The Complexity of Propositional Proofs

Alasdair Urquhart*

March 6, 1996

1 Introduction

The classical propositional calculus has an undeserved reputation among logi-
clans as being essentially trivial. I hope to convince the reader that it presents
some of the most challenging and intriguing problems in modern logic.

Although the problem of the complexity of propositional proofs is very nat-
ural, it has been investigated systematically only since the late 1960s. Interest
in the problem arose from two fields connected with computers, automated the-
orem proving and computational complexity theory. The earliest paper in the
subject is a ground-breaking article by Tseitin [62], the published version of a
talk given in 1966 at a Leningrad seminar. In the three decades since that talk,
substantial progress has been made in determining the relative complexity of
proof systems, and in proving strong lower bounds for some restricted proof
systems. However, major problems remain to challenge researchers.

The present paper provides a survey of the field, and of some of the tech-
niques that have proved successful in deriving lower bounds on the complexity
of proofs. A major area only touched upon here is the proof theory of bounded
arithmetic and its relation to the complexity of propositional proofs. The reader
is referred to the book by Buss [10] for background in bounded arithmetic. The
forthcoming book by Krajicek [40] also gives a good introduction to bounded
arithmetic, as well as covering most of the basic results in complexity of propo-
sitional proofs.

2 Proof systems and simulation

The literature of mathematical logic contains a very wide variety of proof sys-
tems. To compare their efficiency, we need a general definition of a proof system.
In this section, we give such a definition, together with another that formalizes

*The author gratefully acknowledges the support of the National Sciences and Engineering
Research Council of Canada.

the relation holding between two proof systems when one can simulate the other
efficiently. The definitions are adapted from Cook and Reckhow [20].

Let ¥ be a finite alphabet; we write X" for the set of all finite strings over
3. A language is defined as a subset of X%, that is, a set of strings over a fixed
alphabet 3. The length of a string « is written as |z|.

Definition 2.1 If ¥; and X3 are finite alphabets, a function f sfrom T} into
35 s in L if it can be computed by a deterministic Turing machine in time
bounded by a polynomial in the length of the input.

The class £ of polynomial-time computable functions is a way of making
precise the vague notion of “feasibly computable function”.

Definition 2.2 If L C ¥*, a proof system for L is a function f: X7 — L for
some alphabet 31, where f € L and f is onto. A proof system f is polynomially
bounded if there is a polynomial p(n) such that for all y € L, there is an z € T
such that y = f(z) and |z| < p(|y|).

The intention of this definition is that f(z) = y is to hold if z is a proof
of y. The crucial property of a proof system as defined above is that, given an
alleged proof, there is a feasible method for checking whether or not it really is
a proof, and if so, of what it is a proof. A standard axiomatic proof system for
the tautologies, for example, can be brought under the definition by associating
the following function f with the proof system F: if a string of symbols o is a
legitimate proof in F of a formula A, then let f(o) = 4; if it is not a proof in
F then let f(o) =T, where T is some standard tautology, say PV —P.

Let us recall here some of the basic definitions in computational complexity
theory (for details the reader is referred to [32, 36, 46]). A set of strings is in the
class P (N'P) if it is recognized by a deterministic (non-deterministic) Turing
machine in time polynomial in the length of the input. A set of strings is in the
class co-N"P if it is the complement of a language in N'P. In more logical terms,
a set S of strings is in P if its characteristic function is in £, while it is in NP
if the condition y € S can be expressed in the form (Iz)(|z| < p(|y|) A R(z,v)),
where p is a polynomial, and R is a polynomial-time computable relation. Thus
P is the polynomial-time analogue of the recursive sets, while AP corresponds
to the recursively enumerable sets. Thus the basic question P =7?AP is the
polynomial-time analogue of the halting problem.

The importance of our main question for theoretical computer science lies
in the following result of Cook and Reckhow [20].

Theorem 2.1 NP = co-NP if and only if there is a polynomially-bounded
proof system for the classical tautologies.

Proof. If NP = co-N'P then since the set TAUT of classical tautologies is in co-
NP, TAUT would be in AP, that is to say, there would be a non-deterministic

Turing machine M accepting TAUT. Let f be the function such that f(z) =
y if and only if z encodes a computation of M that accepts y; then f is a
polynomially-bounded proof system for TAUT.

