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Abstract—We present a novel convex programming scheme to solve matching problems, focusing on the challenging problem of

matching in a large search range and with cluttered background. Matching is formulated as metric labeling with L1 regularization terms,

for which we propose a novel linear programming relaxation method and an efficient successive convexification implementation. The

unique feature of the proposed relaxation scheme is that a much smaller set of basis labels is used to represent the original label

space. This greatly reduces the size of the searching space. A successive convexification scheme solves the labeling problem in a

coarse to fine manner. Importantly, the original cost function is reconvexified at each stage, in the new focus region only, and the focus

region is updated so as to refine the searching result. This makes the method well-suited for large label set matching. Experiments

demonstrate successful applications of the proposed matching scheme in object detection, motion estimation, and tracking.

Index Terms—Matching, correspondence, linear programming, successive relaxation.

Ç

1 INTRODUCTION

MATCHING is one of the most important tasks in computer
vision. It has many applications in object recognition,

3D object reconstruction, motion estimation, and tracking.
Matching can be mathematically formulated as a metric
labeling problem, for assigning labels (e.g., the corresponding
target pixel or displacement vector) to sites (e.g., a subset of
the feature points on the template) such that a predefined
energy function is minimized. In metric labeling, labels are
defined in a metric space, yielding a label distance measure.
Although simple in concept, metric labeling is NP-hard in
general. For some special cases, for instance, when sites have
linear or tree order, dynamic programming [1] can be used to
solve the labeling problem in polynomial time. Another
special case is when labels for each site have linear order and
the metric defined in the label space is convex. In this case,
polynomial-time max-flow schemes [2], [3] can be applied.
Other searching schemes, e.g., branch and bound schemes [4],
whose worst and average complexities are exponential, have
also been applied to medium-size matching problems. For
general metric labeling, approximation algorithms are pre-
ferred. Relaxation labeling (RL) [5] is one of the earliest
methods for solving labeling problems and has had a great
deal of influence on later matching schemes. RL uses local
search and, therefore, relies on a good initialization. Iterative
Conditional Modes (ICM) [6]—another widely applied
method for solving labeling problems—is greedy and has
been found to be easily trapped in a local minimum. In recent
years, Graph Cut (GC) [7] and Belief Propagation (BP) [8], [9],

[10] have become popular methods for metric labeling in
vision. Graph Cut has been successfully applied to stereo [11],
motion [12], and segmentation [13]. Loopy Belief Propagation
has also been widely applied to stereo [14] and object
matching [15]. GC and BP are more robust than traditional
labeling schemes and are also found to be faster than methods
based on stochastic annealing [16]. But, GC and BP are again
very complex for large scale problems that involve a large
number of labels.

The work most related to the proposed scheme is the
mathematical programming schemes, which have received
much interest in formulating and solving labeling problems.
The early RL schemes belong to this class. A major challenge
in developing an optimization algorithm is overcoming the
problem of local minima in the searching process, and
different schemes have been proposed. Deterministic anneal-
ing schemes [17], [18] have been successfully applied to
matching point sets and graphs. Quadratic programming [19]
and, most recently, semidefinite programming schemes [20]
have also been proposed for image matching. To date, these
methods have only been usefully applied to small scale
problems. Because of its efficiency, Linear Programming (LP)
has been applied in many vision problems, such as in
estimating the motion of rigid scenes [21]. A linear program-
ming formulation [22] has been presented for uniform
labeling and for approximating general problems by tree
metrics. Another general LP scheme studied in [23] is quite
similar to the linear relaxation labeling formulation [5]. This
LP formulation is found to be only applicable to small
problems because of the large number of constraints and
variables involved. Another major problem for traditional LP
relaxation schemes is that they try to solve the labeling
problem by a single relaxation process, which is usually
followed by a rounding process. For complex vision
problems, a single linear relaxation is usually not sufficient
to capture the highly nonlinear nature of the problem.

Although intensively studied, the large scale matching
problem is still unsolved. The difficulty is essentially due to
the nonconvexity of the matching cost function and very large
set of labels. In this paper, we present a linear programming
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and successive convexification method (SC-LP) for the class
of metric labeling problems with L1 regularization terms.
Different from other methods in which all of the candidate
labels are involved in the solution process, the proposed
scheme uses a much smaller number of basis labels to
represent the matching space and also progressively ap-
proaches the optimum. These components of the method
greatly speed up the algorithm. In our scheme, basis labels
correspond to the vertex coordinates of 3D lower convex hull
of the matching cost surface associated with each template
site. We propose a successive relaxation scheme to increase
the accuracy of the approximation iteratively. During the
iteration, we shrink the trust region for each site and locate a
new trust region based on the previous relaxation solution,
but reconvexify the original cost function in the refined search
region. This process continues until the trust region for each
site becomes small. Since the convexification process elim-
inates many false local minima in the earlier stages of the
solution process, the proposed scheme is able to find a good
approximated solution quickly. Iteratively, the successive
relaxation process refines the labeling result. Fig. 1 illustrates
the method of successive convexification.

The proposed successive convexification scheme is differ-
ent from the well-known GNC (graduated nonconvexity)
scheme. GNC is a special case of the continuation method
[24]. GNC schemes have been used to convexify objective
functions [25], where nonconvexity is caused by explicit
nonconvex functions, e.g., the truncatedL2 distance function.
GNC has also been used to convexify feasible regions for
graph matching [18], where the objective functions are still
nonconvex. For image matching, GNC has not been used for
convexifying objective functions due to the difficulty in
convexifying matching cost surfaces not defined by explicit
functions. Here, we develop our successive convexification
scheme to convexify the matching cost terms, making it
amenable to solution by robust convex programming
routines. In successive convexification, we shrink the trust
region for each site and reconvexify the surfaces in these
smaller trust regions.

The proposed convexification and trust region shrinking
scheme is in fact quite general and can be used to improve the
results of many mathematical programming-based schemes.
For example, a metric labeling problem with an L2 norm
regularization term can be solved using successive convex-
ification and convex quadratic programming solvers. We
focus on linear programming schemes in this paper because
the proposed LP relaxation presents an elegant and robust
framework to implement the convexification and focus
region concept.

