked, and hence of larger entropy.

Notice that the colour of the shadow is basically a deep blue; since this ig@mooshot on a clear day,
this is not surprising in that the light for shadowed pixels is mostly from thedskge, whereas light for
non-shadowed pixels is comprised of both sky-light as well as diredigbiinThus shadowing is seen to
be an effect due to change of lighting colour as well as intensity.

The invariant greyscale is shown in Fig. 2(e) where we see the shadmwasger present. In (Drew
et al., 2003), a 2D-colour chromaticity version of the invariant image, asgnZf), is recovered by
projecting orthogonal to the lighting direction and keeping the 2D colour loté@tifmrmation, and also
putting back an appropriate amount of lighting along the lighting direction. Wi(f)ddbks flat and the
colours somewhat false, intrinsic images created this way are useful inutermjision: e.g. see (Jiang
and Drew, 2003; Jiang and Drew, 2007).

We can use the greyscale or the pseudo-colour invariant as a guidgltineg us to determine which
colours in the original, RGB, colour image are intrinsic to the scene or are simtjfcss of the shadows
due to lighting. Forming the gradient of the image’s colour channels, weuide g thresholding step via
the difference between edges in the original and in the invariant image ysarlaet al., 2002; Finlayson
et al., 2006). Forming a further derivative, and then integrating baekcan produce a result that is a
3-bandcolour image which contains all the original salient information in the image, exceptlibat
shadows are removed, as in Fig. 2(g). Although this method is based orvénitt image, which has
shading removed, nonetheless its output is a colour image, including shédmgvorth pointing out
that we have found that in implementing this process, a 2D-colour, chromatilcityination-invariant
image is more well-behaved than the greyscale variant, and thus gives shigttly shadow removal.

Of course these applications sit on top of a well calibrated imaging system. \Afsuneechow the
camera responds to light and find the invariant direction accordingly.ederyoften in vision tasks we
do not know the provenance of the images or even if we do have a catlbrateera this calibration
does change over time. Thus, the problem we consider, and solve, iraftes is the determination of
the invariant image fronunsourcedmagery — images that arise from cameras thatrarecalibrated
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Figure 2. Colour and intensity shift in shadows: (a): Original image; (b):dhromaticity image; (c): Shannon’s entropy plot
(we seek the minimum); (d): quadratic entropy plot (we seek the maxiofihe quantity plotted); (e): greyscale 1D invariant;

(f): 2D invariant Ly chromaticity; (g): re-integrated 3D colour image.
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The input is a colour image with unknown provenance, one that includetosls, and the output is the
invariant chromaticity version, with shading and shadows removed.

The fundamental idea in this paper is the observation that, without having teeimagene under
more than a single illuminant, projecting in the correct direction minimizes the eninognye resulting
greyscale image. The intuition behind this statement is evident in the calibratiati@ituwith a set of
colour patches under changing lighting. Projecting onto a line perpendicullae set of straight lines,
we end up with a 1D pdf that is concentrated in peaks, as in Fig. 1(a).eénhaf seal images of colour
patches, we indeed see a set of peaks, each well separated frothergeand corresponding to a single
colour patch. On the other hand, if we instead project in some other direaan Fig. 1(b), then instead
of pixels located in sharp peaks of occurrence we expect the distrilnftirels along our 1D projection
line to be spread out. In terms of histograms, in the first instance, in whichuessghe correct direction
and then project, we see a distribution with a set of sharp peaks, with rgdoltirentropy. In the second
instance we instead see a broader histogram, with resulting higher entropy.

But does this idea apply in real images? We have found that, for almost emage considered
that does indeed involve shadows, entropy has a strong minimum nearrtbetdovariant direction.
Changing lighting is automatically provided by the shadows in the image themselves.

Nevertheless, we have found that the method of calculating the entropy istéampd-ig. 2(c) shows
Shannon’s entropy, for the projected, greyscale image when featrg@sojected over angles from tb
180°. This entropy is calculated by choosing a bin-width, and then quantizingfpedire values using a
histogram, normalizing the histogram, and forming the standard quantity desdtie entropy (see, e.g.,
(Li and Drew, 2004)). But this calculation can sometimes be quite sensitietbin-width, as shown
in Fig. 3(b) (for quite a pathological case). We have found that suttb@nplots can in fact have many
local minima; this is discussed furtherga.1 below. Instead, a quadratic entropy plot, discussed below, is
usually a good deal smoother since itis founded on a Gaussian kensityddistribution, and most often
has a single strong maximum (of the quantity that must be maximized, in this cag@)grfar a simple
optimization to find the maximum. Further, quadratic entropy, which is the logarithem antegral, is
simply related tdnformation Potential Specifically, information potential is the exponent of the negative
of quadratic entropy and so minimum quadratic entropy corresponds to maxinfiormation potential.
This is an important point as the majority of the results derived below are fornmation potential;
though, the reader should understand that information potential andagicaghtropy are simply related.

In Fig. 3(c), we show the information potential using a range of diffebamdwidth parameters, and
notice that the maximum is quite insensitive to the bandwidth. Consequently, inaibés we go over
to this definition of the entropy, as shown in Fig. 2(d) for the initial image Fig) @tere, we look for a
maximum of the quantity plotted).

In §2.2, we now briefly summarize the set of theoretical assumptions regardipgahblem of lighting
change in imagery that lead to the straight-line hypothesis.