Conversely, let us assume that there is a polynomially-bounded proof system
for TAUT. Let L be a language in N'P. By the basic N'P-completeness result of
Cook [16], L is reducible to the complement of TAUT in the sense that there is a
function f € £ so that for any string , € L ifand only if f(z) € TAUT. Hence
a nondeterministic polynomial-time procedure for accepting the complement of
L is: on input z, compute f(z) and accept z if f(z) has a proof in the proof
system. Hence, NP is closed under complementation, so N'P = co-NP. a

This equivalence result underlines the very far-reaching nature of the widely
believed conjecture NP # co-NP. The conjecture implies that even ZFC, to-
gether with any true axioms of infinity that are thought desirable (provided that
they have a sufficiently simple syntactic form) is not a polynomially-bounded
proof system for the classical tautologies (where we take a proof of TAUT("A™)
as a proof of the tautology A).

We can say nothing of interest about the complexity of such powerful proof
systems as the above (in effect, the strongest we can imagine). We can, how-
ever, order proof systems in terms of complexity, and prove some non-trivial
separation results for systems low down in the hierarchy.

Definition 2.3 If f; :] — L and f3 : 5 — L are proof systems for L, then
f2 p-simulates f1 provided that there is a polynomial-time computadble function
g: 37 — X5 such that f2(g(z)) = fi(z) for all x.

Thus ¢ is a feasible translation function that translates proofs in f; into
proofs in f,. We have assumed in the above definition that the language of
both proof systems is the same. Reckhow’s thesis [52, §5.1.2] contains a more
general definition of p-simulation that eliminates this restriction. It is easy to
see that the p-simulation relation is reflexive and transitive, and also that the
following theorem can be proved from the definitions.

Theorem 2.2 If a proof system fa for L p-simulates a polynomially bounded
proof system f1, then fa is also polynomially bounded.

The intersection of the p-simulation relation and its converse is an equiva-
lence relation; thus we can segregate classes of proof systems into equivalence
classes within which the systems are “equally efficient up to a polynomial”.

3 A map of proof systems

Since the complexity class P is closed under complementation, it follows that if
P = NP then NP = co-N'P. This suggests that we might attack the problem
P =7?N'P by trying to prove that NP # co-NP; by Theorem 2.1, this is the

same as trying to show that there is no polynomially-bounded proof system for
the classical tautologies. This line of research was first suggested in papers by
Cook and Reckhow [19, 20]. At the moment, the goal of settling the question
NP £ co-NP seems rather distant. However, progress has been made in classi-
fying the relative complexity of well known proof systems, and in proving lower
bounds for restricted systems. An attractive feature of the research programme
1s that we can hope to approach the goal step by step, developing ideas and
techniques for simpler systems first.

The diagram in Figure 1 is a map showing the relative efficiency of various
systems. The boxes in the diagram indicate equivalence classes of proof systems
under the symmetric closure of the p-simulation relation. Systems below the
dotted line have been shown to be not polynomially bounded, while no such
lower bounds are known for those that lie above the line. Hence, the dotted
line represents the current frontier of research on the main problem. Although
systems below the line are no longer candidates for the role of a polynomially
bounded proof system, there are still some interesting open problems concerning
the relative complexity of such systems. Questions of this sort, although not
directly related to such problems as NP =7co-AP, have some relevance to
the more practical problem of constructing efficient automatic theorem provers.
Although the more powerful systems above the dotted line are the current focus
of interest in the complex of questions surrounding the AP =7co-AP problem,
the systems below allow simple and easily mechanized search strategies, and so
are still of considerable interest in automated theorem proving.

An arrow from one box to the other in the diagram indicates that any proof
system in the first box can p-simulate any system in the second box. In the case
of cut-free Gentzen systems, this simulation must be understood as referring to
a particular language on which both systems are based. An arrow with a slash
through it indicates that no p-simulation is possible between any two systems in
the classes in question. If a simulation is possible in the reverse direction, then
we can say that systems in one class are strictly more powerful than systems
in the other (up to a polynomial). The diagram shows that all such questions
of relative strength have been settled for systems below the dotted line, with
the exception of the case of the relative complexity of resolution and cut-free
Gentzen systems where connectives other than the biconditional and negation
are involved.