2 MATCHING BY LINEAR PROGRAMMING AND

SUCCESSIVE CONVEXIFICATION

In general, deformable template matching can be stated as the
following metric labeling problem. We wish to find matching
function f such that the objective function is minimized:

min
f

X
s2S

cðs; f sÞ þ
X

fp;qg2N
�p;qdðfp � p; fq � qÞ

8<
:

9=
;; ð1Þ

where cðs; f sÞ is the cost of assigning target point f s to
feature point s on the template; dð�Þ is a convex function and
dðfp � p; fq � qÞ serves to quantify the discrepancy of
matching for neighboring sites p and q in S; S is a finite
set of feature points on the template; N is the set of
nonordered neighboring site pairs, connected by edges in
the Delaunay graph of point set S. In the objective function,
the first term is the matching cost; the second term is a
regularization term to smooth the matching for nearby
feature points. Coefficients �p;q control the weight of the
regularization term. For matching problems, the target point
set can be discrete or continuous. When the target point
candidates are discrete, we denote a problem as discrete
matching and, otherwise, as continuous matching. In
discrete matching, for each feature point s, we can
interpolate the costs cðs; tÞ piecewise-linearly over t such
that cðs; tÞ become surfaces and allow f s to take on
continuous values in the convex hull spanned by the
discrete target points: We thus obtain the continuous
extension of a discrete matching problem. Continuous
labeling such as motion estimation or template matching
can be well approximated by such a continuous extension of
a discrete system. In the following discussions, without loss
of generality, we assume both the set of feature points S and
the target point set Ls for each s 2 S to be discrete. In this
paper, we focus on the subset of metric labeling problems in
which dðu;vÞ ¼ ku� vk, with k � k being the L1 norm. When
matching degenerates into 1D, the max-flow scheme [3] can
be used to solve the matching problem. If the dimensionality
of target point space is greater than 1, the problem becomes
much more complex (even though no proof is found for the
NP-hardness of such problems, they are very likely to be so).
In the following, we assume that f vectors are 2D (x and y).
The methods proposed below can be easily extended to
cases where the labels have higher dimensionality. To
simplify notation, given s, cðs; tÞ over t is also used to
represent the continuous extension matching cost surface for
site s.

2.1 Approximation by Linear Programming

The above energy optimization problem is nonlinear and

usually nonconvex, which makes it difficult to solve in this

original form without a good initialization process. We now

show how to approximate the problem by a linear program-

ming formulation via linear approximation and variable

relaxation, as we outlined in [27], [28]. To linearize the first term

in (1), the following scheme is applied. A “basis”Bs is selected

for the target points for each template site s. Typically, the

basis is the set of target pixels at the lower convex hull vertices

of the matching cost surfaces. Any 2D target point f s can

certainly be represented as a linear combination of the basis

via f s ¼
P

j2Bs
�s;jj, where �s;j are real-valued weighting
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Fig. 1. Successive convexification. The basic operations include

matching costs convexification and trust region shrinking.



coefficients. The labeling cost for f s can then be arguably

approximated by the linear combination of the original, basis

matching costs cðs;
P

j2Bs
�s;jjÞ �

P
j2Bs

�s;jcðs; jÞ. We also set

constraints �s;j � 0 and
P

j2Bs �s;j ¼ 1 for each site s. Clearly, if

�s;j are constrained to be 1 or 0 and the basis contains all the

target point candidates, i.e., Bs ¼ Ls (e.g., the whole target

image), the above representation becomes exact. Note that f s

are not constrained to the basis labels, but can be any convex

combination. To linearize the regularization terms in (1), we can

represent a variable in the absolute value function by the

difference of two nonnegative auxiliary variables and

introduce the sum of the auxiliary variables into the objective

function. If the problem is properly formulated, the sum will

approach the absolute value of the variable when the linear

program is indeed optimized.
Based on this linearization process, a linear programming

approximation of the problem can be stated in terms of the
two vector components m ¼ 1; 2 (in place of x and y) as

min

P
s2S

P
j2Bs

cðs; jÞ �s;j þP
fp;qg2N �p;q

P2
m¼1ðfþp;q;m þ f�p;q;mÞ

( )
ð2Þ

with constraints X
j2Bs

�s;j ¼ 1 ; 8s 2 S;
X
j2Bs

�s;j �mðjÞ ¼ fs;m;

8s 2 S ; �mðjÞ ¼ ðmth component of jÞ ;m ¼ 1; 2;

fp;m � fq;m � �mðpÞ þ �mðqÞ ¼ fþp;q;m � f�p;q;m ;
8 fp;qg 2 N ;m ¼ 1; 2;

�s;j; f
þ
p;q;m; f

�
p;q;m � 0:

The matching target point f s ¼ ðfs;1; fs;2Þ: fþp;q;m and f�p;q;m
are auxiliary variables.

In the linear program, one of the auxiliary variable pairs

fþp;q;m; f
�
p;q;m must be zero when the linear programming is

optimized. Otherwise, we can subtract the minimum of the

value pair and get a new solution fþp;q;m �minðfþp;q;m; f�p;q;mÞ
and f�p;q;m �minðfþp;q;m; f�p;q;mÞ. The new solution is still

feasible and has at least one zero in each auxiliary variable

pair; the summation also becomes smaller. Thus, we have a

better feasible solution and this contradicts the assumption

that the linear program is optimized. Because one offþp;q;m and

f�p;q;m is zero, we must have jfp;m � fq;m � �mðpÞ þ �mðqÞj ¼
fþp;q;m þ f�p;q;m. Thus, the linear program is exactly equivalent

to the general nonlinear formulation if the linearization

assumption, cðs;
P

j2Bs
�s;jjÞ ¼

P
j2Bs

�s;jcðs; jÞ, holds. This

would be true for problems with convex cost surfaces.

Property 1. If Bs ¼ Ls, where Ls is the entire label set of s, and

the continuous extension cost function cðs; tÞ is convex

with respect to t, 8s 2 S, LP exactly solves the continuous

extension of the discrete labeling problem.

