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Abstract.
Recently, a method for removing shadows from colour images was developed [Finlayson, Hordley, Lu, and Drew,

PAMI2006] that relies upon finding a special direction in a 2D chromaticity feature space. This “invariant direction” is that
for which particular colour features, when projected into 1D, produce agreyscale image which is approximately invariant
to intensity and colour of scene illumination. Thus shadows, which are in essence a particular type of lighting, are greatly
attenuated. The main approach to finding this special angle is a camera calibration: a colour target is imaged under many
different lights, and the direction that best makes colour patch images equal across illuminants is the invariant direction. Here,
we take a different approach. In this work, instead of a camera calibration we aim at finding the invariant direction from
evidence in the colour image itself. Specifically, we recognize that producing a 1D projection in the correct invariant direction
will result in a 1D distribution of pixel values that have smaller entropy than projecting in the wrong direction. The reason
is that the correct projection results in a probability distribution spike, for pixels all the same except differing by the lighting
that produced their observed RGB values and therefore lying along a linewith orientation equal to the invariant direction.
Hence we seek that projection which produces a type of intrinsic, independent of lighting reflectance-information only image
by minimizing entropy, and from there go on to remove shadows as previously. To be able to develop an effective description
of the entropy-minimization task, we go over to the quadratic entropy, rather than Shannon’s definition. Replacing the observed
pixels with a kernel density probability distribution, the quadratic entropy canbe written as a very simple formulation, and can
be evaluated using the efficient Fast Gauss Transform. The entropy,written in this embodiment, has the advantage that it is
more insensitive to quantization than is the usual definition. The resulting algorithm is quite reliable, and the shadow removal
step produces good shadow-free colour image results whenever strong shadow edges are present in the image. In most cases
studied, entropy has a strong minimum for the invariant direction, revealing a new property of image formation.

Keywords: Illumination, reflectance, intrinsic images, illumination invariants, color, shadows, entropy, quadratic entropy

1. Introduction

Illumination conditions confound many computer vision algorithms. In particular,shadows in an image
can cause segmentation, tracking, or recognition algorithms to fail. An illumination-invariant image is
therefore of great utility in a wide range of problems in both computer vision and computer graphics.

An interesting feature of this problem is thatshadowsare approximately but accurately described as a
change of lighting(Finlayson et al., 2002). Hence, it is possible to cast the problem of removing shadows
from images into an equivalent statement about removing (and possibly laterrestoring) the effects of
lighting in imagery.
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2 Finlayson et al.

Removal of outdoor cast shadows has been addressed before in the literature but typically not based
on a photometric approach. For example, (Cho et al., 2005) uses background subtraction in YCbCr
colour space and gradient thresholding to extract moving blobs in colour todetect cast shadows in traffic
surveillance video. The objective is to find a moving blob that is not in a shadow region. In (Liu et al.,
2006), another method based on time-varying data and a Gaussian mixture model uses the early video-
based model in (Stauder et al., 1999) to partially remove effects of lighting from sequences (and cf.
(Weiss, 2001)) but the proposed insensitivity to illumination depends on a slowly changing penumbra
and does not work for strong shadows. In fact, a substantial amount of work on shadow detection has
been concerned with moving shadows (Prati et al., 2003; Nadimi and Bhanu, 2004; Martel-Brisson
and Zaccarin, 2007), whereas here we concentrate on single still images. In this paper we focus on a
physically-based rather than image-processing approach in order to gain understanding of the underlying
image formation process.

A method was recently devised (Finlayson et al., 2002; Finlayson and Hordley, 2001; Finlayson and
Drew, 2001; Drew et al., 2003; Finlayson et al., 2006) for the recovery of an invariant image from
a 3-band colour image. The invariant image, originally 1D greyscale but subsequently derived as a 2D
chromaticity, is independent of lighting, and also has shading removed: it forms a type ofintrinsic image,
independent of illumination conditions, that may be used as a guide in recovering colour images that are
independent of illumination conditions. While the essential definition of an intrinsic image is one that
captures full reflectance information (Barrow and Tenenbaum, 1978),including albedo information, here
we claim only to capture only chromaticity information, not full reflectance. Nevertheless, invariance to
illuminant colour and intensity means that such images are free of shadows aswell, to a good degree
(Finlayson et al., 2006). Although shadow removal is not always perfect, the effect of shadows is so
greatly attenuated that many algorithms can easily benefit from the new method;e.g., a shadow-free
active contour based tracking method shows that the snake can without difficulty follow an object and
not its shadow, using the new approach to illumination colour invariance (Jiang and Drew, 2003; Jiang
and Drew, 2007). In place of standard luminance images used in vision, if inan application the effects of
lighting would usefully be removed then arguably the greyscale version of the invariant image should be
used instead.

The method works in a very simple way: Suppose we form chromaticity band-ratios, e.g.,G/R, B/G
for a colour 3-band RGB image, and suppose we further take logarithms. An interesting feature to note is
that, under simplifying assumptions set out below, the scatterplot values forpixels from the same surface,
but under different lighting fall on a straight line; and every such line, for different surfaces, has the same
slope. This remarkable fact still hold true approximately even when the guiding, simplifying assumptions
are broken. Since shadowing is a result of a difference in lighting, we can use this physics-based insight
to devise a shadow-removal scheme. This paper uses evidence internalto any particular image, based on
an entropy measure, to find the slope of such lines. Projection orthogonalto this special direction results
in a 1D greyscale image that has shadows approximately removed. We also derive a 2D colour version
of such an invariant image.

The method devised finds an intrinsic reflectivity image motivated by the assumptions of Lambertian
reflectance, approximately Planckian lighting, and fairly narrowband camera sensors. Nevertheless, the
method still works well when these assumptions do not hold. A crucial piece of information is the angle
for an “invariant direction” in a log-chromaticity space. Originally, this information was gleaned via a
preliminary calibration routine, using the camera involved to capture images of acolour target under
different lights. Subsequently, it was shown in principle (Finlayson et al.,2004) that we can in fact
dispense with the calibration step, by recognizing a simple but important fact: the correct projection is
that which minimizes entropyin the resulting invariant greyscale image. In this paper, the entropy based
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Entropy Minimization for Shadow Removal 3

method is examined in detail, and in order to carry out an efficient search over smooth values that are
not subject to quantization problems, we replace the Shannon’s entropy measure, used previously, by
a Quadratic Entropy measure such that a Gaussian mixture model of the probability density function
(pdf) produces an analytic formula. We show that such quadratic entropy values are much smoother and
usually produce only a single minimum, making this approach the most efficient. The quadratic entropy
can be evaluated in linear time using a Fast Gauss Transform, leading to a simplemethod for finding the
invariant direction. Shadow removal in full colour, by means of comparingedges in the original and in
the invariant image and then subsequent re-integration, follows.

The paper is organized as follows. In§2, we briefly recapitulate the motivation for a projection-
based definition of an illuminant invariant, and set out the relevant equations. Section 3 looks at how the
entropy minimization scheme plays out for a set of synthetic colour patches, on the one hand, and then
for a set of actual paint patches in a calibration chart. Section 4 considers the issue of how an effective
entropy-minimization algorithm should proceed, and argues that an efficient approach is possible, based
on replacing the definition of entropy by the quadratic form of Renyi’s entropy. Finally, we apply the
method devised to unsourced images, from unknown cameras under unknown lighting, with unknown
processing having been applied. Results are again strikingly good, leading us to conclude, in§8, that the
method indeed holds great promise for developing a stand-alone approach to removing shadows from
(and therefore conceivably re-lighting) any image, e.g. images from consumer cameras.