The diagram shows only a selection from the wide variety of proof systems
that have been considered in the literature of logic, automatic theorem proving
and combinatorics. A more detailed diagram, showing a wider selection of proof
systems, though not reflecting work after 1976, is to be found in Reckhow [52].

Before proceeding to consider particular proof systems, let us fix our nota-
tion. We assume an infinite supply of propositional variables and their nega-
tlons; a variable or its negation is a literal. We say that a variable P and its
negation ~P are complements of each other; we write the complement of a
literal I as I. A finite set of literals is a clause; it is to be interpreted as the

Quantified Frege systems

Extended Frege systems

No super-polynomial bounds

known for these systems Frege systems

Bounded-depth Frege systems

Systems proved to

be not polynomially-bounded

Cut-free Gentzen (d.a.g.) Resolution

Cut-free Gentzen (tree)
Analytic Tableaux

Tree resolution

Truth tables

Figure 1: Proof system map

disjunction of the literals contained in it. A set of clauses is to be interpreted as
their conjunction. A clause mentions a literal [if either I or { is in the clause.
The length of a clause is the number of literals in it. We shall sometimes write
a clause by juxtaposing the literals in it.

An assignment 1s an assignment of truth-values to a set of propositional
variables; some variables may remain unset under an assignment. If ¥ is a set
of clauses, and ¢ an assignment, then we write X[¢ for the set of clauses that
results from X by replacing variables by their values under ¢ and making obvious
simplifications. That is to say, if a clause in X contains a literal made true by
¢, then it is removed from the set, while if a literal in a clause is falsified by ¢
then it is removed from the clause. The notation [! := 1] denotes the assignment
that sets the literal [to 1 and is otherwise undefined, similarly for [I := 0].

It is useful to fix terminology relating to graphs and trees here. A graph
consists of a finite set of vertices, a finite set of edges and an incidence relation
so that every edge is incident with exactly two distinct vertices (the endpoints
of the edge). That is to say, the graphs considered here can contain multiple
edges, but not loops; a graph is simple if it has at most one edge between any
two vertices. Trees should be visualized as genealogical trees, with the root at
the top; the nodes immediately below a given node in a tree are its children.
The depth of a tree T, written Depth(T), is the maximum length of a branch
inT.

Derivations in a proof system can be represented either as trees, or as se-
quences of steps (where a step could be a formula or a sequent). It is normal
in the proof-theoretic literature to represent derivations as trees. It is clear,
though, that this representation is inefficient, since a step must be repeated
every time it is used. If S is a proof system, we denote the corresponding proof
system in which derivations are represented as trees by St,ce, reserving the
notation S for the system in which derivations are represented as sequences.

4 Analytic Tableaux

The method of analytic tableaux, or truth trees, is employed in many introduc-
tory texts; it is given a particularly elegant formulation in Smullyan’s mono-
graph [59]. Here we shall only consider the simple form of the method where
all formulas are clauses. If 3 is a contradictory set of clauses, then a tableau
for 32 is a tree in which the interior nodes are associated with clauses from X;
if a node is associated with a given clause, then the children of that node are
labeled with the literals in the clause. Note that the node associated with a
clause is not labeled with that clause itself, so that the root of the tree remains
unlabeled. A tableau for X is a refutation of X if every branch in the tableau is
closed (i.e. contains a literal and its negation). We define the size of a tableau
refutation as the number of interior nodes in the tableau (this measure of com-
plexity, omitting the leaves of the tree, is convenient for inductive proofs). If

Y is a set of clauses, then ¢(X) is defined to be the minimum size of a tableau
refutation of X. Because of the simple structure of tableau refutations, it is
possible to prove exact lower bounds on their complexity. The basic tools are
the following lemmas.

Lemma 4.1 In a tableau refutation of minimal size, no branch contains re-
peated literals.