Proof. We simply need to show that when LP is optimized, the

minimizing LP configuration ff�s ¼
P

j2Bs
��s;jjg also solves

the continuous extension of the nonlinear problem. Since

cðs; tÞ is convex over t,
P

j2Ls
cðs; jÞ��s;j � cðs; f�sÞ. When the

LP is minimized, we have
P
fp;qg2N �p;q

P2
m¼1ðfþp;q;m þ

f�p;q;mÞ �
P
fp;qg2N �p;qkf �p � p� f�q þ qk. Therefore,

min

P
s2S;j2Ls cðs; jÞ�s;jþP

fp;qg2N �p;q

P2
m¼1ðfþp;q;m þ f�p;q;mÞ

( )

�
X
s2S

cðs; f �sÞ þ
X

fp;qg2N
�p;qkf �p � p� f �q þ qk:

As well, we can always construct a feasible solution of
LP that has no greater objective function than that of the
continuous extension of the nonlinear optimization.
Assuming solutions f 0s minimize the continuous exten-
sion of the nonlinear problem, based on the definition, f 0s
must be located in the convex hull of Ls. For each site s,
we find feasible � for the LP by solving the following
minimization problem for each site:

min
X
j2Ls

cðs; jÞ�s;j

( )

s:t:
X
j2Ls

�s;j �mðjÞ ¼ �mðf 0sÞ; m ¼ 1; 2

X
j2Ls

�s;j ¼ 1; �s;j � 0; 8s 2 S:

We can set feasible values for fþp;q;m and f�p;q;m: If

�mðf 0pÞ � �mðf 0qÞ � �mðpÞ þ �mðqÞ � 0, fþp;q;m ¼ j�mðf 0pÞ
��mðf 0qÞ � �mðpÞ þ �mðqÞj, and f�p;q;m ¼ 0; else, f�p;q;m ¼
j�mðf 0pÞ � �mðf 0qÞ � �mðpÞ þ �mðqÞj and fþp;q;m ¼ 0. Based

on the definition of continuous extension surface, we

have min
P

j2Ls cðs; jÞ�s;j
n o

� cðs; f 0sÞ for each s and

min

P
s2S;j2Ls cðs; jÞ�s;jþP

fp;qg2N �p;q

P2
m¼1ðfþp;q;m þ f�p;q;mÞ

( )

�
X
s2S

cðs; f 0sÞ þ
X

fp;qg2N
�p;qkf 0p � p� f 0q þ qk:

Therefore, f�s optimizes the continuous extension of the
nonlinear problem:X

s2S
cðs; f�sÞ þ

X
fp;qg2N

�p;qkf�p � p� f �q þ qk

¼
X
s2S

cðs; f 0sÞ þ
X

fp;qg2N
�p;qkf 0p � p� f 0q þ qk:

The property follows. tu
In practice, the cost function cðs; tÞ is usually highly

nonconvex over t for each site s. In this situation, the linear
program approximates the original nonconvex problem:

Property 2. The linear program solves the continuous extension
of the reformulated discrete labeling problem, with cðs; jÞ; j 2
Ls replaced by the costs on the lower convex hull surfaces
�cðs; jÞ for each site s. �cðs; tÞ is the lower convex hull surface of
3D points ð�1ðjÞ; �2ðjÞ; cðs; jÞÞ, j 2 Ls.

The proof is similar to that of Property 1, by replacing
cðs; tÞ in the nonlinear function with its lower convex hull.
An example for the lower convex hull and the coordinates
of the lower convex hull vertices is illustrated in Fig. 2. For
matching applications, the surface is the matching cost
surface. Note that, in general, the surface may have holes or
consist only of irregular discrete 3D points in the label
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versus cost space, e.g., if we only select edge points in the
target images for matching. Each site s is associated with its
own energy surface for the first term in (1).

Property 3. For each site s 2 S, we need only consider the basis
set Bs comprised of the vertex coordinates of the lower convex
hull of ð�1ðjÞ; �2ðjÞ; cðs; jÞÞ, j 2 Ls.

Proof. Removing some variables �s;j from LP is equivalent to
setting these variables to zero in the constraints. Since
more constraints are included, the linear program invol-
ving only �s;j corresponding to the lower convex hull
vertices must have no smaller objective function when
optimized. On the other hand, based on the definition of
lower convex hull, for f s that minimize the original LP
relaxation, we can find a feasible solution of the simplified
linear program that has an objective function not greater
than that of the original LP. Therefore, these two linear
programs must be equivalent. The property follows. tu
Thus, we can use only the smallest basis set—there is no

need to include all the labeling assignment costs in the
optimization. This is one of the key steps to speeding up the
algorithm. After the convexification process, the original
nonconvex optimization turns into a convex one and an
efficient linear programming method can be used to yield a
global optimal solution for the approximated problem. It
should be noted that, although this is a convex problem,
standard local optimization schemes are found to work
poorly because of quantization noise and large flat areas in
the convexified objective function.

Approximating the matching cost by its lower convex
hull is intuitively attractive since, in the ideal case, when
model (1) holds exactly, the true matching will have the
lowest cost and the convexified optimum will be the exact
optimum. The proposed solution of the relaxation scheme
also has the following structure property:

Property 4. If the lower convex hull of the cost function cðs; tÞ is
strictly convex over t for each s, its nonzero basis target
points must be “adjacent.”

Proof. Here, “adjacent” means the convex hull of the non-
zero-weighted basis target points cannot contain other
basis points. Assume this does not hold for site s and the
non-zero-weight basis points are jk, k ¼ 1 . . .K. Then,
there exists a basis point jr located inside the convex hull
of jk, k ¼ 1 . . .K. Thus, 9�k such that jr ¼

PK
k¼1 �kjk withPK

k¼1 �k ¼ 1, �k � 0. According to the Karush-Kuhn-

Tucker Condition there exist �1; �2; �3, and �j such that

cðs; jÞ þ �1 þ �2�1ðjÞ þ �3�2ðjÞ � �j ¼ 0 and

�s;j � �j ¼ 0; �j � 0; 8j 2 Bs:

This results from the Euler equation with respect to �s;j in
(2), taking into account the constraints.

Therefore, we have,

cðs; jkÞ þ �1 þ �2�1ðjkÞ þ �3�2ðjkÞ ¼ 0; k ¼ 1 . . .K;

cðs; jrÞ þ �1 þ �2�1ðjrÞ þ �3�2ðjrÞ � 0:

On the other hand,

cðs; jrÞ þ �1 þ �2�1ðjrÞ þ �3�2ðjrÞ

¼ c s;
XK

k¼1
�kjk

� �
þ �1þ

�2�1

XK

k¼1
�kjk

� �
þ �3�2

XK

k¼1
�kjk

� �
<
XK

k¼1
�kcðs; jkÞ þ �1þ

�2

XK

k¼1
�k�1ðjkÞ þ �3

XK

k¼1
�k�2ðjkÞ ¼ 0;

which contradicts the KKT condition. The property
follows. tu
If we use Dantzig’s simplex method [26] to solve the LP,

we have the following property:

Property 5. Using the simplex method, there will be at most three
non-zero-weight basis labels for each site.