2. The Invariant Image

2.1. LOG-CHROMATICITY PROJECTION ANDENTROPY M INIMIZATION

In order to motivate the study, we first briefly set out the strategy for developing an illumination invariant
image, and the rationale determining entropy minimization as the key insight for finding such an image.

Consider a calibration scheme, for a particular colour camera, wherein a target composed of coloured
patches (or just images of a rather colourful scene) are imaged under different illuminants — the more
illuminants the better. Then knowledge that these are registered images of the same scene, under differing
lighting, is put to use by plotting the capture RGB values, for each of the patches used, as the lighting
changes. If pixels are first transformed from 3D RGB triples into a 2D band-ratio chromaticity colour
space,{G/R, B/R} say, and then logarithms are taken, the values across different illuminants tend to
fall on straight linesin a 2D scatter plot. And in fact all such lines areparallel, for a given camera
(Finlayson and Hordley, 2001), as illustrated in Fig. 1(a).

So change of illumination simply amounts to movement along such a line. Thus it is straightforward
to devise a 1D, greyscale, illumination-invariant image by projecting the 2D chromaticity points into a
direction perpendicular to all such lines. The result is hence a greyscaleimage that is independent of
lighting, and is, therefore, a type of intrinsic image (Barrow and Tenenbaum, 1978) that portrays only
the inherent reflectance properties in the scene. Since shadows are mostly due to change in the illuminant
intensity and colour — i.e., differing lighting — such an image also has shadows removed.

Below, we discuss the restrictions on this straight-line model, but it may be useful to look at shadows
and lighting colour in an example. Fig. 2(a) shows a typical consumer-grade camera TIFF image, with a
strong shadow present. Here, the image processing software applied is typically aimed at a “preferred”
(i.e., pleasing) rendition, rather than photometric accuracy, and the numberof processing steps in the
camera software can be substantial (Ramanath et al., 2005).

The standard definition ofchromaticity, i.e., colour contents without intensity, is defined in an L1

norm:r = {r, g, b} ≡ {R, G, B}/(R + G + B). Fig. 2(b) shows this colour content for the image.
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Figure 1. Intuition for finding best direction via minimizing the entropy. (a); Log-ratiofeature space values for paint patches
fall along parallel lines, as lighting is changed. Each patch correspondsto a single probability peak when projected in the
direction orthogonal to the direction of lighting change. (b): Projecting in thewrong direction leads to a 1D pdf which is less
peaked, and hence of larger entropy.

Notice that the colour of the shadow is basically a deep blue; since this is an outdoor shot on a clear day,
this is not surprising in that the light for shadowed pixels is mostly from the skydome, whereas light for
non-shadowed pixels is comprised of both sky-light as well as direct sunlight. Thus shadowing is seen to
be an effect due to change of lighting colour as well as intensity.

The invariant greyscale is shown in Fig. 2(e) where we see the shadow isno longer present. In (Drew
et al., 2003), a 2D-colour chromaticity version of the invariant image, as in Fig. 2(f), is recovered by
projecting orthogonal to the lighting direction and keeping the 2D colour location information, and also
putting back an appropriate amount of lighting along the lighting direction. While 2(f) looks flat and the
colours somewhat false, intrinsic images created this way are useful in computer vision: e.g. see (Jiang
and Drew, 2003; Jiang and Drew, 2007).

We can use the greyscale or the pseudo-colour invariant as a guide thatallows us to determine which
colours in the original, RGB, colour image are intrinsic to the scene or are simply artifacts of the shadows
due to lighting. Forming the gradient of the image’s colour channels, we can guide a thresholding step via
the difference between edges in the original and in the invariant image (Finlayson et al., 2002; Finlayson
et al., 2006). Forming a further derivative, and then integrating back, we can produce a result that is a
3-bandcolour image which contains all the original salient information in the image, except thatthe
shadows are removed, as in Fig. 2(g). Although this method is based on the invariant image, which has
shading removed, nonetheless its output is a colour image, including shading. It is worth pointing out
that we have found that in implementing this process, a 2D-colour, chromaticity, illumination-invariant
image is more well-behaved than the greyscale variant, and thus gives slightlybetter shadow removal.

Of course these applications sit on top of a well calibrated imaging system. We measure how the
camera responds to light and find the invariant direction accordingly. However, often in vision tasks we
do not know the provenance of the images or even if we do have a calibrated camera this calibration
does change over time. Thus, the problem we consider, and solve, in this paper is the determination of
the invariant image fromunsourcedimagery — images that arise from cameras that arenot calibrated.
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Figure 2. Colour and intensity shift in shadows: (a): Original image; (b): L1 chromaticity image; (c): Shannon’s entropy plot
(we seek the minimum); (d): quadratic entropy plot (we seek the maximumof the quantity plotted); (e): greyscale 1D invariant;
(f): 2D invariant L1 chromaticity; (g): re-integrated 3D colour image.
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6 Finlayson et al.

The input is a colour image with unknown provenance, one that includes shadows, and the output is the
invariant chromaticity version, with shading and shadows removed.

The fundamental idea in this paper is the observation that, without having to image a scene under
more than a single illuminant, projecting in the correct direction minimizes the entropyin the resulting
greyscale image. The intuition behind this statement is evident in the calibration situation, with a set of
colour patches under changing lighting. Projecting onto a line perpendicular to the set of straight lines,
we end up with a 1D pdf that is concentrated in peaks, as in Fig. 1(a). In a set of real images of colour
patches, we indeed see a set of peaks, each well separated from the others and corresponding to a single
colour patch. On the other hand, if we instead project in some other direction, as in Fig. 1(b), then instead
of pixels located in sharp peaks of occurrence we expect the distributionof pixels along our 1D projection
line to be spread out. In terms of histograms, in the first instance, in which we guess the correct direction
and then project, we see a distribution with a set of sharp peaks, with resulting low entropy. In the second
instance we instead see a broader histogram, with resulting higher entropy.

But does this idea apply in real images? We have found that, for almost every image considered
that does indeed involve shadows, entropy has a strong minimum near the correct invariant direction.
Changing lighting is automatically provided by the shadows in the image themselves.

Nevertheless, we have found that the method of calculating the entropy is important. Fig. 2(c) shows
Shannon’s entropy, for the projected, greyscale image when featuresare projected over angles from 1◦ to
180◦. This entropy is calculated by choosing a bin-width, and then quantizing pixel feature values using a
histogram, normalizing the histogram, and forming the standard quantity describing the entropy (see, e.g.,
(Li and Drew, 2004)). But this calculation can sometimes be quite sensitive tothe bin-width, as shown
in Fig. 3(b) (for quite a pathological case). We have found that such entropy plots can in fact have many
local minima; this is discussed further in§4.1 below. Instead, a quadratic entropy plot, discussed below, is
usually a good deal smoother since it is founded on a Gaussian kernel density distribution, and most often
has a single strong maximum (of the quantity that must be maximized, in this case), making for a simple
optimization to find the maximum. Further, quadratic entropy, which is the logarithm of an integral, is
simply related toInformation Potential. Specifically, information potential is the exponent of the negative
of quadratic entropy and so minimum quadratic entropy corresponds to maximum information potential.
This is an important point as the majority of the results derived below are for information potential;
though, the reader should understand that information potential and quadratic entropy are simply related.

In Fig. 3(c), we show the information potential using a range of differentbandwidth parameters, and
notice that the maximum is quite insensitive to the bandwidth. Consequently, in this paper we go over
to this definition of the entropy, as shown in Fig. 2(d) for the initial image Fig. 2(a) (here, we look for a
maximum of the quantity plotted).