Proof. If a tableau refutation contains a branch with repeated literals, then
it can be pruned as follows. Let T be a subtree of the tableau whose root is
assoclated with a clause containing a literal I, and this literal I labels a node in
the tableau on the path from the root of the tableau to T'. Replace T with the
immediate subtree of T" whose root is labeled with I, but replacing the label on
this subtree with the label on the root of T'. The resulting tableau is still closed,
and is smaller than the original. ad

Lemma 4.2 If ¥ is an unsatisfiable set of clauses, then t(X) satisfies the re-
cursive equation

HY) =min{#(Z [l =1)+ ...+t [l :=1)+1: L v...v], € T}

Proof. For C =11 V...V, € X, let T be a tableau refutation of X that is min-
imal among refutations that have C' associated with their root. Let Ty,...,T,
be the immediate subtrees of T having [,...,{, as labels on their roots. By
Lemma 4.1, the literal I; does not occur in T; below the root of T;; the comple-
ment of /; may occur as the label of at least one leaf in T;. Thus if we remove
from T; the leaves labeled with E, the result is a refutation of 3 [I; := 1]. Hence
the size of T; is ¢(X[[I; := 1]), so that the size of T is

HE o= 1) 4o+ (D] [l = 1)) + L.

Choosing C' to minimize this function, we obtain the equation of the lemma. O

A truth table for a formula with n variables, represented as a vector of 0’s and
1’s, has length 27, so that the truth table method is inefficient for large values of
n. Of course, we are only considering asymptotic complexity measures here. In
practice, the truth table method may be quite efficient for formulas containing a
small number of variables, given a reasonably sophisticated implementation. It
1s easy, however, to find contradictory sets of clauses containing n variables that
can be refuted quickly by elementary proof methods, for example the sets A4,
containing all the variables Py, ..., P, together with the formula~P; V... V~P,.
The set A,, has a tableau refutation of size n + 1.

Somewhat surprisingly, there are cases where truth tables are more eflicient
than analytic tableaux. This fact was first observed by Marcello D’Agostino,
who proved the next result [22].

~prs ~pr~s

Figure 2: X(T) = {pq, p~q, ~prs, ~pr~s, ~p~r}

Theorem 4.1 The analytic tableau proof system cannot p-simulate the method
of truth tables.

Proof. Let II,, be the set of all clauses of length n in n variables. For any
literals {; and I in II,, the sets of clauses II,[[l; := 1] and I, [[ls := 1]
are logically isomorphic (that is to say, one can be obtained from the other
by permuting variables and replacing literals by their complements). Hence,
t(I, [[l :=1]) = t(T, [[I2 := 1]). It follows by Lemma 4.2 that ¢(II,) can be
computed by the recursion: ¢(IlI;) = 2, t(Il,41) = (n + 1)¢(II,,) + 1. This leads
to the explicit formula

1 1 1
t(I,) = n! <1+ﬁ+§+'”+5>’

asymptotic to e.n!. By Stirling’s approximation, (2”)¢ = o(n!) for any fixed ¢,
completing the proof. a

Although analytic tableaux work well on simple examples, there are cases
where any tableau refutation necessarily contains a great deal of repetition. This
is shown by a set of examples due to Cook [17]. Cook’s construction associates
a set of clauses with a labeled binary tree as follows. Let T be a binary tree in
which the interior nodes are labeled with distinct variables. We associate a set
of clauses X(T') with T, in such a way that each branch b in X(T') has a clause
Chy € (T associated with it. The variables in Cj are those labeling the nodes
in b; if P is such a variable, then P is included in Cy if b branches to the left
below the node labeled with P, otherwise Cj contains ~P. Figure 2 shows a
simple example.

Cook’s clauses are the sets of clauses X, = (T,) associated with the com-
plete binary tree T, of depth n. To include the case where n = 0, we take Ty
to consist of a single node, counted as an interior node; the set of clauses X(7p)
is {A}, where A is the empty clause.

If one of the variables in X(T') is set to 0 or 1, then the resulting simplified
set of clauses is also of the form %(T") for some binary tree TV. Let ! be a literal
in 3(T'), and P the variable in I. Define T'[[l := 1] to be the tree resulting from
T by replacing the subtree whose root is labeled with P by either its immediate
left or right subtree, depending on whether [is negated or not. Then it is easy
to see that Z(T)[[l := 1] = (T [I:=1]).