Proof. This property is due to the basic linear programming
property: If the optimum of an LP exists, the optimum
must be located at one of the “extreme” points of the
feasible region. The extreme points of linear program-
ming correspond to the basic feasible solutions of LP. We
denote the constraints of our linear program by Ax ¼ b,
x � 0. Each basic feasible solution of LP has the format
½B�1b; 0	T , where B is an invertible matrix composed of
the columns of matrix A corresponding to the basic
variables. For site s, variable �s;j introduces a column
½0; . . . ; 0; 1; �xðjÞ; �yðjÞ; 0; . . . ; 0	T in A. It is not difficult to
show that the submatrix generated by these columns for a
single site has a rank at most 3. Therefore, we can have at
most three � for each site in the basic variable set. This
implies that the optimum solution has at most three nonzero �
for each site.

The initial basic variables are set as follows:

. Only one �s;j is selected as a basic LP variable for
each site s.
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Fig. 2. Lower convex hull. (a) A cost surface. (b) Lower convex hull facets. (c) The label basis Bs coordinates of the lower convex hull vertices (solid

dots are basis points).



. fs;m;m ¼ 1::2; are basic LP variables for each
site s.

. Based on the above basic label selection, for
m ¼ 1::2, if fp;m � �mðpÞ � fq;m þ �mðqÞ � 0 and
fp;qg 2 N , fþp;q;m is basic; else f�p;q;m is set to be
basic. tu

Example 1 (Matching Triangles). Fig. 3 illustrates the
solution procedure of the simplex method for an image
matching problem. In this simple example, three feature
points are selected on the object and form a triangular

graphtemplate.Allof thedarkpixels in thetarget imageare

matching candidates for each of the feature points. Figs. 3c,
3d, and 3e show the matching cost surfaces for each of the

three points on the template, based on the normalized

mean absolute difference of 7
 7 image blocks of the
distance transformation of the template and target images.

Such a measure is used in this paper for binary object

matching. More details about the feature are presented in
Section 2.6. Figs. 3f, 3g, and 3h are the lower convex hull

surfaces for the respective cost surfaces for each of the three
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Fig. 3. Example of matching. (a) Template image. (b) Target image and LP matching result. (c), (d), and (e) Matching cost surface for sites 1, 2, and

3. (f), (g), and (h) Lower convex hull of the matching cost surface for sites 1, 2, and 3. (i), (j), and (k) Triangular basis updating for sites 1, 2, and 3

(noting that triangles often degenerate).



sites. We formulate the linear program based on the
proposed scheme and we use the simplex method to solve
the LP. Figs. 3i, 3j, and 3k show the basic label updating
process. The black dots indicate the target points located at
thecoordinates of the lower convex hull vertices. Thetarget
points corresponding to the basic variables are connected
by lines. The small rectangle is the weighted linear
combination of the target points corresponding to the basic
labels at each stage. As expected, the simplex method for
the proposed LP only checks triangles or their degenerates
formed by basis target points. In each iteration, only one
vertex of the triangle may change. When the search
terminates, the patch generated by the basic variables for
each site must correspond to one of the facets (edges or
vertices) of the lower convex hull for each site.

2.2 Rounding to Discrete Labels

Although the continuous-weight solution obtained by LP is
itself a good solution to the original problem for many
applications, e.g., estimating medium scale motion [27], in
many cases we would like to obtain the discrete solution in
which the matching target points are only extracted from the
original, discrete, target point candidate set. In the following
discussions, we present bounds for the approximation
scheme when the continuous solution of the linear program-
ming is converted toa discrete one.Such a“rounding” process
is also useful in estimating an upper bound and finding
anchors (see below) in successive convexification. The bounds
also partially reflect the quality of the approximation scheme.

If the label costs are not bounded above, there is no upper
bound for the energy of direct LP solution (or that by directly
rounded to integers) when applied to the continuous
extension nonlinear problem. But, we can take a different
approach. When converting a continuous solution to a
solution feasible in the discrete domain, we enforce that �s;j
have only one single 1 for each site. In the following, we
denote rounded version of �s;j by �̂s;j. There are two methods
to enforce the constraint. The first one converts the largest �s;j
for each site to 1 and others to 0. The following proposition
gives an upper bound for the rounding process:

Proposition 1. For each s 2 S, if we round the largest �s;j to 1
and the rest to zero, thus producing a rounded version f̂s of the
continuous solution f s, we have an approximation algorithm
bounded above by

3Eopt þ
X

fp;qg2N
�p;qðkf̂p � fpk þ kf̂q � fqkÞ:

Eopt is the energy of the optimum solution. f̂s ¼
P

j2Bs
�̂s;jj and

f s ¼
P

j2Bs
�s;jj.

Proof. First,X
s

cðs; f̂sÞ þ
X

fp;qg2N
�p;qkf̂p � p� f̂q þ qk

�
X

s

cðs; f̂sÞ þ
X

fp;qg2N
�p;qðkf̂p � fpk

þ kfp � p� fq þ qk þ kfq � f̂qkÞ;

by the triangle inequality. A direct conclusion from
Property 5 is that, for each site s, maxjð�s;jÞ � 1=3 (else the
sum would be necessarily less than 1). Therefore, rounding
� to �̂,

P
s cðs; f̂sÞ !

P
s2S
P

j2Bs
cðs; jÞ�̂s;j � 3

P
s2S
P

j2Bs

cðs; jÞ�s;j (the maximum increase is times 3). Considering
the fact that ELP ¼

P
s2S
P

j2Bs
cðs; jÞ�s;j þ

P
fp;qg2N �p;q

kfp � p� fq þ qk � Eopt, the proposition follows. For
practical computer vision problems, �p;q are small and
most of the �s;j in fact approach 1 or 0 and, therefore, f̂s
approaches f s, the extra term approaches zero. tu
One of the problems of the above rounding process is that

it does not consider the neighbor’s status and may result in
topology changes. To solve this problem, we propose another
method for the rounding process: We check the discrete
target points and select the one that minimizes the nonlinear
objective function, given the configuration of continuous
matching results defined by the LP solution of the current
stage. This step is similar to a single iteration of an ICM
algorithm with LP solution as the initial value. We call the
new rounding scheme a consistent rounding process.

Let ms be the global optimal solution and f s be the
continuous labeling solution of LP.

Proposition 2. The energy with consistent rounding is bounded
above by 3Eopt þ

P
fp;qg2N �p;qðkmp � fpk þ kmq � fqkÞ,

where Eopt is the energy of the optimum solution.