2.2. THEORY OFINVARIANT IMAGE FORMATION

2.2.1. Planckian Lighting, Lambertian Surfaces, Narrowband Camera

Suppose we consider a fairly narrow-band camera, with three sei®eds Green, and Blue, as in
Fig. 4(a) (these are sensor curves for the Sony DXC930 camera).ifN@e image a set of coloured
Lambertian surfaces under a particular Planckian light, e.g. in a controllat bigx, then for each

pixel the log of chromaticity band-ratios, sdog(R/G),log(B/G)}, appears as a dot in a 2D plot.
Chromaticity removes shading, for Lambertian reflectances under odplogrso every pixel in each
patch is approximately collapsed into the same dot (no matter if the surface/eiur
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Figure 3. Effect of quantization on Shannon’s entropy: (a): Original imagg; §hannon’s entropy plot, with changing
bin-width (we seek the minimum) — the normative bin-width value given bddgveq. (15) is shown dashed, and the other
curves are for multipliers of this width from 0.1 to 2.0, mapped to equalima; (c): quadratic entropy plot with bandwidth
multiplied by factors from 0.1 to 1.9 by 0.3, with 1.0 shown dashed (n@evile seek the maximum of the quantity plotted).

For example, Fig. 5(b) illustrates the log-chromaticities for the 24 surfatelseoMacbeth Col-
orChecker Chart shown in Fig. 5(a). The plot shows 19 distinct clsistiepoints — each cluster corre-
sponds to chromaticities from a single patch (there are 19 clusters rathe24tsnce the patches in the
last row of the chart are all neutral in colour and so have the same clioity)aFig. 5(c) shows the plot
of the median 2D log-chromaticities for 6 of the Macbeth surfaces undeiffbedesht Planckians — we
see a set of parallel approximately straight lines.

For narrow-band sensors (or spectrally-sharpened ones (Famagtsal., 1994; Drew et al., 2002)),
and for Planckian lights — or lights such as Daylights which behave as if tlegg ®lanckian in that
their chromaticity is very close to the Planckian locus — as the correlated cmyeraturel’ that
characterizes the illuminant changes, the log-chromaticity colour 2-veots thdeed move along an
approximately straight line which is independent of the magnitude and positiba ighting. (Note that
the invariant direction is different for each camera.) Further, in manwfieng artificial lights, the colour
rendering properties of lights are calculated using a CIE standard métigyd@IE, 1995). According
to this methodology, illuminants that are far from the Planckian locus rendemiel than those that
are close. As such most commercial lights have chromaticities close to the Rlatméus and for all
commercial lights tested we discover more or less the same intrinsic reflectarge ima

Let’s recapitulate how linear behaviour with lighting change results from ¢saraptions of Planck-
ian lighting, Lambertian surfaces, and a narrowband camera. Consgl®GIB colourR formed at a
pixel, for illumination with spectral power distributiafi(\) impinging on a surface with surface spectral
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reflectance functio¥' (). If the three camera sensor sensitivity functions form axéh), then we have
e = o [ BOSNQuNIA, k= R.G.B. &

whereo is Lambertian shading: surface normal dotted into illumination direction.
If the camera sensapy () is exactly a Dirac delta functio®,(\) = ¢xd(A — Ax), then eq. (1)
becomes simply
Rk = aE()\k)S()\k)qk . (2)

Now suppose lighting can be approximated by Planck’s law, in Wien’s appedion (Wyszecki and
Stiles, 1982):

EOT) ~ TkA e 13 3)

with constants:; andk,. Temperaturd’ characterizes the lighting colour addyives the overall light
intensity.
In this approximation, from (2) the RGB colof, k£ = 1...3, is simply given by

k
Ri = o I kiA"e ™% S(\)ax . @)
Let us now form the band-ratio 2-vector chromaticities
¢t = Ri/R,, (5)

wherep is one of the channels akd= 1, 2 indexes over the remaining responses. For example, we could
usep = 1 (i.e., divide by Red) and so calculate = G/R andcs = B/R. We see from eq. (4) that
forming this chromaticity effectively removes intensity and shading informatfame now form the log

of (5), with sy = k1A, °S(\x)gr andey, = —ka/\i, we obtain

pr = log(ck) = log(sk/sp) + (ex —ep)/T . (6)

Eq. (6) is a straight line parameterized by Notice that the 2-vector directiafe;, — e,) is independent
of the surfacealthough the line for a particular surface has offset that dependg.dvery such line is
parallel, with slope dictated bes, — e,).

An invariantimage can be formed by projecting these 2D logs of band-tatiomaticitypr, k = 1, 2,
into the directione - orthogonal to the vectaz = (ex, — ¢,). The result of this projection is a single
scalar which we then code as a greyscale value.

We go on ing3.2.5 to generate a 2-colour chromaticity image from the greyscale verdierinfages
thus generated are “intrinsic” in the sense that they capture reflectgfocaation independent of light-
ing. However, they are not full reflectance-only images (as specifiéi8idmow and Tenenbaum, 1978)),
since they bear only chromaticity information, not albedo.

Since the method stems from a Planckian illumination model, it is worth asking whatheom-
bination of lights when not in shadow — sunlight plus skylight — breaks theeinda fact, the sum
of two Planckian lights is not Planckian. However, since the Planckian liscsfact a very shallow
curve (Wyszecki and Stiles, 1982), the combination is almost Planckiamvéstigate the effect of
this combining of lights on the theoretical underpinnings of the method, canidesynthetic scene
in Fig. 6(a). This depicts two hemispheres on a plane viewed ffaify 1), shaded via a full-spectrum
raycaster (cf. (Bergner et al., 2009)). Here the left sphere cainfiaaterial is Macbeth chart patch #4,
“olive green”, the right sphere is #6, “bluish green”, and the plane2is“fght skin”. Lighting is a
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Planckian with temperature T=10,500in the shade (blue lighting), and a combination of that light
plus a Planckian with T=2,50& (red lighting) outside the shadows. The camera sensors used are delta-
functions at\;={650nm, 540nm, 450ni This image illustrates the different colours in shadow and
non-shadow regions. Using a projection of log band-ratio chromatidijes, B /G, Fig. 6(c) shows the
greyscale invariant delivered by the proposed method, and Fig. Bélyssthe corresponding derived
L chromaticity, invariantimagéR, G, B} /(R + G + B). We notice that while the greyscale image is
approximately independent of the lighting, it is not perfect. This is, as wpased, due to the fact that
a combination of Plankians is not itself perfectly Planckian. So in fact eveirdnmstances in which
the theoretical model is perfectly obeyed, the method will likely not deliveeréept result. Moreover
the chromaticity invariant delivered is not precisely as we expect in thed #ire gradual colour changes
across each sphere (although these would disappear if had only ailingiaant impinging on each
of shadow and non-shadow pixels). However, indeed both attachibedamt shadows are essentially
removed. This example serves to show that an invariant image can beiofagablishing which edges
correspond to material changes and which to lighting, at least well enasighvehicle for shadow
removal.