The next lemma allows us to compute ¢(T) = #(X(T)) directly from the
structure of T'.

Lemma 4.3 The function t(T) satisfies the following recursion equations:
1. If T has only one node, then t(T) = 1;

2. If T has immediate subirees U and V', then
HT) =t(U)HV) + min{t(U),t(V)}.

Proof. If T has only one node, then 3(T) = {A}, so ¢(T) = 1 (recall that by
our convention, the unique node in a one-node tree counts as an interior node).

Assume the recursion equations hold for trees of size less than that of T', and
let T' have immediate subtrees U and V. Let C = I; V...V [; be a clause in
Y(T) that is associated with a branch ending in a leaf in U (the argument for
branches in V is symmetrical). Define U; for 2 < j < k to be the labeled tree
Ul[l; :=1]. Let t¢(T) be the size of a minimal tableau in which C' is associated
with the root. Then by Lemma 4.2,

te(T) = (T =1 +...+ (T [l ==1]) + 1

= HV)+ Y [(V)4U;) +min{t(V),¢(U;)}] + 1

(by the induction hypothesis)

VL4 Y HU)]+ Y minft(V). (T 41 (1)

By Lemma 4.2 again,

L+ #U;) > HU), (2)

so by (1),

te(T) > t(V)[L+ Y t(U;)] + min{t(V),[1+ Zt(Uj)]}

=2

> t(V)t(U) + min{t(V),t(U)}. (3)

For the opposite inequality, assume that ¢(U) < #(V) and that P is the
variable labeling the root of T. Let I3 be P or ~P according to whether U is
the left or right subtree of T', let I3 V...V [be the clause associated with the
root of a minimal tableau refutation of ¢(U), and C be the clause Iy V...V Ij.
Then for every j, t(U;) <#(V), so that by (1),

te(T) = t(V)[L+ D t(U)]+ Y tU;)+1

completing the proof. a

Theorem 4.2 1. The clauses T, satisfy the recursion equations: t(5o) = 1,

HZat1) = H(Za)-[H(Z0) +1];

2. The asymptotic behaviour of the function t(X,) is given by t(T,) ~ 22",
where 0.67618 < ¢ < 0.67819.

Proof. The left and right subtrees of the complete binary tree 7, are isomor-
phic, so the first claim follows immediately from Lemma 4.3.

Let z, = t(X,); we wish to estimate the growth of z,. Taking logarithms to
the base 2, we have by the first part of the lemma,

log zn41 = 2logz, + log(l + 1/2,), (5)
hence
log zpt1 = 2" 1+ 2" 2log(1 + 1/21) + ...+ log(l + 1/2,), (6)
so that

logzpgr 1 log(141/21) log(1l+1/z) log(1+1/zp)
gnfl 3 4 + 8 ot =m0

The right hand side of (7) converges rapidly; we find ¢ = 0.67618634966 . .. from
n =25. m|

The preceding theorem is due to Cook; a version of it appeared without
proof in [19]. Cook’s original unpublished proof [17] contains a gap; the proof

10

above is joint work of Cook and the present author. Murray and Rosenthal [45]
prove a lower bound of 22" for the size of analytic tableau refutations of %,,.
Theorem 4.2 has some significance for automated theorem proving based
on simple tableau methods. The set ¥ contains only 64 clauses of length
6, but the minimal tableau refutation for 3¢ has 10,650,056,950,806 interior
nodes. This shows that any practical implementation of the tableau method
must incorporate routines to eliminate repetition in tableau construction.

5 Resolution

The resolution rule is a simple form of the familiar cut rule. If Al and B{ are
clauses, then the clause AB may be inferred by the resolution rule, resolving
on the literal I. A resolution refutation of a set of clauses X is a derivation
of the empty clause from X, using the resolution rule. Refutations can be
represented as trees or as sequences of clauses; the worst case complexity differs
considerably depending on the representation. We shall distinguish between
the two by describing the first system as “tree resolution,” the second simply as
“resolution.”