In §2.2, we now briefly summarize the set of theoretical assumptions regarding the problem of lighting
change in imagery that lead to the straight-line hypothesis.

2.2. THEORY OF INVARIANT IMAGE FORMATION

2.2.1. Planckian Lighting, Lambertian Surfaces, Narrowband Camera
Suppose we consider a fairly narrow-band camera, with three sensors, Red, Green, and Blue, as in
Fig. 4(a) (these are sensor curves for the Sony DXC930 camera). Now if we image a set of coloured
Lambertian surfaces under a particular Planckian light, e.g. in a controlled light box, then for each
pixel the log of chromaticity band-ratios, say{log(R/G), log(B/G)}, appears as a dot in a 2D plot.
Chromaticity removes shading, for Lambertian reflectances under orthography, so every pixel in each
patch is approximately collapsed into the same dot (no matter if the surface is curved).
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Figure 3. Effect of quantization on Shannon’s entropy: (a): Original image; (b): Shannon’s entropy plot, with changing
bin-width (we seek the minimum) – the normative bin-width value given belowby eq. (15) is shown dashed, and the other
curves are for multipliers of this width from 0.1 to 2.0, mapped to equal maxima; (c): quadratic entropy plot with bandwidth
multiplied by factors from 0.1 to 1.9 by 0.3, with 1.0 shown dashed (note that we seek the maximum of the quantity plotted).

For example, Fig. 5(b) illustrates the log-chromaticities for the 24 surfaces of the Macbeth Col-
orChecker Chart shown in Fig. 5(a). The plot shows 19 distinct clusters of points — each cluster corre-
sponds to chromaticities from a single patch (there are 19 clusters rather than 24 since the patches in the
last row of the chart are all neutral in colour and so have the same chromaticity). Fig. 5(c) shows the plot
of the median 2D log-chromaticities for 6 of the Macbeth surfaces under 14 different Planckians — we
see a set of parallel approximately straight lines.

For narrow-band sensors (or spectrally-sharpened ones (Finlayson et al., 1994; Drew et al., 2002)),
and for Planckian lights — or lights such as Daylights which behave as if they were Planckian in that
their chromaticity is very close to the Planckian locus — as the correlated colourtemperatureT that
characterizes the illuminant changes, the log-chromaticity colour 2-vector does indeed move along an
approximately straight line which is independent of the magnitude and position of the lighting. (Note that
the invariant direction is different for each camera.) Further, in manufacturing artificial lights, the colour
rendering properties of lights are calculated using a CIE standard methodology (CIE, 1995). According
to this methodology, illuminants that are far from the Planckian locus render less well than those that
are close. As such most commercial lights have chromaticities close to the Planckian locus and for all
commercial lights tested we discover more or less the same intrinsic reflectance image.

Let’s recapitulate how linear behaviour with lighting change results from the assumptions of Planck-
ian lighting, Lambertian surfaces, and a narrowband camera. Consider the RGB colourR formed at a
pixel, for illumination with spectral power distributionE(λ) impinging on a surface with surface spectral

ijcv08.tex; 29/04/2009; 8:42; p.7



8 Finlayson et al.

reflectance functionS(λ). If the three camera sensor sensitivity functions form a setQ (λ), then we have

Rk = σ

∫
E(λ)S(λ)Qk(λ)dλ , k = R, G, B , (1)

whereσ is Lambertian shading: surface normal dotted into illumination direction.
If the camera sensorQk(λ) is exactly a Dirac delta functionQk(λ) = qkδ(λ − λk), then eq. (1)

becomes simply
Rk = σ E(λk)S(λk)qk . (2)

Now suppose lighting can be approximated by Planck’s law, in Wien’s approximation (Wyszecki and
Stiles, 1982):

E(λ, T ) ≃ I k1λ
−5e−

k2
Tλ , (3)

with constantsk1 andk2. TemperatureT characterizes the lighting colour andI gives the overall light
intensity.

In this approximation, from (2) the RGB colourRk, k = 1 . . . 3, is simply given by

Rk = σ I k1λ
−5
k e

−
k2

Tλk S(λk)qk . (4)

Let us now form the band-ratio 2-vector chromaticitiesc ,

ck = Rk/Rp , (5)

wherep is one of the channels andk = 1, 2 indexes over the remaining responses. For example, we could
usep = 1 (i.e., divide by Red) and so calculatec1 = G/R andc2 = B/R. We see from eq. (4) that
forming this chromaticity effectively removes intensity and shading information.If we now form the log
of (5), with sk ≡ k1λ

−5
k S(λk)qk andek ≡ −k2/λk we obtain

ρk ≡ log(ck) = log(sk/sp) + (ek − ep)/T . (6)

Eq. (6) is a straight line parameterized byT . Notice that the 2-vector direction(ek − ep) is independent
of the surface, although the line for a particular surface has offset that depends onsk. Every such line is
parallel, with slope dictated by(ek − ep).

An invariant image can be formed by projecting these 2D logs of band-ratio chromaticityρk, k = 1, 2,
into the directione ⊥ orthogonal to the vectore ≡ (ek − ep). The result of this projection is a single
scalar which we then code as a greyscale value.

We go on in§3.2.5 to generate a 2-colour chromaticity image from the greyscale version. The images
thus generated are “intrinsic” in the sense that they capture reflectance information independent of light-
ing. However, they are not full reflectance-only images (as specified in(Barrow and Tenenbaum, 1978)),
since they bear only chromaticity information, not albedo.

Since the method stems from a Planckian illumination model, it is worth asking whetherthe com-
bination of lights when not in shadow – sunlight plus skylight – breaks the model. In fact, the sum
of two Planckian lights is not Planckian. However, since the Planckian locusis in fact a very shallow
curve (Wyszecki and Stiles, 1982), the combination is almost Planckian. Toinvestigate the effect of
this combining of lights on the theoretical underpinnings of the method, consider the synthetic scene
in Fig. 6(a). This depicts two hemispheres on a plane viewed from(0, 0, 1), shaded via a full-spectrum
raycaster (cf. (Bergner et al., 2009)). Here the left sphere surface material is Macbeth chart patch #4,
“olive green”, the right sphere is #6, “bluish green”, and the plane is #2, “light skin”. Lighting is a
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Planckian with temperature T=10,500◦K in the shade (blue lighting), and a combination of that light
plus a Planckian with T=2,500◦K (red lighting) outside the shadows. The camera sensors used are delta-
functions atλk={650nm, 540nm, 450nm}. This image illustrates the different colours in shadow and
non-shadow regions. Using a projection of log band-ratio chromaticitiesR/G, B/G, Fig. 6(c) shows the
greyscale invariant delivered by the proposed method, and Fig. 6(d) shows the corresponding derived
L1 chromaticity, invariant image{R, G, B}/(R + G + B). We notice that while the greyscale image is
approximately independent of the lighting, it is not perfect. This is, as we supposed, due to the fact that
a combination of Plankians is not itself perfectly Planckian. So in fact even incircumstances in which
the theoretical model is perfectly obeyed, the method will likely not deliver a perfect result. Moreover
the chromaticity invariant delivered is not precisely as we expect in that there are gradual colour changes
across each sphere (although these would disappear if had only a singleilluminant impinging on each
of shadow and non-shadow pixels). However, indeed both attached and cast shadows are essentially
removed. This example serves to show that an invariant image can be of usein establishing which edges
correspond to material changes and which to lighting, at least well enoughas a vehicle for shadow
removal.