Before light is added back to such images (below), they are a type of iatiimage bearing re-
flectivity information only. In§3.2 we recover an approximate intrinsic RGB reflectivity, akin to that in
(Tappen et al., 2003; Tappen et al., 2005) but with a considerably &aarntling algorithm: (Tappen
et al., 2005) classified image gradients as illumination or reflectance edgesdieg on their direction
and magnitude and, in cases of ambiguity, on other edges in the neighbdukivork on recovering
the intrinsic reflectance and illumination of a scene flows in part from earlfjk wa Retinex (Land
and McCann, 1971), and (Tappen et al., 2005) is a sophisticated gdewahd in this stream. Note that
an important qualification of the domain of the present method is that whereasethod in (Tappen
et al., 2005) works on either greyscale images or colour ones, the methodt$iere depends on colour.
Allied efforts, especially in the domain of Computational Photography, hamsidered light mixtures
(e.g., (Hsu et al., 2008)) or colour-filtered images (e.qg., (Finlayson &Gi7)).

Clearly, if we have the opportunity to calibrate our camera, then we canndieithe invariant 2-
vector directione . However, if we have only a single image, then we do not have the opjyrton
calibrate. Nevertheless we would still like to be able to remove shadows mgrimeage. We show in the
next Section that the automatic determination of the invariant direction is indessibybe, with entropy
minimization being the correct mechanism.

3. Intrinsic Images by Entropy Minimization

Here, we would like to do away with the necessity of a calibration step to ga@kriowledge of the
invariant direction. We begin if3.1 by creating a synthetic “image” that consists of a great many colour
patches. Since the image is synthetic, we in fact do know the ground trutieimvdirection. Examining
the question of how teecoverthis direction from a single image, with no prior information, we show
that minimizing the entropy provides a very strong indicator for determiningahect projection. This
result provides a proof in principle for the entropy-minimizing method.

The idea being examined in this section is thus as follows: Suppose that inla isiage various
illuminants impinge on several paint patches. Here we use synthetic Plafigkienin order to see that
the underlying theory behaves as expected. The question examined istibtrer we can remove the
effects of lighting from this single, synthetic image.

But how do we fare with a real camera?J8.2 we consider a set of captured colour-patch images,
taken with a known camera. Since we control the camera, and the targegyvesiablish the invariant
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direction. Then comparing to the direction recovered using entropy minimizatierind that not only
is the direction of projection recovered correct (within 3 degrees)alaat the minimum is global and is
a very strong signal.

3.1. ENTROPY MINIMIZATION

If we wished to find the minimum-variance direction for lines that are formed irclogmaticity space
as the light changes, we would need to know which points fall on which IBeswhat if we did not
have that information?

To test the idea that entropy minimization gives an intrinsic image, suppose nivwisitea theoretical
Dirac-delta sensor camera, as in Fig. 4(b). Now let us synthesize an éintlgt consists of many
measured natural surface reflectance functions interacting with many; lighisn, and then imaged by
our theoretical camera. As a test, we use the reflectanceXiatafor 170 natural objects, measured
by Vrhel et al. (Vrhel et al., 1994). For lights, we use the 9 Planckian illamisZ(\) with 7' from
2,500 to 10,500 Kelvin with interval of 1,000. Thus we have an image composed of 1,530 different
illuminant-reflectance colour signal spectral products. This image is shmwig. 4(c). From left to
right we have the 170 different reflectances. And, top to bottom the illuntéretarting from the reddish
2500K light to the bluish 10,500K. We clearly see a colour shift from rddtbsbluish. A close-up of
the last 7 reflectance patches is shown in Fig. 4(d).

If we form chromaticities (actually we use geometric mean chromaticities defined.i(v) below
instead of simple band ratios, in order to not favour one particular colmammel), then taking logarithms
and plotting we have 9 points (for our 9 lights) for every colour patch.ti@gbng the mean from each
9-point set, all lines go through the origin. Then it is trivial to find the bestation describing all 170
lines via applying the Singular Value Decomposition method to this data. Theibesiah line is found
at angles8.89°. And in fact we know from the theoretical definition @f;, —e,,) that this angle is correct,
for this camera. This verifies the straight-line equation (6), in this situatiomerthe camera and surfaces
exactly obey our assumptions. This exercise amounts to a calibration ofemretital camera in terms
of the invariant direction.

But now suppose we do not know that the best angle at which to projgctheoretical data is
orthogonal to aboui9° — how can we recover this information? Clearly, in this theoretical situation, the
intuition displayed in Fig. 1 can be brought into play by simply traversing alsiads projection angles
that produce a projection directian™: the direction that generates an invariant image with minimum
entropy is the correct angle

To carry out such a comparison, we simply rotate from®180 and project the log-chromaticity
image 2-vectop into that direction. To utilize Shannon’s definition of entropy, we can fofmsgogram
as a quantization mechanism. We must decide on a bin size, and for now we sga@l¥ equally-spaced
bins. And finally the entropy, is calculated: the histogram is divided by the sum of the bin counts to
form probabilitiesp; and, for bins that are occupied, the syre- S-%, —p, log, p; is formed.