Consistent rounding behaves better in preserving the
adjacency of labels while we shrink the trust regions, and can
thus allow faster trust region shrinking. In the next section, we
set out a successive convexification scheme to improve the
linear programming approximation.

2.3 Successive Relaxation Method

Here, we propose a successive relaxation method to solve
the nonlinear optimization problem by constructing linear
programs recursively based on the previous searching
result and gradually shrinking the matching trust region
for each site systematically.

Assume Bns is the basis label set for site s at stage n linear
programming. The trust region Uns of site s is determined by
the previous relaxation solution fn�1

s ¼ ðfn�1
s;1 ; fn�1

s;2 Þ and
a trust region diameter dn. We define Qns ¼ Ls \ Uns : the
reduced target point space falling within the current
diameter. The nth basis Bns is specified by

Bns ¼ fthe vertex coordinates of the lower convex hull of

fð�1ðjÞ; �2ðjÞ; cðs; jÞÞ; 8j 2 Qns gg;

where cðs; jÞ is the cost of assigning label j to site s.

We use an anchor to control the trust region for the next
iteration. The trust region for one feature point is a
rectangular area in the target image. We keep the anchor in
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the new trust region for each site and shrink the boundaries
inward. If the anchor is on a boundary of the previous trust
region, other boundaries are moved inward. We require that
new anchors have energy not greater than the previous
estimation: The anchors are updated only if new ones have
smaller energy. A simple scheme is to select anchors as the
solution of the previous LP. Unfortunately, in the worst case,
this simple scheme has solutions whose objective function is
arbitrarily far from the optimum. So, instead, we use the
consistent rounding solution as presented in the last section
for obtaining the anchor. This iterative procedure guarantees
that the objective function of the proposed multistep scheme
is at least as good as a single relaxation scheme. In the
following example, we use a simple 1D labeling problem to
illustrate the solution procedure.

Example 2 (A 1D problem). Assume there are two sites {1,
2} and, for each site, the label set is f1 . . . 10g. The
objective function is

min
ff1;f2g

cð1; f1Þ þ cð2; f2Þ þ �jf1 � f2jf g:

In this example, we assume that

fcð1; f1Þg ¼ f1:5; 4; 5; 5; 6; 1:7; 4; 5; 2; 2g;

fcð2; f2Þg ¼ f5; 5; 5; 1; 1; 3; 4; 1; 2; 5g;

and � ¼ 0:5.

Based on the proposed scheme, the problem is solved by

the 4-step LPs: LP0, LP1, LP2, and LP3.

. In LP0, the trust regions for sites 1 and 2 both start as
the whole label space [1, 10]. Constructing LP0 based
on the proposed scheme corresponds to solving an
approximated problem in which c for site 1 and 2 are

replaced by their lower convex hulls, respectively (see
Fig. 4). StepLP0 uses convex hull basis labels {1, 6, 10}
for site 1 and {1, 4, 8, 9, 10} for site 2. LP0 finds
a solution with nonzero weights �1;1 ¼ 0:4 and
�1;6 ¼ 0:6, f1 ¼ 0:4 � 1þ 0:6 � 6 ¼ 4; and �2;4 ¼ 1, and
resulting continuous label LP solution f2 ¼ 4. Based
on the proposed rules for anchor selection, we fix site 1
at label 4 and search for the best anchor for site 2 in [1,
10] using the nonlinear objective function. This label is
4, which is selected as the anchor for site 2. Similarly,
the anchor for site 1 is 6. At this stage, the upper bound
Eþ ¼ cð1; 6Þ þ cð2; 4Þ þ 0:5 � j6� 4j ¼ 3:7.

. Now, the trust region for LP1 is shrunk to [2, 9] for
both of f1 and f2 by reducing the previous trust
region diameter by a factor of 2. The solution of LP1

is f1 ¼ 6 and f2 ¼ 6. The anchor site is 6 for site 1 and
5 for site 2, with Eþ ¼ 3:2:

. Based on LP1, LP2 has new trust region [3, 8] for
both f1 and f2 and its solution is f1 ¼ 6 and f2 ¼ 6.
The anchors’ positions do not change at this stage.

. LP3 has new trust region [4, 7] for both f1 and f2 and
its solution is f1 ¼ 6 and f2 ¼ 5. Since LP achieves
the upper bound Eþ, there is no need to further
shrink the trust region and the iteration terminates.
It is not difficult to verify that the configuration
f1 ¼ 6, f2 ¼ 5 achieves the global minimum. Fig. 4
illustrates the successive convexification process for
this example.

Interestingly, for the above example, ICM or even the GC
scheme only find a local minimum if initial values are not
correctly set. For ICM, if f2 is set to 8 and the updating is
from f1, the iteration will fall into a local minimum
corresponding to f1 ¼ 9 and f2 ¼ 8. The GC scheme based
on �-expansion will have the same problem if the initial
values of f1 and f2 are set to 9 and 8, respectively.
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Fig. 4. SC-LP in 1D. Labels in circles are LP continuous solutions.



The simplex method has been found to be efficient in
applications even though its worst-case complexity is ex-
ponential. The average complexity [29] of the simplex method
is approximately proportional to the number of constraints
and the logarithm of the number of variables. If we assume
constant LP stages, an estimate of the average complexity of
SC-LP isOðjSj � ðlog jLj þ log jSjÞÞ, whereS is the site set andL
is the target point set. Experiments also confirm that the
average complexity of the proposed optimization scheme
increases more slowly with the size of the label set than
previous methods such as GC, whose average complexity is
linear with respect to jLj, and BP, whose average complexity is
proportional to jLj2. Moreover, SC-LP only uses a basis label
set that is usually much smaller than L.

2.4 Handling Outliers

As illustrated in [27], to model outliers in matching such as
occluded targets, we can use the following strategy: We
choose a constant cost for labeling a target point as an outlier.
A proper constant would be selected larger than the cost of a
true match and smaller than that for the wrong matches. If a
site is recognized as an outlier, the site is assigned the constant
cost and removed from the smoothing term.