Before light is added back to such images (below), they are a type of intrinsic image bearing re-
flectivity information only. In§3.2 we recover an approximate intrinsic RGB reflectivity, akin to that in
(Tappen et al., 2003; Tappen et al., 2005) but with a considerably less demanding algorithm: (Tappen
et al., 2005) classified image gradients as illumination or reflectance edges depending on their direction
and magnitude and, in cases of ambiguity, on other edges in the neighbourhood. Work on recovering
the intrinsic reflectance and illumination of a scene flows in part from early work on Retinex (Land
and McCann, 1971), and (Tappen et al., 2005) is a sophisticated development in this stream. Note that
an important qualification of the domain of the present method is that whereas the method in (Tappen
et al., 2005) works on either greyscale images or colour ones, the method set out here depends on colour.
Allied efforts, especially in the domain of Computational Photography, have considered light mixtures
(e.g., (Hsu et al., 2008)) or colour-filtered images (e.g., (Finlayson et al.,2007)).

Clearly, if we have the opportunity to calibrate our camera, then we can determine the invariant 2-
vector directione . However, if we have only a single image, then we do not have the opportunity to
calibrate. Nevertheless we would still like to be able to remove shadows from any image. We show in the
next Section that the automatic determination of the invariant direction is indeed possible, with entropy
minimization being the correct mechanism.

3. Intrinsic Images by Entropy Minimization

Here, we would like to do away with the necessity of a calibration step to gain foreknowledge of the
invariant direction. We begin in§3.1 by creating a synthetic “image” that consists of a great many colour
patches. Since the image is synthetic, we in fact do know the ground truth invariant direction. Examining
the question of how torecoverthis direction from a single image, with no prior information, we show
that minimizing the entropy provides a very strong indicator for determining the correct projection. This
result provides a proof in principle for the entropy-minimizing method.

The idea being examined in this section is thus as follows: Suppose that in a single image various
illuminants impinge on several paint patches. Here we use synthetic Planckianlights in order to see that
the underlying theory behaves as expected. The question examined is thenwhether we can remove the
effects of lighting from this single, synthetic image.

But how do we fare with a real camera? In§3.2 we consider a set of captured colour-patch images,
taken with a known camera. Since we control the camera, and the target, we can establish the invariant
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10 Finlayson et al.

direction. Then comparing to the direction recovered using entropy minimization, we find that not only
is the direction of projection recovered correct (within 3 degrees), butalso the minimum is global and is
a very strong signal.

3.1. ENTROPY M INIMIZATION

If we wished to find the minimum-variance direction for lines that are formed in log-chromaticity space
as the light changes, we would need to know which points fall on which lines.But what if we did not
have that information?

To test the idea that entropy minimization gives an intrinsic image, suppose we start with a theoretical
Dirac-delta sensor camera, as in Fig. 4(b). Now let us synthesize an “image” that consists of many
measured natural surface reflectance functions interacting with many lights, in turn, and then imaged by
our theoretical camera. As a test, we use the reflectance dataS(λ) for 170 natural objects, measured
by Vrhel et al. (Vrhel et al., 1994). For lights, we use the 9 Planckian illuminantsE(λ) with T from
2,500◦ to 10,500◦ Kelvin with interval of 1,000◦. Thus we have an image composed of 1,530 different
illuminant-reflectance colour signal spectral products. This image is shownin Fig. 4(c). From left to
right we have the 170 different reflectances. And, top to bottom the illuminants starting from the reddish
2500K light to the bluish 10,500K. We clearly see a colour shift from reddish to bluish. A close-up of
the last 7 reflectance patches is shown in Fig. 4(d).

If we form chromaticities (actually we use geometric mean chromaticities defined ineq. (7) below
instead of simple band ratios, in order to not favour one particular colour channel), then taking logarithms
and plotting we have 9 points (for our 9 lights) for every colour patch. Subtracting the mean from each
9-point set, all lines go through the origin. Then it is trivial to find the best direction describing all 170
lines via applying the Singular Value Decomposition method to this data. The best direction line is found
at angle68.89◦. And in fact we know from the theoretical definition of(ek−ep) that this angle is correct,
for this camera. This verifies the straight-line equation (6), in this situation where the camera and surfaces
exactly obey our assumptions. This exercise amounts to a calibration of our theoretical camera in terms
of the invariant direction.

But now suppose we do not know that the best angle at which to project our theoretical data is
orthogonal to about69◦ — how can we recover this information? Clearly, in this theoretical situation, the
intuition displayed in Fig. 1 can be brought into play by simply traversing all possible projection angles
that produce a projection directione ⊥: the direction that generates an invariant image with minimum
entropy is the correct angle.

To carry out such a comparison, we simply rotate from 0◦ to 180◦ and project the log-chromaticity
image 2-vectorρ into that direction. To utilize Shannon’s definition of entropy, we can form ahistogram
as a quantization mechanism. We must decide on a bin size, and for now we simplyuse 64 equally-spaced
bins. And finally the entropyη is calculated: the histogram is divided by the sum of the bin counts to
form probabilitiespi and, for bins that are occupied, the sumη =

∑64
i=1 −pi log2 pi is formed.

Fig. 4(e) shows a plot of angle versus this particular entropy measure, for the synthetic image. As can
be seen, the correct angle of159 = 90 + 69◦ is accurately determined (within a degree). When we go
over to a quadratic entropy, explained below in§5, we see from Fig. 4(f) that this definition of entropy
also gives the correct answer (with zero error, for this case).

Fig. 4(g) shows the actual invariant greyscale “image” for these theoretical colour patches, given
by exponentiating the projected log-image, with a close-up of the last 7 reflectance patches shown in
Fig. 4(h). As we go from left to right across Fig. 4(f) we change reflectance. From top to bottom we have
pixels calculated with respect to different lights. Recall that Fig. 4(c) shows the 170 reflectances (left
to right) under the 9 Planckians (top to bottom). As opposed to the invariant image in Fig. 4(g), notice
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Entropy Minimization for Shadow Removal 11

how all colours become progressively bluer top to bottom. The figure Fig. 4(g) shows the invariant image
coded as greyscale, and there is zero variation from top to bottom. Yet the greyscale value does change
from left to right, along our 170 surfaces. So, in summary, Fig. 4(g) tells us that the same surface has
the same invariant across lights but different surfaces have different invariants (and so the intrinsic image
conveys useful reflectance information).

Next, we consider an image formed frommeasuredvalues of a colour target.

3.2. CALIBRATION IMAGES VS. ENTROPY M INIMIZATION

Now let us investigate how this theoretical method can be used for real, non-synthetic values. We acquired
calibration images of a Macbeth ColorChecker over 14 phases of daylight,with results displayed in
Fig. 7. (These images were taken with an experimental HP 912 digital camera with the normal nonlinear
processing software disabled, but in fact the entropy minimum phenomenonpersists regardless of the
processing.)

3.2.1. Geometric Mean Invariant Image
From (4), we can removeσ andI via division by any colour channel: but which channel should we use?
If we divide by red, but red happens to be everywhere small, as in a photo of greenery, say, outliers can
occur. A better solution is to divide by the geometric mean (Finlayson and Drew, 2001), 3

√
R · G · B.

Then we still retain our straight line in log space, but do not favour one particular channel.
Thus we amend our definitions (5, 6) of chromaticity as follows:

ck = Rk/
3

√
Π3

i=1Ri, ≡ Rk/RM , (7)

and log version (Finlayson and Drew, 2001)

ρk = log(ck) = log(sk/sM ) + (ek − eM )/T, k = 1..3,

with sk = k1λ
−5
k S(λk)qk , sM = 3

√
Π3

j=1sj , ek = −k2/λk, eM = −k2/3
∑p

j=1 λj ,
(8)

and for the moment we carry all three (thus nonindependent) components of chromaticity. (Broadband
camera versions of eq. (8) are stated in (Finlayson and Drew, 2001).)