Fig. 4(e) shows a plot of angle versus this particular entropy measurhe synthetic image. As can
be seen, the correct angle tf9 = 90 + 69° is accurately determined (within a degree). When we go
over to a quadratic entropy, explained belows# we see from Fig. 4(f) that this definition of entropy
also gives the correct answer (with zero error, for this case).

Fig. 4(g) shows the actual invariant greyscale “image” for these ttieateolour patches, given
by exponentiating the projected log-image, with a close-up of the last 7 teaflee patches shown in
Fig. 4(h). As we go from left to right across Fig. 4(f) we change mélace. From top to bottom we have
pixels calculated with respect to different lights. Recall that Fig. 4(cjvshime 170 reflectances (left
to right) under the 9 Planckians (top to bottom). As opposed to the invariantiiagig. 4(g), notice
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how all colours become progressively bluer top to bottom. The figure Fig shows the invariantimage
coded as greyscale, and there is zero variation from top to bottom. Yetdiiscgle value does change
from left to right, along our 170 surfaces. So, in summary, Fig. 4(g) telthat the same surface has
the same invariant across lights but different surfaces have diffeneariants (and so the intrinsic image
conveys useful reflectance information).

Next, we consider an image formed frameasuredialues of a colour target.

3.2. CALIBRATION IMAGES VS. ENTROPY MINIMIZATION

Now let us investigate how this theoretical method can be used for reagyrhetic values. We acquired
calibration images of a Macbeth ColorChecker over 14 phases of dawigthtresults displayed in
Fig. 7. (These images were taken with an experimental HP 912 digital caritbréneznormal nonlinear
processing software disabled, but in fact the entropy minimum phenonarsists regardless of the
processing.)

3.2.1. Geometric Mean Invariant Image
From (4), we can remove and/ via division by any colour channel: but which channel should we use?
If we divide by red, but red happens to be everywhere small, as in @ gfigreenery, say, outliers can
occur. A better solution is to divide by the geometric mean (Finlayson and,[2@91), VR - G - B.
Then we still retain our straight line in log space, but do not favour omécp#ar channel.

Thus we amend our definitions (5, 6) of chromaticity as follows:

cr = Ri/\I_ R, = Ri/Ru, (7)

and log version (Finlayson and Drew, 2001)

pr = log(ck) = log(sk/sm) + (er —em)/T, k=1.3,
8
Wlth S| = k1A;5S(/\k)qk s SM = ,S/H?ZISJ' ,Cp = —kg/)\k, EN = —k2/3 Z?:l )\j,

and for the moment we carry all three (thus nonindependent) comporfectisomaticity. (Broadband
camera versions of eq. (8) are stated in (Finlayson and Drew, 2001).)

3.2.2. Geometric Mean 2-D Chromaticity Space
We should use a 2D representation that is appropriate for this log chromatizteo . We note that,
in log spacep is orthogonal tau = 1//3(1,1,1)”. That is,p lives on a plane orthogonal to, as in
Fig. 8 (see (Finlayson et al., 2004p:- u = 0.

To characterize the 2D space, we can consider the proj@&tpionto the plane. This projectd? -
has two non-zero eigenvalues, and its decomposition reads

Pt =IT-uwu? =UTU, (9)
whereU is a2 x 3 orthogonal matrixU rotates 3-vectorp into a coordinate systein the plane
x =Up, x is2x1. (10)

Straight lines inp are still straight iny . For example, we could take;, = (1/v2;—1/v2;0)7,
vy = (1/v6;1/3/6;—2/v/6)T), andU = [vy,v9]7.
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Inthe{x1, x2} plane, we are now back to a situation similar to that in Fig. 1: we must find theatorr
directiond in which to project, in the plane, such that the entropy for the marginal disibalong a
1D projection line orthogonal to the lighting direction is minimized. The greyscalg&faalong this
line is formed via

Z = xy1co86 + x2siné (11)

and Shannon’s entropy is given by

sz ) log(ps(Z)). (12)

We shall see below, i§5, how instead the quadratic entropy allows us to inherit the marginal puff fro
the 2D pdf, as a function df.

3.2.3. Test of Main Idea
Thus the heart of this test of the entropy-minimization idea using real, mebpanet-patch data, is as
follows:

(a) Form a 2D log-chromaticity representation of the image.
(b) for6 = 1..180

() Form greyscale imagé: the projection onto 1D direction.
(ii) Calculate entropy.
(iii) Min-entropy direction is correct projection for shadow removal.

We would like an actual algorithm to proceed faster than this type of brute fegarch, of course, and
that issue is addressed§s.

3.2.4. 3-Vector Representation

After we find 6, we can go back to a 3-vector representation of points on the projectiom@roject

2D points onto a line via & x 2 projectorPg: if ® = (cosf,sinf)”, thenP,=0 © 7. We form the
projected 2-vectory Y via x gy = P px and then go back to an estimate (indicated by a tilde) of 3D
pandcviap = U Tx,, & = exp(p). For display, we would like to move from an intrinsic image,
governed by reflectivity, to one that includes illumination (cf. (Drew et &03). So before applying

U 7 we add back enough so that the median of the brightest 1% of the pixels has the 2D chromaticity
of the original imagex ¢y — X ¢ + X catratight-

3.2.5. Stable Chromaticity Image
Once we have an estimateof the geometric-mean chromaticity (7), we can also go over to the usual
L;-based chromaticityr, g, b}, defined as

= {r,g,b} = {R,G,B}/(R+G+B), r+g+b=1. (13)

This is the most familiar representation of colour independent of magnitudenfo 2 of Fig. 8 shows
the L; chromaticity for colour images). To obtain Ichromaticityr from our estimate o& , we simply
take

3
Fo=c/> . (14)
k=1
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Sincer is boundeds [0, 1], invariant images in- are better-behaved thanZs The greyscale imagé
for this test using images of a colour target is shown in Fig. 7(d), and thehtomaticity version+, as
per eq. (14), is shown in Fig. 7(e). We note that both greyscale andrcimleariant images are stable
across illuminants. The colour range for the 2D colour invariant is ofssweduced compared to that of
an unprojected colour target.