So, a linear programming formulation to take into
account occlusion inference is as follows:

min

P
s2S; j2Bs

½cðs; jÞ �s;j þ co�s	þP
fp;qg2N �p;q

P2
m¼1ðfþp;q;m þ f�p;q;mÞþP

fp;qg2N �p;qð�þp;q þ ��p;qÞ

8>>><
>>>:

9>>>=
>>>;
;

X
j2Bs

�s;j þ �s ¼ 1; 8s 2 S;
X
j2Bs

�s;j�mðj� sÞ ¼ fs;m; 8s 2 S; m ¼ 1; 2;

fp;m � fq;m ¼ fþp;q;m � f�p;q;m ;
8 fp; qg 2 N ; m ¼ 1; 2;

�p � �q ¼ �þp;q � ��p;q;
�s;j; �s � 0; fþp;q;m; f

�
p;q;m; �

þ
p;q; �

�
p;q � 0;

where �s is a variable denoting whether site s is occluded and
co is a constant cost for labeling one site as occluded. This
schema has similar properties as the previous simpler
formulation and the proposed successive convexification
scheme can still be used to solve the extended problem.

2.5 Other Extensions of Successive Convexification

The above framework can be easily extended to ann-D case in
which each label is ann-D point defined in some metric space.
We can follow a procedure very similar to the 2D case to find
the basic labels: We augment each label with another
dimensionality of matching cost and form ðnþ 1Þ-D vectors.
We then find the lower convex hull of the ðnþ 1Þ-D points
with respect to the labeling cost axis. The basis labels
correspond to the n-D subvectors of the ðnþ 1Þ-D lower
convex hull vertices. These n-D subvectors are obtained by
stripping off the labeling cost element. The lower convex hull
can be computed efficiently for the higher dimensional cases.

Successive convexification can also be applied to labeling
problems with general convex smoothness terms. For
example, a successive convex quadratic programming can

be constructed for L2 smoothness term labeling problems.
The convex quadratic programming relaxation can also be
constructed using only the basis labels that correspond to
the lower convex hull vertices of the matching cost surfaces.
The successive relaxation scheme can still be applied.

The proposed scheme can also be extended to approximate
metric labeling with nonconvex smoothness term. The
procedure is as follows: Initially, we simply replace the
nonconvex distance function, e.g., truncatedL1 distance, with
a convex L1 distance function that has a small slope and is
bounded by the image dimension. When shrinking trust
regions, we can choose smoothness coefficients adaptively so
that the L1 distance function approximates the nonconvex
distance function in smaller trust regions. We estimate the
range of the matching vector difference for each neighboring
site pair when shrinking the trust regions. The slope of the
L1 distance, controlled by the coefficient �p;q, is then adjusted
to fit the nonconvex distance in the estimated range. As the
trust regions become smaller, the nonconvex distance
function can be more accurately approximated by the
L1 distance function. Comparison with BP using truncated
L1 smoothness term is shown in the experiment section.

2.6 Deformable Template Matching

In this section, we consider the application of the proposed
general matching scheme for solving image matching
problems. Fig. 5 illustrates the proposed matching method.
The following discussion sets out a general image matching
scheme and some aspects are not used in some specific
applications.

For color images, we take as features in the template image
the square pixel blocks centered on source pixels. For binary
images, we first convert to grayscale via a distance transform,
where the intensity of a pixel is proportional to its distance to
the nearest foreground binary pixel. We define features of a
binary image as the blocks in such distance transform images.
In this paper, feature points are randomly selected in the
source image. To reduce complexity, the feature points can be
selected on the edges of the source and target images. The
neighbor relation N is defined by the edges of the graph
resulting from Delaunay triangulation of point set S on the
template. For the target image, depending on the application,
all of the pixels in the searching window or all the edge pixels
in the target image are used in the matching process.

We often need to test the degree of matching, for
example, in selecting the best template in multitemplate
matching. The following quantities are defined to measure
the difference between the template and the matching
object: First, we define measure P to be the average of
pairwise length changes from the template to the target. To
compensate for any global deformation, a global affine
transform A is first estimated based on the matching and
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then applied to the template points before calculating P .
The length changes are further normalized by the template
edge lengths. The second measure is the average warped
template matching cost M, which is taken to be the
difference between the target image or distance transforma-
tion and the warped reference image or distance transfor-
mation in the region of interest. The warping is based on a
cubic spline. The total matching cost is simply defined as
M þ �P , where � typically has a value from 0.1 to 0.5.
Experiments show that only about 100 randomly selected
feature points are needed in calculating P and M.

In object matching applications, target objects usually
undergo scale and rotation changes. To simplify the problem,
we sequentially estimate a global transformationG and a local
deformationD. G can be estimated based on LP in the largest
trust region. Once G is fixed, the problem is reduced to the
metric labeling addressed in the last section and we can apply
the proposed SC-LP scheme to solve for D. We limit G to
rotation and scaling. We found that very sparse quantization
is enough for estimating global transformation G.

3 EXPERIMENTAL RESULTS

We test the performance of the proposed matching method
in applications of motion estimation, object matching, and
tracking, using both synthetic ground truth data and true
images. For motion estimation, target candidates are all of
the image pixels in trust region for each site. For object
detection and object tracking, theoretically we may still use
dense pixels in trust regions because successive convex-
ification only uses basis points in the searching process. To
reduce the computational load of calculating matching
costs, in object matching we restrict both the sites and target
points to locating on image edges. For the above applica-
tions, the trust region for each site is a rectangular region in
the target image. For each site, the target 2D points
combined with the matching costs form 3D points. We
compute the lower convex hull of these 3D points with
respect to the cost axis. Basis labels are 2D points obtained
by projecting these vertices to the xy image plane.

3.1 Testing on Synthetic Images

3.1.1 Matching Random Patterns

As a first experiment, we randomly generate gray-scale

images and then apply a ground truth deformation model to

generate images for matching. In this experiment, we

randomly generated 100 images in each of three different

scales and then, from each of these, we also generated test

images with a given deformation model. Fig. 6 shows the

deformationmodel usedin this experiment andthree samples

of the randomly generated images, at three different scales.
We apply the deformation model to the randomly

generated images and generate target images for matching.

In the reference image for each image pair, about 300 sites are

randomly selected. The block size for calculating matching

cost is set to be 3
 3. The searching window for each site in the

reference image is taken to be ½�10; 10	 
 ½�10; 10	. The

definition of energy for all methods compared is the same in

these experiments. The smoothing coefficients are specified

as unity in the matching process. We compare the matching

performance of the proposed SC-LP matching scheme with

ICM, the GC, and BP for random patterns with three different

scales. For each of the three scales, 100 random patterns are

used in the experiments. Matching error is the mean absolute

distance of the matching points to the ground truth target

points. Sufficiently large numbers of iterations are set for

ICM, the GC, and BP such that they converge. We use

�-expansion for symbol updating in the GC. BP is a baseline

implementation without pruning process. The matching

error and standard deviation are listed in Tables 1, 2, and 3
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Fig. 6. Random gray-level images in matching. (a), (b), and (c) Three template random images in the three scales used. (d) and (e) Deformation
model in the x and y direction.