3.2.2. Geometric Mean 2-D Chromaticity Space
We should use a 2D representation that is appropriate for this log chromaticityspaceρ . We note that,
in log space,ρ is orthogonal tou = 1/

√
3(1, 1, 1)T . That is,ρ lives on a plane orthogonal tou , as in

Fig. 8 (see (Finlayson et al., 2004)):ρ · u = 0.
To characterize the 2D space, we can consider the projectorP ⊥

u onto the plane. This projectorP ⊥
u

has two non-zero eigenvalues, and its decomposition reads

P⊥
u = I − u u T = U T U , (9)

whereU is a2 × 3 orthogonal matrix.U rotates 3-vectorsρ into a coordinate systemin the plane:

χ ≡ U ρ , χ is 2 × 1. (10)

Straight lines inρ are still straight inχ . For example, we could takev1 = (1/
√

2;−1/
√

2; 0)T ,
v2 = (1/

√
6; 1/

√
6;−2/

√
6)T ), andU = [v1, v2]

T .
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12 Finlayson et al.

In the{χ1, χ2} plane, we are now back to a situation similar to that in Fig. 1: we must find the correct
directionθ in which to project, in the plane, such that the entropy for the marginal distribution along a
1D projection line orthogonal to the lighting direction is minimized. The greyscale imageI along this
line is formed via

I = χ1 cos θ + χ2 sin θ (11)

and Shannon’s entropy is given by

η = −
∑

i

pi(I) log(pi(I)). (12)

We shall see below, in§5, how instead the quadratic entropy allows us to inherit the marginal pdf from
the 2D pdf, as a function ofθ.

3.2.3. Test of Main Idea
Thus the heart of this test of the entropy-minimization idea using real, measured paint-patch data, is as
follows:

(a) Form a 2D log-chromaticity representation of the image.

(b) for θ = 1..180

(i) Form greyscale imageI: the projection onto 1D direction.

(ii) Calculate entropy.

(iii) Min-entropy direction is correct projection for shadow removal.

We would like an actual algorithm to proceed faster than this type of brute force search, of course, and
that issue is addressed in§5.

3.2.4. 3-Vector Representation
After we findθ, we can go back to a 3-vector representation of points on the projection line. We project
2D points onto a line via a2 × 2 projectorP θ: if Θ = (cos θ, sin θ)T , thenP θ=Θ Θ

T . We form the
projected 2-vectorχ θ via χ θ = P θχ and then go back to an estimate (indicated by a tilde) of 3D
ρ andc via ρ̃ = U T χ θ, c̃ = exp(ρ̃ ). For display, we would like to move from an intrinsic image,
governed by reflectivity, to one that includes illumination (cf. (Drew et al., 2003)). So before applying
U T we add back enoughe so that the median of the brightest 1% of the pixels has the 2D chromaticity
of the original image:χ θ → χ θ + χ extralight.

3.2.5. Stable Chromaticity Image
Once we have an estimatẽc of the geometric-mean chromaticity (7), we can also go over to the usual
L1-based chromaticity{r, g, b}, defined as

r = {r, g, b} = {R, G, B}/(R + G + B), r + g + b ≡ 1 . (13)

This is the most familiar representation of colour independent of magnitude (column 2 of Fig. 8 shows
the L1 chromaticity for colour images). To obtain L1 chromaticityr from our estimate ofc , we simply
take

r̃ = c̃ /
3∑

k=1

c̃k . (14)
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Entropy Minimization for Shadow Removal 13

Sincer is bounded∈ [0, 1], invariant images inr are better-behaved than isI. The greyscale imageI
for this test using images of a colour target is shown in Fig. 7(d), and the L1 chromaticity versioñr , as
per eq. (14), is shown in Fig. 7(e). We note that both greyscale and colour invariant images are stable
across illuminants. The colour range for the 2D colour invariant is of course reduced compared to that of
an unprojected colour target.

3.2.6. Entropy Minimization — Strong Indicator
From the calibration technique described in section 3.1 we in fact already know thecorrectcharacteristic
direction in which to project to attenuate illumination effects: for the HP-912 camera, this angle turns
out to be 158.5◦.

We find that entropy minimization gives a close approximation of this result: 161◦ for both Shannon’s
definition of entropy and the quadratic entropy variant. First, transformingto 2D chromaticity coordinates
χ , the colour patches of the target do form a scatterplot with approximately parallel lines, in Fig. 7(a).
We compose an image consisting of a montage of median pixels for all 24 colour patches and 14 lights.
The calculation of entropy carried out for this image gives a very strong extremum, shown in Figs. 7(b,c),
and excellent greyscaleI invariant to lighting, and chromaticity invariant,r in Figs. 7(d,e).

This completes both the theoretical and a controlled-experiment justification ofthe main idea —
finding the invariant projection direction by entropy minimization. In the next section, we examine the
issues involved when we extend this laboratory success to the realm of ordinary, non-calibration images.
To dispense with a brute-force search over all angles, we also need a disciplined search mechanism,
and we see that this is provided by the quadratic entropy measure, with implementation by Fast Gauss
Transform.
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14 Finlayson et al.

4. Intrinsic Image Recovery Algorithm

4.1. SHANNON’ S ENTROPY AND QUANTIZATION

Real images are noisy and might not provide such a clean picture as in our theoretical and testing images
above. As well, we must decide on a quantization procedure if we wish to utilizeShannon’s definition of
entropy.

4.1.1. Quantization Problem
Consider the colour image in Fig. 3(a): a colourful ball on a wooden deckis in a shadow cast by strong
sunlight. To find the minimum entropy, we again examine projectionsI over angles 0◦ to 180◦, for
log-chromaticitiesχ formed according to eqs. (7), (8), and (10). For each angle, we project the log-
chromaticity, and then determine the entropy (12). However, the nature of the data, for real images,
presents an inherent problem. Since we are considering ratios, we can expect noise to possibly be en-
hanced (although this is mitigated by the sum in eq. (13)). To begin with, therefore, we apply Gaussian
smoothing to the original image colour channels. But even so, we expect that some ratios may be large.
So the question remains as to what we should use as the range, and number of bins, in a histogram of
a projected greyscale imageI. Using the usual, Shannon, definition of entropy, we cannot escape this
quantization issue. However, the alternative Quadratic Entropy measure,used below, largely circumvents
this issue by utilizing a different, kernel density driven non-parametric estimate of the pdf that automati-
cally incorporates smoothness. We still have to choose a bandwidth parameter, but the resulting quantity
is relatively independent of this choice.

We calculate Shannon’s entropy by approximating the pdf with a histogram over projected 1D
greyscale values. To form an appropriate bin width, we utilize Scott’s Rule (Scott, 1992):

bin width = 3.5 std(projected data)N−1/3 (15)

whereN is the size of the invariant image data, for the current angle. Since there maybe outlier ratios,
we use the middle values only, i.e., the middle 90% of the data, to form a histogram. And the scale of
the entropy for each projection is the same, since the number of bins is aboutthe same: if we draw the
samples from a Gaussian population then the first 3 standard deviations, say, from the mean plus overload
at the boundaries describe all the data, and the number of bins is then just proportional toN1/3, which is
the same for every projection.

The entropy calculated is shown in Fig. 3(b); but we find from varying thebin width in Fig. 3(b)
around the value in eq. (15) that this entropy may be sensitive to the bin-size. We would like to develop
a smoother version of the entropy, with a clearer indication of the minimum. As well,we would like to
dispense with an exhaustive search over angles and go over to a smoother curve that facilitates efficient
search for the minimum. We shall see next that the Quadratic Entropy curve issmooth and also generally
has a single extremum. And a Fast Gauss Transform can produce each entropy evaluation in linear time.