3.2.6. Entropy Minimization — Strong Indicator

From the calibration technique described in section 3.1 we in fact alreawly #recorrectcharacteristic
direction in which to project to attenuate illumination effects: for the HP-912 cantleis angle turns
out to be 158.%.

We find that entropy minimization gives a close approximation of this resulf. ft8both Shannon’s
definition of entropy and the quadratic entropy variant. First, transformai@ chromaticity coordinates
X , the colour patches of the target do form a scatterplot with approximatedigidines, in Fig. 7(a).
We compose an image consisting of a montage of median pixels for all 24 caltmives and 14 lights.
The calculation of entropy carried out for this image gives a very stratrgmum, shown in Figs. 7(b,c),
and excellent greyscalinvariant to lighting, and chromaticity invariant,in Figs. 7(d,e).

This completes both the theoretical and a controlled-experiment justificatitimeafain idea —
finding the invariant projection direction by entropy minimization. In the negtisg, we examine the
issues involved when we extend this laboratory success to the realmidigrchon-calibration images.
To dispense with a brute-force search over all angles, we also nestiplided search mechanism,
and we see that this is provided by the quadratic entropy measure, with impétioeroy Fast Gauss
Transform.
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4. Intrinsic Image Recovery Algorithm

4.1. SHANNON’S ENTROPY AND QUANTIZATION

Real images are noisy and might not provide such a clean picture as ireovetical and testing images
above. As well, we must decide on a quantization procedure if we wish to ugitiaanon’s definition of
entropy.

4.1.1. Quantization Problem
Consider the colour image in Fig. 3(a): a colourful ball on a wooden @eitka shadow cast by strong
sunlight. To find the minimum entropy, we again examine projectibrever angles ©to 180, for
log-chromaticitiesy formed according to egs. (7), (8), and (10). For each angle, wegirthe log-
chromaticity, and then determine the entropy (12). However, the natureeaddta, for real images,
presents an inherent problem. Since we are considering ratios, wexpaat éoise to possibly be en-
hanced (although this is mitigated by the sum in eq. (13)). To begin with, tretefe apply Gaussian
smoothing to the original image colour channels. But even so, we expeéciiime ratios may be large.
So the question remains as to what we should use as the range, and niitniber i a histogram of
a projected greyscale imade Using the usual, Shannon, definition of entropy, we cannot escape this
guantization issue. However, the alternative Quadratic Entropy meas@e:pelow, largely circumvents
this issue by utilizing a different, kernel density driven non-paramettimese of the pdf that automati-
cally incorporates smoothness. We still have to choose a bandwidth pardooétle resulting quantity
is relatively independent of this choice.

We calculate Shannon’s entropy by approximating the pdf with a histogram pregected 1D
greyscale values. To form an appropriate bin width, we utilize Scott’s RBdet{, 1992):

bin.width = 3.5 std(projected dataN /3 (15)

whereN is the size of the invariant image data, for the current angle. Since therdenatlier ratios,
we use the middle values only, i.e., the middle 90% of the data, to form a histograntha scale of
the entropy for each projection is the same, since the number of bins is thiecssme: if we draw the
samples from a Gaussian population then the first 3 standard deviatiprfspsathe mean plus overload
at the boundaries describe all the data, and the number of bins is thengpsttpnal toN'/3, which is
the same for every projection.

The entropy calculated is shown in Fig. 3(b); but we find from varyingkimewidth in Fig. 3(b)
around the value in eq. (15) that this entropy may be sensitive to the binvéezeould like to develop
a smoother version of the entropy, with a clearer indication of the minimum. As wellyould like to
dispense with an exhaustive search over angles and go over to a snmgtreethat facilitates efficient
search for the minimum. We shall see next that the Quadratic Entropy cusw®isth and also generally
has a single extremum. And a Fast Gauss Transform can producergempyeevaluation in linear time.

Fig. 3(c) shows the Information Potential, derived in the next Section fhenQuadratic Entropy. We
see that in this case there is a much simpler curve shape, and local quamteftgizis are eliminated.
The result for the resulting chromaticity invariant, and reconstructedastdicte colour image is shown
in Fig. 8.
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5. Quadratic Entropy and Gauss Transform

Firstly we replace our pdf over 2D chromaticity coordinates by a Gaussamekdensity mixture to
ensure that entropy is calculated over smooth values. If we go over t@drgtic Entropy measure (a
special case of Renyi’s entropy (Renyi, 1987)), then the entropg ke very simple form.

In 1D, Renyi’s entropy reads

1
1 log/pa(x)d:p, a>0, a#l (16)
—a

wherep(x) is the pdf. This measure is known to approach Shannon’s entropygass to 1.
For the special case of = 2 we have

Na =

oo
Nquadratic = _IOg/ pZ(x)dx (17)
—0

Notice that the log is outside the integral, making for a much simpler evaluation.
For the purposes of optimization, we can simply drop the log, giving the Bedcaformation
potential

V= /p2($)dx (18)

To see how the information potential is indeed related to minimizing the entropsidesrhe parallel
lines in(x1, x2)-space formed for two paint patches as illumination changes, in Fig. 9ppdSe data
points are uniformly distributed along each line, so that the projected, mamdh& proportional tol
except when the line projections overlap, when the pdf is proportiorial@early, there is a singularity
when the lines project to zero length along the projection axis, at the minimumpgrangle. Fig. 9(b)
shows the theoretical value &f, as the projection angle changes. The information potential for real
data usually also has a similar strong, single-maximum structure: the curve.if (E)gshowing the
information potential for the measured patch data in Fig. 7(a) has a maximu60a&t lwhereas the
correct angle is 158% Compared to Fig. 7(b), the quadratic entropy has a much cleaner sertlcair
facilitates a fast search by successive evaluation of the quadratipgiver a few angles.