TABLE 1
Comparative Results for Random Pattern Matching: Scale 1

TABLE 2
Comparative Results for Random Pattern Matching: Scale 2

TABLE 3
Comparative Results for Random Pattern Matching: Scale 3



for the three scales examined. SC-LP achieves the smallest

matching error and standard deviation in this experiment.

BP and GC have comparable results. ICM is the worst in this

experiment.

3.1.2 Matching Random Dots

In this experiment, we compare the performance of SC-LP

with BP and ICM for a binary object detection in clutter. GC

has been designed for motion and stereo and, therefore, is not

included in the comparison. In our experiments, the

templates are generated by randomly placing 50 black dots

into a 128
 128 white background image. A 256
 256 target

image is then synthesized by randomly translating and

perturbing the block dot positions from those in the template.

The random perturbation ranges are set to be 5 and 10 pixels,

respectively, in two experiments. 50, 100, or 150 random

noise dots are then added to the target image to simulate

background clutter. There are thus six situations to be tested

and, in each experiment, we generate 100 template and target

images. In this experiment, we match the gray-level distance

transformation of the template and target images. Fig. 7

compares results using the proposed matching scheme with

using BP and ICM. The histograms show the error distribu-

tion of different methods. In this experiment, all the methods

use the same energy function. The SC-LP has similar

performance as BP and is much better than the greedy

scheme of ICM in cases of large distortion and cluttered

environments. SC-LP has much less complexity than BP

when the number of labels exceeds 1,000.

3.1.3 Matching Random Dots Using Nonconvex

Regularization Term

In a different experiment setting for matching random dots,

we use a truncated L1 distance function in the regularization

term. In addition to random disturbance of five pixels, there is

a large displacement which is 30-pixel in the xdirection and a

shifting of five pixels in the y direction for the right half of the

template points. The nonconvex smoothness term helps to

preserve the discontinuity in matching. Using SC-LP, we

adaptively change the smoothness coefficients so as to

approximate a truncated L1 distance function which has a

linear part with unity slope and a turning point at 15 pixels.

The random dot template is composed of 100 points and

50 noise points are added to the target image. We repeat the

experiment for 100 times. Different methods in this experi-

ment use the same energy function. The mean matching

errors and standard deviations of the testing methods are

shown in Table 4. The proposed scheme and BP yield much

better results than the greedy methods.
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Fig. 7. Histograms of errors using SC-LP, BP, and ICM for matching random dots images.

TABLE 4
Comparative Results for Random Dot Matching

with Large Discontinuities



3.2 Motion Estimation

We also test the proposed SC-LP method for estimating

motion in a large searching range. Fig. 8 illustrates a motion

estimation result for the image Table_Top. About

2,000 edge-points and supporting points are detected in the

region of interest. Delaunay triangulation is applied to the

point set and points connected by the edges of the Delaunay

graph are defined as neighbor site pairs. The searching

region is [�20, 20] in both the x and y directions. The cost

function used in the experiment is the normalized image

block absolute difference. Sparse matching and dense

matching based on the proposed SC-LP are shown in

Figs. 8a and 8b and in Figs. 8c and 8d. Dense matching is

by upgrading the sparse matching result with a detail

preserving PDE method [27]. More experimental results,

using image Toy_house, are shown in Fig. 9. To illustrate

the accuracy of dense matching, the regular mesh matching

result is shown in Figs. 9e and 9f.
Fig. 10 illustrates experiment results for estimating

motion and the occlusion map simultaneously, with the
SC-LP scheme. For image Mouse, camera motion and object
motion are both involved. Another challenge in this
experiment is that the mouse and mouse pad contain large
areas without texture. The scaled motion vector plot is
shown in Fig. 10c. A threshold of 0.5 is used to obtain the
occlusion map in these experiments. In Fig. 10d, the
occlusion map is shown aligned with the reference image
by replacing the red channel of the reference image with the
occlusion map while keeping intact the green and blue
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Fig. 8. Motion estimation for image Table_Top. (a) Reference image and mesh. (b) Matching image and matching mesh based on SC-LP. (c) and
(d) Dense x-motion and y-motion.

Fig. 9. Motion estimation for image Toy_house. (a) Reference image and mesh. (b) Matching image and matching mesh based on SC-LP method.
(c) Dense x motion. (d) Dense y motion. (e) and (f) Regular mesh matching result based on the dense motion field.

Fig. 10. Motion and occlusion estimation for image Mouse. (a) and (b) Reference and matching images. (c) Scaled motion vectors. (d) Occlusion

map shown in the red channel. (e) and (f) Matching based on SC-LP. (g) and (h) Dense x-motion and y-motion.



channels. Figs. 10e, 10f, 10g, and 10h show the matching
result based on the proposed linear programming scheme.

3.3 Object Detection

Color object matching examples are shown in Fig. 11. Fig. 11a

shows the template mesh for a toy, with feature points

randomly selected on the edge map of the object. In this

experiment, the global transform is first estimated in the

discretized global transform space with SC-LP in the largest

trust region. Rotation is sampled between 0� and 360� at

45� intervals. The scale is sampled in [0.5, 2] with quantiza-

tion levels 0.5, 0.75, 1, 1.5, and 2. The interpolated mean

matching cost surface is shown in Fig. 11b, with optimal

rotation angle 	 and scale 
 of 45� and 1.5, respectively. Local

deformation is further estimated by SC-LP method. The final

matching result is shown in Fig. 11c. In Figs. 11d and 11e, a

toy dog is matched in a very cluttered background. This is a

difficult target in that there are many features in the

background similar to those on the toy. The proposed

method finds the correct global transform and the correct

matching. Further results for color object matching are

shown in Figs. 11g, 11i, and 11k. Figs. 11j and 11k show

matching where large occlusion is involved. Fig. 12 shows an

example for binary object matching using the distance

transform image patches as features. In this example, SC-LP

performs well in strong background clutter.