Fig. 3(c) shows the Information Potential, derived in the next Section fromthe Quadratic Entropy. We
see that in this case there is a much simpler curve shape, and local quantization effects are eliminated.
The result for the resulting chromaticity invariant, and reconstructed shadow-free colour image is shown
in Fig. 8.

ijcv08.tex; 29/04/2009; 8:42; p.14



Entropy Minimization for Shadow Removal 15

5. Quadratic Entropy and Gauss Transform

Firstly we replace our pdf over 2D chromaticity coordinates by a Gaussian kernel density mixture to
ensure that entropy is calculated over smooth values. If we go over to a Quadratic Entropy measure (a
special case of Renyi’s entropy (Renyi, 1987)), then the entropy takes on a very simple form.

In 1D, Renyi’s entropy reads

ηα =
1

1 − α
log

∫
pα(x)dx, α ≥ 0, α 6= 1 (16)

wherep(x) is the pdf. This measure is known to approach Shannon’s entropy asα goes to 1.
For the special case ofα = 2 we have

ηquadratic = − log

∫ ∞

−∞
p2(x)dx (17)

Notice that the log is outside the integral, making for a much simpler evaluation.
For the purposes of optimization, we can simply drop the log, giving the so-called information

potential,

V =

∫
p2(x)dx (18)

To see how the information potential is indeed related to minimizing the entropy, consider the parallel
lines in(χ1, χ2)-space formed for two paint patches as illumination changes, in Fig. 9(a). Suppose data
points are uniformly distributed along each line, so that the projected, marginal pdf is proportional to1
except when the line projections overlap, when the pdf is proportional to2. Clearly, there is a singularity
when the lines project to zero length along the projection axis, at the minimum-entropy angle. Fig. 9(b)
shows the theoretical value ofV , as the projection angle changes. The information potential for real
data usually also has a similar strong, single-maximum structure: the curve in Fig. 7(c) showing the
information potential for the measured patch data in Fig. 7(a) has a maximum at 160.5◦, whereas the
correct angle is 158.5◦. Compared to Fig. 7(b), the quadratic entropy has a much cleaner structure that
facilitates a fast search by successive evaluation of the quadratic entropy over a few angles.

The quadratic entropy is explicitly evaluated using the Parzen window technique, below.

PARZEN WINDOW

The quadratic-entropy approach approximates the pdfp(x) from its N samplesai by a Parzen window
estimator (Parzen, 1962), using Gaussian kernelsG with meanai and variances2:

p(x) =
1

N

N∑

i=1

G(ai, s
2) (19)

Since a convolution of two Gaussians is a Gaussian with variance equal to thesum of variances of the
constituent Gaussians and mean given by the difference of individual means, the information potential
V becomes simply (Xu and Principe, 1998)

V =
1

N2

N∑

i=1

N∑

j=1

G(ai − aj , 2s2) =
1

N2

1√
2π(2s2)

∑

i

∑

j

e−
(ai−aj)

2

4s2 (20)

Notice that now we can evaluate the entropy directly from the data, without theneed to create a pdf first.
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16 Finlayson et al.

Now let us show how the 1D model above comes out of projecting 2D,(χ1, χ2) chromaticity-space
data in a directionθ. For convenience let us writex = χ1, y = χ2. whereXi, Yi is the 2D data andi
indexes the image treating indices as a vector. If the 2D pdf is approximated as

p(x, y) =
1

N

1√
(2π)2s2

1s
2
2

N∑

i=1

exp

[
−(x − Xi)

2

2s2
1

]
exp

[
−(y − Yi)

2

2s2
2

]
, (21)

then to find the marginal probability density for this function along an axisµ, projected in theθ direction,
we substitutex = µ cos θ + ν sin θ, y = −µ sin θ + ν cos θ. Also definingMi = Xi cos θ − Yi sin θ,
after some algebra the projected marginal probability comes out to be

pθ(µ) =

∫ ∞

ν=−∞
p (x(µ, ν), y(µ, ν)) dν =

1

N

1√
2πs̃2

∑

i

exp

[
−(µ − Mi)

2

2s̃2

]
(22)

with
s̃(θ)2 = s2

1 cos θ + s2
2 sin θ (23)

We then use valuẽs that minimizes the asymptotic mean integrated squared error (AMISE) (Scott,
1992), given by

s̃ = 1.06 s(θ)N−1/5 (24)

Thus the information potential is

V =

∫ ∞

µ=−∞
{fθ(µ)}2 dµ =

1

N2

1√
2π(2s̃2)

∑

i

∑

j

exp

[
−(Mi − Mj)

2

4s̃2

]
(25)

Therefore, the information potential is given by a simple sum, along the projected axis.
The information potentialV can be regarded as the total potential energy of the data set, with the

Gaussians in the role of potential energy of data pointMi in the potential field of data pointMj . To
minimize the entropy, we maximize this potential energy (Xu and Principe, 1998).In the context of data
points that are free to move, the derivative of this potential is a force that drives data points into an
equilibrium state such that the information potential takes on an extremum. This has been used for deter-
mining neural network parameter values that produce such optimized network outputs: the derivative of
V with respect to the network parameters become derivatives of the output points, via the chain rule (Xu
and Principe, 1998). In our application, the data is fixed, so we simply evaluate eq. (25).

In the Appendix, we show that the sumV can be calculated in linear time, using the Fast Gauss Trans-
form. Quadratic entropy curves found are simple and smooth, and we havefound that a maximum ofV
for real image data can be generated in just a few search steps. We found that on average the most critical
and time-consuming step of the algorithm, namely the linear-time FGT, took about 4 microseconds per
pixel (in Matlab on a single-core 3.0 Ghz P4 running Windows), or in other words some 0.5 seconds for
a300 × 400 image.

6. Re-Integrated Image Results

Using the re-integration method in (Finlayson et al., 2006), we can go on from our invariant image
to recover a full-colour shadow-free image. The method introduced in (Finlayson et al., 2002) uses a
shadow-edge map, derived from comparing the original edges to those inthe greyscale invariant image.
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Entropy Minimization for Shadow Removal 17

In (Finlayson et al., 2006) we use edges from the invariantchromaticityimage and compare to edges
from a Mean-Shift (Comaniciu and Meer, 2002) processed original image. As well, rather than simply
zeroing edges across the shadow edge, we use simple edge inpainting to grow edges into shadow-edge
regions.

Regaining a full-colour image has two components: finding a shadow-edge mask, and then
re-integrating. The first step is carried out by comparing edges in the Mean-Shift processed original
image with the corresponding recovered invariant chromaticity image. We lookfor pixels that have
edge values higher than a threshold for any channel in the original, and lower than another threshold
in the invariant, shadow-free chromaticity. We identify these as shadow edges, and then thicken them
using a morphological operator. For the second stage, for each log colour channel, we first grow simple
gradient-based edges across the shadow-edge mask using iterative dilation of the mask and replacement
of unknown derivative values by the mean of known ones. Then we form a second derivative, go to
Fourier space, divide by the Laplacian operator transform, and go back to x, y space. Neumann boundary
conditions leave an additive constant unknown in each recovered log colour, so we regress on the top
brightness quartile of pixel values to arrive at the final resulting colour planes.

In our experiments, images show behaviour similar to that displayed in Fig. 3(c), with strong entropy
minima (information potential maxima), and results quite free of shadows. Since the invariant image
is basically shadow free and the re-integrated image is quite good, our intuitionthat minimization of
entropy would lead to correct results is indeed justified.