The quadratic entropy is explicitly evaluated using the Parzen window taadhrielow.

PARzZEN WINDOW

The quadratic-entropy approach approximates theppdf from its N samples:; by a Parzen window
estimator (Parzen, 1962), using Gaussian kerfielgth meana; and variance?:

1 N
p(x) = N Z G(as, s?) (29)
i=1

Since a convolution of two Gaussians is a Gaussian with variance equal $arthef variances of the
constituent Gaussians and mean given by the difference of individuahsnéhe information potential
V' becomes simply (Xu and Principe, 1998)

1 LN 1 1 _ (ai—a;)?
- = a2 2y - - - 452 2
1% E ZZG(CL aj,2s%) N Jan s zl:%:e (20)

i=1j=1

Notice that now we can evaluate the entropy directly from the data, withoutetihe to create a pdf first.
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Now let us show how the 1D model above comes out of projecting(2R,x2) chromaticity-space
data in a directiord. For convenience let us write = x1, y = x2. WhereX;,Y; is the 2D data and
indexes the image treating indices as a vector. If the 2D pdf is approximated as

2 _V.\2
p(z,y) = % G Zexp[ X) ]exp [_(yz/;)] 7 (21)

7r)25152 i=1 253

then to find the marginal probability density for this function along an ax@ojected in theé direction,
we substituter = pcosf + vsinf, y = —usinf + v cosf. Also definingM; = X; cosf — Y;sin ¥,
after some algebra the projected marginal probability comes out to be

Y _ 1 (n — M;)?
pO(M) - /uzfoop(x(uy V)a y(,u7 V)) dv = N\/mzi:exp - 232 (22)
with 2 2
5(0)* = s% cos + s3 sinf (23)

We then use valué that minimizes the asymptotic mean integrated squared error (AMISE) (Scott,
1992), given by
§ = 1.06s(0) N~L/5 (24)

Thus the information potential is

Vi [ U i = e ST e |- = M) 25)
B H=—00 A o= N 2 282 P
Therefore, the information potential is given by a simple sum, along the pegjexis.

The information potential” can be regarded as the total potential energy of the data set, with the
Gaussians in the role of potential energy of data padifitin the potential field of data point/;. To
minimize the entropy, we maximize this potential energy (Xu and Principe, 1898)e context of data
points that are free to move, the derivative of this potential is a force tiagsddata points into an
equilibrium state such that the information potential takes on an extremum. Thiieka used for deter-
mining neural network parameter values that produce such optimized kedwiputs: the derivative of
V' with respect to the network parameters become derivatives of the owtimis pvia the chain rule (Xu
and Principe, 1998). In our application, the data is fixed, so we simply &eagg. (25).

In the Appendix, we show that the surmcan be calculated in linear time, using the Fast Gauss Trans-
form. Quadratic entropy curves found are simple and smooth, and wefdave that a maximum of”
for real image data can be generated in just a few search steps. Viethation average the most critical
and time-consuming step of the algorithm, namely the linear-time FGT, took aboutdsenonds per
pixel (in Matlab on a single-core 3.0 Ghz P4 running Windows), or in ottede/some 0.5 seconds for
a300 x 400 image.

6. Re-Integrated Image Results
Using the re-integration method in (Finlayson et al., 2006), we can go on fnar invariant image

to recover a full-colour shadow-free image. The method introduced idafSon et al., 2002) uses a
shadow-edge map, derived from comparing the original edges to thdise greyscale invariant image.
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In (Finlayson et al., 2006) we use edges from the invari@dmbmaticityimage and compare to edges
from a Mean-Shift (Comaniciu and Meer, 2002) processed original @nag well, rather than simply
zeroing edges across the shadow edge, we use simple edge inpaintiow tedgres into shadow-edge
regions.

Regaining a full-colour image has two components: finding a shadow-edg, mad then
re-integrating. The first step is carried out by comparing edges in thend8&ét processed original
image with the corresponding recovered invariant chromaticity image. We flmogixels that have
edge values higher than a threshold for any channel in the original, aret than another threshold
in the invariant, shadow-free chromaticity. We identify these as shadoesednd then thicken them
using a morphological operator. For the second stage, for each lograsiannel, we first grow simple
gradient-based edges across the shadow-edge mask using iteratioa dildhe mask and replacement
of unknown derivative values by the mean of known ones. Then wa foisecond derivative, go to
Fourier space, divide by the Laplacian operator transform, and dotbac y space. Neumann boundary
conditions leave an additive constant unknown in each recovered logrceo we regress on the top
brightness quatrtile of pixel values to arrive at the final resulting coltames.

In our experiments, images show behaviour similar to that displayed in Figv@th strong entropy
minima (information potential maxima), and results quite free of shadows. Siecenhriant image
is basically shadow free and the re-integrated image is quite good, our intthtminimization of
entropy would lead to correct results is indeed justified.