As a different test of the usefulness of the proposed

scheme for object detection, we carried out a face detection

experiment using the Caltech database. Each tested image

contains one face and we test the chance of SC-LP correctly
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Fig. 11. Color object localization. (a) Template mesh. (b) Interpolated mean matching cost surface for G: 	� ¼ 45�, 
� ¼ 1:5. (c) Matching result with

the SC-LP method. (d), (f), (h), and (j) Four other template meshes. (e), (g), (i), and (k) Match results.

Fig. 12. Binary object localization. (a), (b), and (c) Template image, edge map, and template mesh. (d) and (e) Target image and edge map. (f), (g),
(h), (i), and (j) Different stages of SC-LP matching.



locating the object in images. After removing several small

repeated images and drawings, these comprise a total of

431 test images. One randomly chosen image is used as a

template, testing on the others. We chose to match only the

chromaticity of the images, which is more illumination

invariant but also has more ambiguities. An ICM-based

scheme has a correct matching ratio of 41 percent, while the

proposed scheme yields 98.1 percent correct. The matching

faces, showing the bounding box of the match, are

displayed in Fig. 13. We also experimented on matching

car-back images from the Caltech database. We use a

randomly chosen image as the template and try to locate the

object in other images, based on the gray-scale distance

transform of the Canny edge maps. Of 119 cars, the

matching precision is 82.4 percent. We show some matching

results in Figs. 14g and 14h. Simple ICM schemes work

poorly, with only a few correct matches. Another object

detection result is shown in Fig. 15, matching leaves. In this

experiment, we again use the distance transform of the edge

maps for matching. We use six templates, with success for

181 targets out of 185 matching tests. Object detection

results are summarized in Table 5.

3.4 Object Tracking

Apart from object localization in still images, we also tested

the proposed scheme for object tracking in videos. We use

multiple templates in this test. To increase efficiency,

templates are further organized into a graph structure in

which neighbors represent possible template transitions.

When an object changes drastically in a video sequence, it

makes sense to test whether switching to another template

would produce a better match, likely keeping to the current

scale and rotation if possible in applications when several

templates are available. An efficient approach is to test

against the current template and its neighbors in a template

selection process. The template with the lowest matching cost

is chosen, its matching result is recorded, and the rotation 	

and scale 
 are updated based on a smooth-motion object-

following model. Fig. 16 shows a car location result with the

first frame as the template. The proposed scheme successfully

tracks the back of the car in a long video sequence. Fig. 17

shows an object tracking result in which two exemplars are

used—the hand undergoes dramatic shape changes between

the two gestures. There are also large scale and rotation

changes of the hand involved in this sequence. The proposed
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Fig. 13. Color face template matching. (a) Template. (b), (c), (d), (e), and (f) Five example targets—bounding box for match is shown. More correct
matches are shown in (g): detail block near bounding box automatically cropped from the target image is shown. (a) Template. (b) Example 1.
(c) Example 2. (d) Example 3. (e) Example 4. (f) Example 5. (g) Samples of correct matches. (h) Incorrect matches (eight faces).



scheme successfully tracks the movement of the hand. As
another example of this approach, Fig. 18 shows a result for
tracking a walking person, using three exemplars. The
posture of the person walking in the scene is accurately
recovered. The template follows the object successfully in this
difficult, very complex-background setting. Currently, the
tracking is not realtime. We select about 100 features points
are on the template. Matching each frame takes about 10s
using a 2.6 GHz PC with three LP iterations. About 25 percent
of the computation power is spent on calculating the
matching costs. For the same problem, BP is several orders
slower. ICM is efficient but is not reliable for tracking.

3.5 Running Time Comparison

For large label set matching in which we need to search a

whole target image, the proposed scheme has a clear

advantage. Table 6 shows typical running times for different

methods for matching leaf images in the Caltech database. In

this example, the template image has 106 sites, all of the

4,622 edge pixels in the target image (320
 211) are potential

matching candidates. We compare the running time of the

proposed scheme with GC and BP. SC-LP, GC, and BP all

successfully match the target in four iterations. As Table 6

shows, SC-LP is more efficient than GC and BP for matching

with a large number of labels. The searching window for

graph cut is set to 120
 120 for each site. ICM fails to locate

the target, even though it converges in less than one second.
BP can be sped up by embedding displacement vectors

into grids and computing function lower envelop with a

method similar to distance transform [10]. This scheme has

linear complexity over the number of labels (displacement

vectors). But, it has to trade time complexity with high

spatial complexity. Multiresolution schemes can also be

used to reduce the complexity of BP for large label set

problems. Instead of directly matching all of the target

labels, we can group multiple target points into coarser

labels and subdivide the groups iteratively for matching

refinement. The multiscale method speeds up matching, but,

at the same time it may also degrade the matching result.

Our experiments show that, when the target image’s

resolution is reduced by more than eight times, the result

degrades rapidly. Because of this constraint, multiscale BP is

still much slower than the proposed method.

4 CONCLUSION

In this paper, we present a robust linear programming-based
matching scheme—linear programming with successive
convexification (SC-LP). This method uses a small basis to
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Fig. 14. Matching carbacks in clutter. In (g) and (h), blocks shown are targets automatically cropped from the target images. (a) Template.

(b) Example 1. (c) Example 2. (d) Example 3. (e) Example 4. (f) Example 5. (g) Correct matches (98 of 119 cars). (h) Incorrect matches (21 cars).



represent the matching space for each feature point on the
template, which allows the method to be applied to problems

with a very large number of target candidates. This linear

programming relaxation has many useful properties and is a

strong approximation scheme. We further propose a

successive relaxation scheme to improve the matching

iteratively. We have applied the optimization method to

solving metric labeling problems with the L1 regularization

term, and this method is found to be able to find the correct

matching with high probability. The successive convexifica-

tion idea can also be generalized to solve problems with
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Fig. 15. Matching result of leaves. (a), (b), (c), (d), (e), and (f) Templates. (g), (h), (i), (j), (k), and (l) Matching examples. (m) Correct matching blocks
automatically cropped from the target images. (n) Incorrect matching blocks cropped from target images.

TABLE 5
Object Detection Using Caltech Face, Carback,

and Leaf Database



other convex smoothness terms, i.e., an L2 norm smoothness

term. We also propose a method to approximate nonconvex

smoothness term problems using successive convexification.

As an illustration of the power of the method, we discussed

motion estimation, several object location applications, and

an object tracking framework in which multiple templates

can be used. By choosing the closest template, the proposed

scheme can be used to robustly locate objects that change

appearance dramatically, using only a few templates.

Experiments demonstrate robust object matching results in

cluttered environments.
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