Fig. 8 shows results from various images, from both calibrated and uncalibrated cameras, including
consumer cameras. For all experiments we carried out, quadratic entropyminimization provided a strong
guiding principle for removing shadows. Note that in some actual cameras, an entropy-minimization
approach rather than a calibration is ideal for finding the invariant direction, since it is possible that even
a change of camera settings or heating over the day in a surveillance situationcan produce effectively
different camera sensors. We point out to the reader that there is considerable variance in the recovered
invariant angle direction over the set of images and cameras (150 degrees plus or minus 20 degrees) and
so a single fixed calibration direction will not remove the effect of illumination in images.

While the results are not perfect, we believe they are pretty good. In all cases the shadows are removed
or attenuated and the main look and feel of the image is retained. And, we achieved this performance
without any calibration or prior learning.

ijcv08.tex; 29/04/2009; 8:42; p.17



18 Finlayson et al.

400 500 600 700
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Wavelength

(a)

400 500 600 700
0

0.2

0.4

0.6

0.8

1

Wavelength

(b)

Patch

Illum
inan

t

20 40 60 80 100 120 140 160

1

2

3

4

5

6

7

8

9

(c)

Patch

Illu
mi

na
nt

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

(d)

0 50 100 150
3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

Sh
an

no
n 

En
tro

py

Angle

(e)

0 50 100 150
1

1.5

2

2.5

3

3.5

4

4.5

5

In
fo

rm
at

io
n 

Po
te

nt
ia

l

Angle

(f)

Patch

Illum
inan

t

20 40 60 80 100 120 140 160

1

2

3

4

5

6

7

8

9

(g)

Patch

Illu
mi

na
nt

1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

(h)

Figure 4. Synthetic values. (a): Typical RGB camera sensors — Sony DXC930 camera. (b): Theoretical narrowband RGB
camera sensors. (c): An image showing all lights and surfaces. Leftto right there are 170 reflectances and top to bottom the
9 Planckian lights. (d): Close-up showing the last 7 patches, under the 9 lights. (e): Minimum Shannon’s entropy invariant
direction gives same angle as calibration test. (f): The same angle (herewe need a curve maximum) is produced by quadratic
entropy. (g): Invariant image for theoretical synthetic image — same greylevels across illuminants. (h): Close-up of last 7
reflectance patches for invariant image.
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Figure 5. (a): Macbeth ColorChecker Chart image under a Planckian light imagedwith an HP912 Digital Still Camera, modified
to generate linear output. (b): Log-chromaticities of the 24 patches of the imaged chart. (c): Chromaticities for 6 different
patches, imaged under a set of different Planckian illuminants.

(a) (b) (c) (d)

Figure 6. (a): Two hemispheres composed of Macbeth ColorChecker Chart patches #4 and #6, on a plane composed of patch
#2. Illumination is by two Planckians, and image formation is by using delta-function sensors. (b): L1-norm chromaticity for
this scene. (c): Greyscale invariant image. (d): Invariant image as chromaticity.
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Figure 7. Measured values. (a): 2D chromaticity for measured colour patches,HP 912 camera. [Please zoom in to 300% in
Acrobat see see image (a) on-screen. The image prints correctly.] (b): Minimum entropy invariant direction gives angle close
to that of calibration method. (c): Same angle is found by quadratic entropy. (d): Greyscale invariant image for measured patch
values — projected greylevels are same for different illuminants. (e): Recovered 2D-colour chromaticity invariant image.
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Figure 9. (a): Projection of two illumination-variation lines into 1D marginal pdf by projection in θ direction. (b): Resulting
(continuous) information potential for the quadratic entropy shows strong, single maximum at correct angle.
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Figure 8. Additional invariant images, for minimum entropy: columns show originalimage, L1 chromaticity image, information potential plot, invariant L1 chromaticity,
and re-integrated RGB colour image.
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7. Are Invariant Images Intrinsic?

A question that remains is whether the invariant images produced are indeed“intrinsic” in the sense
of yielding identical reflectivity results regardless of lighting conditions. Totest this capability of the
algorithm, we used time-lapse imaging to show shading and shadow removal stability over lighting. Fig. 9
shows a subset of several images taken outdoors over time on a variably sunny day at 20-minute intervals.
For each individual image, we ran the algorithm presented here. If the invariant images produced are
indeed intrinsic, then we expect to find that all invariant images are approximately equal, or at least
much closer to each other than are each of the original sequence since they would consist of reflectance-
only images independent of the lighting change between frames. The cameraused was an inexpensive
commodity camera, but with the software modified such that both preferred and raw renditions are both
stored: for raw images, only demosaicing using bilinear interpolation is applied.

We find that in most of the results, the attached shadows are still somewhat apparent, although the cast
shadows have been mostly removed. Nevertheless the output images are indeed closer to each other than
are the originals. Since we produce chromaticity images as the invariant output,we compare closeness
for the L1 chromaticity amongst the input set across daylight conditions versus that for the output set. A
simple but effective measure of the quality of image nearness is the Peak Signal to Noise ratio (PSNR)
(Daly, 1992), and in fact perception-based image quality metrics have been found to offer little advantage
over PSNR as a measure to evaluate the quality of image nearness. For the input set of L1 chromaticities,
if we compute the PSNR between all input images the median value is 38.70 dB. Butfor the output
set, the median is 50.06 dB, showing a much stronger correlation: i.e., the invariant images are indeed
considerably closer to generating an intrinsic representation.
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Figure 9. Invariant images using time-lapse imaging: columns show original image,difference from first image, L1 chromaticity image (stretched into 0..1), information
potential plot, invariant greyscale, and invariant L1 chromaticity.
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8. Conclusions

We have presented a method based on entropy minimization for finding the invariant direction, and thus
a greyscale and thence an L1-chromaticity intrinsic image that is independent of lighting and hence free
of shadows, without any need for a calibration step or special knowledge about an image. The method
appears to work quite well, and leads to good re-integrated full-colour images with shadows greatly
attenuated. We found that going over to a quadratic entropy definition provides a stable and efficient
vehicle for calculating the minimum-entropy lighting invariant direction.

Future work would involve a careful assessment of how onboard nonlinear processing in cameras
affects results. Cameras ordinarily supply images and videos that are compressed, as well as greatly
processed away from being linear images. Although the method does indeedwork under such processing
(see Fig. 8) it would be well to understand how JPEG artifacts impact the method. We have found that
JPEG images do indeed exhibit a strong entropy minimum, just as do uncompressed images. However,
the extra edges introduced due to blocking effects make re-integration moredifficult.

For the re-integration step, it may be the case that consideration of a separate shadow-edge map
for x andy could be useful, since in principle these are different. A variational inpainting algorithm
would likely work better than our present simple morphological edge-diffusion method for traversing
shadow-edges, but would be slower.

In general, the model does perform best when the underlying assumptions guiding the approach are
indeed obeyed. For example, if a spectral sharpening transform (Finlayson et al., 1994) is available for a
camera (or even using a generic such transform (Drew et al., 2007)) then we can expect to obtain better
shadow removal from the lighting invariant. And Lambertian surfaces indeed produce the best results.
A simple test of whether a surface is in fact Lambertian is that the chromaticity removes shading. The
Lambertian assumption is often broken, but real images typically contain only small specular areas and
these do not much affect the results. However, if we were to use sceneswith large areas of non-dielectrics,
this would indeed affect performance. In general, we expect the methodto have limited applicability to
a degree for scenes that image surfaces with BRDFs that deviate from Lambertian, such as glass, metal,
etc., and likely also skin, which is complex to model (Weyrich et al., 2006).