Fig. 8 shows results from various images, from both calibrated and urai@ibcameras, including
consumer cameras. For all experiments we carried out, quadratic entiojpgization provided a strong
guiding principle for removing shadows. Note that in some actual camemasntaopy-minimization
approach rather than a calibration is ideal for finding the invariant dinecsimce it is possible that even
a change of camera settings or heating over the day in a surveillance sitcatigroduce effectively
different camera sensors. We point out to the reader that there iglecaisle variance in the recovered
invariant angle direction over the set of images and cameras (150 dg@ussor minus 20 degrees) and
so0 a single fixed calibration direction will not remove the effect of illumination ingesa

While the results are not perfect, we believe they are pretty good. Inssdbdhe shadows are removed
or attenuated and the main look and feel of the image is retained. And, wevedthifés performance
without any calibration or prior learning.
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Figure 4. Synthetic values. (a): Typical RGB camera sensors — Sony DXC98@ea (b): Theoretical narrowband RGB
camera sensors. (c): An image showing all lights and surfacesta efjht there are 170 reflectances and top to bottom the
9 Planckian lights. (d): Close-up showing the last 7 patches, under thét8.lig): Minimum Shannon’s entropy invariant
direction gives same angle as calibration test. (f): The same angleweeneed a curve maximum) is produced by quadratic
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Figure 5. (a): Macbeth ColorChecker Chart image under a Planckian light imagbeén HP912 Digital Still Camera, modified

to generate linear output. (b): Log-chromaticities of the 24 patches of thgdthchart. (c): Chromaticities for 6 different
patches, imaged under a set of different Planckian illuminants.

@ (b) (© (d)

Figure 6. (a): Two hemispheres composed of Macbeth ColorChecker Chimtigm#4 and #6, on a plane composed of patch
#2. lllumination is by two Planckians, and image formation is by using dehatfon sensors. (b): 1z=norm chromaticity for
this scene. (c): Greyscale invariant image. (d): Invariant imagé@saticity.
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Figure 8. Additional invariant images, for minimum entropy: columns show origimege, Ly chromaticity image, information potential plot, invariant thromaticity,

and re-integrated RGB colour image.
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7. Arelnvariant ImagesIntrinsic?

A question that remains is whether the invariant images produced are iticdd@usic” in the sense
of yielding identical reflectivity results regardless of lighting conditions.tdst this capability of the
algorithm, we used time-lapse imaging to show shading and shadow removigystabr lighting. Fig. 9
shows a subset of several images taken outdoors over time on a vatiablyday at 20-minute intervals.
For each individual image, we ran the algorithm presented here. If tlagidmt images produced are
indeed intrinsic, then we expect to find that all invariant images are appabely equal, or at least
much closer to each other than are each of the original sequence sipeethid consist of reflectance-
only images independent of the lighting change between frames. The casegravas an inexpensive
commaodity camera, but with the software modified such that both prefercdaanrenditions are both
stored: for raw images, only demosaicing using bilinear interpolation is applied

We find that in most of the results, the attached shadows are still somevgaaeap although the cast
shadows have been mostly removed. Nevertheless the output imagesea@ dhaker to each other than
are the originals. Since we produce chromaticity images as the invariant owgotgmpare closeness
for the L; chromaticity amongst the input set across daylight conditions versusothiaief output set. A
simple but effective measure of the quality of image nearness is the Pealt Ridwoise ratio (PSNR)
(Daly, 1992), and in fact perception-based image quality metrics havefbeed to offer little advantage
over PSNR as a measure to evaluate the quality of image nearness. Foutreeirgf L; chromaticities,
if we compute the PSNR between all input images the median value is 38.70 dBorBhe output
set, the median is 50.06 dB, showing a much stronger correlation: i.e., théaimvianages are indeed
considerably closer to generating an intrinsic representation.
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8. Conclusions

We have presented a method based on entropy minimization for finding th&aimvdirection, and thus
a greyscale and thence ap-thromaticity intrinsic image that is independent of lighting and hence free
of shadows, without any need for a calibration step or special knowlafigut an image. The method
appears to work quite well, and leads to good re-integrated full-colour isnaga shadows greatly
attenuated. We found that going over to a quadratic entropy definitioride®\a stable and efficient
vehicle for calculating the minimum-entropy lighting invariant direction.

Future work would involve a careful assessment of how onboard rearliprocessing in cameras
affects results. Cameras ordinarily supply images and videos that areressagd, as well as greatly
processed away from being linear images. Although the method does iwddednder such processing
(see Fig. 8) it would be well to understand how JPEG artifacts impact the chét¥® have found that
JPEG images do indeed exhibit a strong entropy minimum, just as do uncosgpigsgyes. However,
the extra edges introduced due to blocking effects make re-integrationdifitcelt.

For the re-integration step, it may be the case that consideration of aateghadow-edge map
for x andy could be useful, since in principle these are different. A variational inpejralgorithm
would likely work better than our present simple morphological edge-ddfusnethod for traversing
shadow-edges, but would be slower.

In general, the model does perform best when the underlying assumpiidding the approach are
indeed obeyed. For example, if a spectral sharpening transform yBomeet al., 1994) is available for a
camera (or even using a generic such transform (Drew et al., 20@f)»b can expect to obtain better
shadow removal from the lighting invariant. And Lambertian surfaces mhgeeduce the best results.
A simple test of whether a surface is in fact Lambertian is that the chromaticrgwes shading. The
Lambertian assumption is often broken, but real images typically contain ovdit specular areas and
these do not much affect the results. However, if we were to use sathdarge areas of non-dielectrics,
this would indeed affect performance. In general, we expect the méshwalve limited applicability to
a degree for scenes that image surfaces with BRDFs that deviate fnopeltéan, such as glass, metal,
etc., and likely also skin, which is complex to model (Weyrich et al., 2006).

As well, dynamic range plays an important part in consumer imaging. Undgrtiighting, shadows
are typically driven down to very small pixel values — say, to 2% of the maxinchanmnel value —
that may be unusable by the method presented. Also, when strong intgioeikeare present, in shadow
regions that are very close to an object with attached shadow, the methadsoanot correctly remove
this effect. Nonetheless, generally the method does remove, or at leasistiithia presence of shadows
in imagery.

Appendix: Fast Gauss Transform applied to Quadratic Entropy

In practice, computation of the information potential can be expensivenwtmputed naively, compu-
tation of V' has complexityD(N?), whereN is the number of pixels. This cost may be prohibitive when
the image is large.