Although resolution operates only on clauses, it can be converted into a
general purpose theorem prover for tautologies by employing an efficient method
of conversion to conjunctive normal form, first used by Tseitin [62]. Let A be
a formula containing various binary connectives such as — and =; associate a
literal with each subformula of A4 so that the literal associated with a subformula
~B is the complement of the literal associated with B. If the subformula is a
propositional variable, then the associated literal is simply the variable itself.
We write [p for the literal associated with the subformula B. If B is a subformula
having the form C o D, where o is a binary connective, then CI(B) is the set of
clauses making up the conjunctive normal form of Ip = (C o D). For example,
if B has the form (C = D), then CI(B) is the set of clauses

{iglclp,lglclp, lglcip, lplcip }.

The set of clauses Def(A) is defined as the union of all CI(B), where B is a
compound subformula of A.

If A is a tautology, then the set Def(A) U {l4} is contradictory. Thus we
define a proof of 4 in the resolution system to be a proof of A jfrom Def(4) U
{l4}. Such a proof of A we shall refer to as a proof by resolution with limited
extension for the set of connectives (other than ~) occurring in A. In particular,
we shall discuss below the system of resolution with limited extension for the
biconditional; we refer to this system as Res(=). Note that the size of the set
of clauses Def(A) U {14} is linear in the size of A, whereas the same is not true

for the conjunctive normal form of ~A itself (the conjunctive normal form of
P, =P, =...= P, has size 20(")).

11

The size of a tree resolution proof is defined as the number of leaves in the
tree; if ¥ is a contradictory set of clauses, then ¢r(X) is defined as the minimal
size of a tree resolution refutation of 3. We shall refer to the clauses at the
leaves of a tree resolution derivation as the “input clauses” of the derivation.

Theorem 5.1 1. Tree resolution p-simulates the method of analytic tableaux.

2. The method of analytic tableaur cannot p-simulate tree resolution.

Proof. (1) We shall show for any inconsistent set of clauses 3 that tr(X) < ().
The proof is by induction on the number of variables in . If ¥ = {A}, then
t(X) = tr(X) = 1. Let X contain at least one variable, and let I3 V...V [
be the clause associated with the root of a minimal tableau refutation of 3.
Let T1,...,T}; be the sub-tableaux whose roots are labeled with I1,...,{;. By
Lemma 4.1, none of the clauses associated with the interior nodes of T; contain
the literal [;, so that the only occurrence of the literal I; as a label in T; apart
from the label on the root is on leaves labeled I;. Hence, by removing these
leaves, and the label on the root, the tree T; becomes a tableau refutation of
X[l; := 1]. By induction hypothesis, Z[l; := 1] has a tree resolution refutation
U; whose size is less than equal to that of T;. By adding /; to the appropriate
clauses labeling the nodes of U;, we obtain a tree resolution proof of I; from X.
Starting from /3 V...V and resolving successively on Iy, ..., Iy, we can combine
Ui, ..., U to obtain a tree resolution refutation of ¥ whose size is bounded by
the sum of the sizes of Uy, ..., Uy, completing the induction step.

(2) The examples 3, of the preceding section have very small tree resolution
refutations. In fact, we can label the interior nodes of T, with clauses so that
it 1s a tree refutation of X,,. O

A sequence of clauses Cy,...,Cy in a resolution derivation is an irreqularity
if each C, 2 < k, is a premiss for C; 41, and there is a literal [that appears in C;
and Cy, but does not appear in any clause C;, where 1 < 57 < k. That is to say,
the literal ! is removed by resolution from C7, and is then later re-introduced in
a clause depending on C5. A derivation is regular if it contains no irregularity.

Lemma 5.1 A iree resolution refutation of minimal size is reqular.

Proof. Let Ci,...,Cy be an irregularity in a tree refutation; we shall show
how this may be removed while decreasing the size of the refutation. This is
accomplished by discarding the first resolution on I, so that for every 2, 2 < k,
C; 1s replaced by a clause D;, where D; is a subclause of C;l. If at any point
in the new refutation, the literal resolved upon in the original inference of Ci 1
from Cj is missing from D;, then we simply set D; 1 = D;.