As well, dynamic range plays an important part in consumer imaging. Under bright lighting, shadows
are typically driven down to very small pixel values — say, to 2% of the maximumchannel value —
that may be unusable by the method presented. Also, when strong interreflections are present, in shadow
regions that are very close to an object with attached shadow, the method can also not correctly remove
this effect. Nonetheless, generally the method does remove, or at least diminish the presence of shadows
in imagery.

Appendix: Fast Gauss Transform applied to Quadratic Entropy

In practice, computation of the information potential can be expensive. When computed naively, compu-
tation ofV has complexityO(N2), whereN is the number of pixels. This cost may be prohibitive when
the image is large.

The Fast Gauss Transform (FGT) was introduced by Greengard andStrain (Greengard and Strain,
1991) for efficient evaluation of a weighted sum of Gaussians. It has proved to be a very efficient
algorithm in a variety of applications (Yang et al., 2003; Elgammal et al., 2003;Beatson and Greengard,
1997). The discrete Gauss transform, here discussed in terms of the approximation of a 1D pdf, is to be

ijcv08.tex; 29/04/2009; 8:42; p.27



28 Finlayson et al.

evaluated on a grid ofT points:

G(xi) =
N∑

j=1

wj e
−

(
xi−sj

σ

)2

i = 1, . . . , T. (26)

Here,wj are weight coefficients;{sj}, j = 1 . . . N are the data point centers of the sum of Gaussians
(thesources); andσ is a bandwidth parameter. The sum of Gaussians is evaluated only at a set of grid
points{xi}, i = 1 . . . T (the targets). A direct computation evaluating the sum ofN source points atT
targets requiresO(TN) exponential evaluation operations.

The FGT algorithm speeds up the computation by approximation of the Gaussianfunction to achieve
a desired precision. The basis of the fast algorithm is the expansion of theGaussian in terms of the
Hermite functionshn(x):

G(x) = e−(x−s)2 =
p∑

n=1

sn

n!
hn(x) + ǫ(p), (27)

wherehn(x) is defined by

hn(x) = (−1)n dn

dxn
e−x2

,

andǫ is the error introduced by truncating the Hermite series afterp terms. This is a rephrasing of the
Taylor series abouts = 0.

The FGT starts by dividing the feature space (the sources) into uniform boxes with side lengthσ.
Then the Hermite expansion is applied such that the influence of sources and targets separates. For each
sources, the Gaussian can be expanded using a shifted and scaled version of Hermite functions which
are located at the centersB of the box in which the source lies.

e−
(

x−s
σ

)2

= e
−

(
x−sB−(s−sB)

σ

)2

∼=
∑

n<p

1

n!

(
s − sB

σ

)n

hn

(
x − sB

σ

)
(28)

This is a so-called far-field expansion, in that it is an approximation not dependent on the distance
between source and target being small.

In a similar manner, the target Gaussian field can be approximated by a Hermite expansion about the
center of the target boxxB:

e−
(

x−s
σ

)2

= e
−

(
x−xB−(s−xB)

σ

)2

∼=
∑

n<p

1

n!
hn

(
s − xB

σ

) (
x − xB

σ

)n

(29)

The two expansions are identical, except that the role of sources and targets are interchanged. Eq. (29)
is a so-called near-field expansion, in that it expresses a function with targetx as a Taylor series about a
nearbytarget box centerxB.

The FGT first calculates the expansion coefficients in eq. (28) (the monomials in s) and adds them
for each source box, yielding a single expansion for each source box. These series are then shifted to
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the centers of target boxes using eq. (29), for the Hermite series in eachtarget box and its nearby source
box. Thus each target point has only one Taylor expansion with monomials((x − xB)/σ)n. In this way,
a sum of Gaussians can be computed inO(T + N) operations.

The FGT is typically applied to Gaussian kernel evaluations where the targetsarenot well-behaved
near the sources, making it necessary to use the far field Hermite expansion and the translation to a local
Taylor expansion. However, here we wish to use the FGT specifically forcalculating the information
potential, as in eq. (25). Here, sources and targets are identical —Mi are sources, with the term for eachi
of the form (26) withxj ≡ Mj . In this case, the Hermite expansion is equivalent to the Taylor expansion,
with no need to perform the conversion from the Hermite expansion to the local Taylor series. Therefore,
a simplerevaluation is possible for eq. (25): all points are transformed into a Hermite expansion about
the centers of the boxes, and these expansions are directly evaluated ateach point.

Formally, the kernel inV can be expressed as a Hermite series:

e−
(Mi−Mj)2

4s̃2 ∼=
∑

n<p

1

n!

(
Mj − MB

2s̃

)n

hn

(
Mi − MB

2s̃

)
(30)

where pointMj is located in a boxB with centerMB and side length̃s. The Fast Gauss Transform for
computing the information potential (25) thus consists of the following steps:

Step 1. Assign theN data points into uniform boxes with length̃s.

Step 2. Choosep sufficiently large to enforce a desired error precision. The error dueto the truncation
of the series eq. (28) afterp terms satisfies the following bound in this 1D case (Greengard and
Strain, 1991; Baxter and Roussos, 2002; Beatson and Greengard, 1997):

∣∣∣∣∣∣
e
−

(
Mi−Mj

2s̃

)2

−
∑

n<p

1

n!

(
Mj − MB

2s̃

)n

hn

(
Mi − MB

2s̃

)∣∣∣∣∣∣
≤

(
1

p!

) 1
2

(√
2

4

)p

. (31)

Step 3. For each boxB, with centerMB, sum the Hermite polynomials, i.e. add corresponding coeffi-
cients:

An(B) =
1

n!

∑

Mj∈B

(
Mj − MB

2s̃

)n

(32)

Step 4. For each pointMi, compute the influence of all pointsMj by adding the Hermite expansion for
each boxB.

∑

j

e
−

(
Mi−Mj

2s̃

)2

=
∑

B

∑

Mj∈B

e
−

(
Mi−Mj

2s̃

)2

∼=
∑

B

∑

n≤p

An(B)hn

(
Mi − MB

2s̃

)
(33)

Because of the exponential decay of the Gaussian, points in a given boxwill have no effect (given
a particular accuracy) on far-away targets. Thus it is reasonable to compute the influence of only
a range of nearby boxes for each target point, where the range is determined by the desired error
bound. If we take only ther closest boxes for a point in each direction (i.e., a neighbourhood of
2r + 1 boxes centered at the point), it can be shown (Greengard and Strain, 1991) that we incur
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an error bounded bye−r2/4. Denoting the2r + 1 nearby boxes byIR(B), the summation can be
approximated by

∑

B

∑

Mj∈B

e
−

(
Mi−Mj

2s̃

)2

∼=
∑

IR(B)

∑

n≤p

An(B)hn

(
Mi − MB

2s̃

)

(34)

Step 5. Finally, the information potential can be calculated by adding all the Gaussian approximations
obtained in step 4.

V ∼=
∑

i

∑

IR(B)

∑

n≤p

An(B)hn

(
Mi − MB

2s̃

)
. (35)

In step 3, each point contributes to exactly one expansion, so that the amount of work required to calculate
the coefficients for all boxes isO(Np). The amount of work required in step 4 isO(p(2r + 1)) for each
point, andO(Np(2r + 1)) in total for all points. The desired precisionǫ dictates our choice ofr andp.
For calculating the information potential, the precision required is moderate, sothat we can have small
r andp. In this paper we user = 6 andp = 6. Overall, the FGT algorithm achieves linear running time
O(N).
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