The Fast Gauss Transform (FGT) was introduced by Greengar&taih (Greengard and Strain,
1991) for efficient evaluation of a weighted sum of Gaussians. It haged to be a very efficient
algorithm in a variety of applications (Yang et al., 2003; Elgammal et al., 2B88tson and Greengard,
1997). The discrete Gauss transform, here discussed in terms of ttoximpation of a 1D pdf, is to be
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evaluated on a grid df points:
N o (.Z’i—Sj)Q
G(xi):ije g i=1,...,T. (26)
j=1

Here,w; are weight coefficients{s;}, j = 1... N are the data point centers of the sum of Gaussians
(the source¥; ando is a bandwidth parameter. The sum of Gaussians is evaluated only atfagsiet o
points{z;}, i = 1...T (thetarget9. A direct computation evaluating the summ&fsource points af’
targets require® (7' N) exponential evaluation operations.

The FGT algorithm speeds up the computation by approximation of the Gafigsaion to achieve
a desired precision. The basis of the fast algorithm is the expansion @dhesian in terms of the
Hermite functionsh,, (x):

p n
Gx) = e~ = 3" Do, (2) + e(p), 27)
n=1""
whereh,, (z) is defined by
o) = (-1
n\®) = da ’

ande is the error introduced by truncating the Hermite series aftearms. This is a rephrasing of the
Taylor series about = 0.

The FGT starts by dividing the feature space (the sources) into unifosasbwith side lengtla.
Then the Hermite expansion is applied such that the influence of sourdeargats separates. For each
sources, the Gaussian can be expanded using a shifted and scaled versionmofeHenctions which
are located at the centeg of the box in which the source lies.

B (D)2 . (JE*SB*(S*SB))2
e o = e o

S (S ()

n<p

I

This is a so-called far-field expansion, in that it is an approximation noemtgnt on the distance
between source and target being small.

In a similar manner, the target Gaussian field can be approximated by a Hexpateséon about the
center of the target baxp:

rz—rp—(S—T 2
() - ()

Z%hn (s—UxB) (x —01‘B>n (29)

n<p

12

The two expansions are identical, except that the role of sources ayadstare interchanged. Eq. (29)
is a so-called near-field expansion, in that it expresses a function witkttaas a Taylor series about a
nearbytarget box center g.

The FGT first calculates the expansion coefficients in eq. (28) (the molsoimig) and adds them
for each source box, yielding a single expansion for each sourceThmse series are then shifted to
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the centers of target boxes using eq. (29), for the Hermite series in@aeh box and its nearby source
box. Thus each target point has only one Taylor expansion with monoffials zz)/0)". In this way,
a sum of Gaussians can be compute®{f" + N) operations.

The FGT is typically applied to Gaussian kernel evaluations where the tangatst well-behaved
near the sources, making it necessary to use the far field Hermite expamsiahe translation to a local
Taylor expansion. However, here we wish to use the FGT specificallgdilmulating the information
potential, as in eq. (25). Here, sources and targets are identidd} are sources, with the term for each
of the form (26) withz; = M;. In this case, the Hermite expansion is equivalent to the Taylor expansion,
with no need to perform the conversion from the Hermite expansion to thETagkor series. Therefore,
a simplerevaluation is possible for eq. (25): all points are transformed into a Hermxjitension about
the centers of the boxes, and these expansions are directly evaluatahatoint.

Formally, the kernel i/ can be expressed as a Hermite series:

(M hy)? 1 (M;—Mp\", (M~ Mg
¢c ¥ :Zn!< 2; >h”< 23 ) 0

where point)/; is located in a box3 with center)M z and side lengtl3. The Fast Gauss Transform for
computing the information potential (25) thus consists of the following steps:

Step 1. Assign theN data points into uniform boxes with lenggh

Step 2. Choosep sufficiently large to enforce a desired error precision. The errortduke truncation
of the series eq. (28) after terms satisfies the following bound in this 1D case (Greengard and
Strain, 1991; Baxter and Roussos, 2002; Beatson and Green§8i); 1
2 p
<\f> RCY)

M;—M;\ 2 n
(g () ()’ (4
n. S S

|
n<p p:

[SIE

Step 3. For each boxB, with centerM , sum the Hermite polynomials, i.e. add corresponding coeffi-

cients: . RN
AB) == Y (a;B) (32)
n M;eB §
Step 4. For each poinf\/;, compute the influence of all poinid; by adding the Hermite expansion for
each boxB.
M;— M\ 2 M;— M\ 2
Ze‘( =) _ D (=)
j B M;eB
M; — M
~ 3N A,(B)h, ( = B) (33)
B n<p §

Because of the exponential decay of the Gaussian, points in a giverilbtvave no effect (given

a particular accuracy) on far-away targets. Thus it is reasonablentpute the influence of only

a range of nearby boxes for each target point, where the range isniletel by the desired error
bound. If we take only the closest boxes for a point in each direction (i.e., a neighbourhood of
2r + 1 boxes centered at the point), it can be shown (Greengard and Sté&it) that we incur
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an error bounded by "°/4. Denoting the2r + 1 nearby boxes by R(B), the summation can be
approximated by

1%

%: 67(%)2 S Y Au(B)hy <MZ;§MB>

M;eB IR(B) n<p
(34)

Step 5. Finally, the information potential can be calculated by adding all the Gausgfanxmations

obtained in step 4.
M; — M
veY Y Y 4B, (233) | (35)
i IR(B)

n<p

In step 3, each point contributes to exactly one expansion, so that thetofi@ork required to calculate
the coefficients for all boxes i9(/Np). The amount of work required in step 468p(2r + 1)) for each
point, andO(Np(2r + 1)) in total for all points. The desired precisierdictates our choice af andp.
For calculating the information potential, the precision required is moderatbasawe can have small
r andp. In this paper we use = 6 andp = 6. Overall, the FGT algorithm achieves linear running time
O(N).
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