The resulting refutation is smaller than the original (we have discarded at
least one subtree). Since no new irregularities are introduced in the process of
removal, the Lemma follows. a

12

The corresponding lemma for resolution fails. Andreas Goerdt [33] shows
that there is an infinite sequence of contradictory sets of clauses having poly-
nomial-size resolution refutations for which the size of any regular resolution
refutation grows faster than any fixed polynomial. Goerdt’s examples are mod-
ified versions of the pigeonhole clauses described in Section 7 below.

Lemma 5.2 IfT is a reqular resolution proof of a literall from a set of clauses
%, then the result of deleting all occurrences of I from T is a regqular resolution
refutation of T [l := 0].

Proof. Since T is regular, it can contain no application of resolution where the
literal [is resolved on. Hence, [cannot occur in any input clause in T, so that
the tree resulting from the deletion of [is a refutation of X[[l := 0]. o

Regular tree resolution is closely related to the method of semantic trees
introduced by Robinson [54] and Kowalski and Hayes [37]. A semantic tree is
a binary tree in which the nodes have assignments associated with them. The
assignment associated with the root is empty. If ¢ is an assignment associated
with an interior node in the tree then the assignments associated with the chil-
dren of the node are the assignments ¢; and ¢, extending ¢ with ¢1(P) = 0
and ¢z(P) = 1, where P is a variable not in the domain of ¢. A semantic tree
T 1s a refutation of a set of clauses X if the variables assigned values in T all
belong to ¥ and each of the assignments at the leaves of T falsify a clause in 3.

We can rewrite a regular tree resolution refutation of a set of clauses as a
semantic tree by the following technique. First, associate the empty assignment
with the root. Second, if AV B is a clause in the tree derived by resolution from
AV P and BV ~P, and ¢ is associated with the conclusion of the inference,
then we associate with the premisses the extensions of ¢ obtained by setting P
to 0 and 1 respectively. Conversely, a semantic tree refutation of minimal size
can be converted into a resolution refutation by associating with a leaf a clause
falsified at that leaf, and then performing resolutions by resolving on the literals
labeling the edges.

Regular refutations of a special kind are produced by the Dawvis-Putnam
procedure. Given a set of X of input clauses, this procedure involves choosing a
variable and then forming all possible non-tautologous resolvents from X that
result from eliminating the chosen variable. This procedure is repeated until the
empty clause is produced or no more resolvents can be formed (in which case the
input set must be satisfiable). Clearly the refutation produced depends uniquely
on the order of elimination adopted. The name of the procedure derives from a
well known paper by Davis and Putnam on automated theorem proving [24].

The phrase “Davis-Putnam procedure” is unfortunately ambiguous, since
in the literature of automated theorem proving, it refers to a decision proce-
dure for satisfiability involving the recursive construction of a semantic tree.
The confusion stems from the fact that during the implementation of the algo-
rithm described in [24], Davis, Logemann and Loveland [23] replaced the original

13

method by this second one, mainly for reasons of space efficiency. In the present
article, the phrase “Davis-Putnam procedure” refers to the restricted version of
the resolution proof procedure where the refutations are produced by the first
method described above.

In the remainder of this section, the lower bounds proved for various forms
of resolution are given for the graph-based examples introduced by Tseitin
[62]. This paper of Tseitin is a landmark as the first to give non-trivial lower
bounds for propositional proofs; although it pre-dates the first papers on NP-
completeness, the distinction between polynomial and exponential growth of
proofs is already clear in it.

If G is a graph, then a labeling G’ of G is an assignment of literals to the
edges of G, so that distinct edges are assigned literals that are distinct and not
complements of each other, together with an assignment Charge(z) € {0,1} to
each of the vertices z in G. If G’ is a labeled graph, and = a vertex in G/,
and Iy, ..., Il the literals labeling the edges attached to z, then Clauses(z) is
the set of clauses equivalent to the conjunctive normal form of the modulo 2
equation Iy @ ... @ I = Charge(z). That is to say, a clause C in Clauses(z)
contains the literals lq,...,l;, and the parity of the number of complemented
literals in {l1,...,{t} in C is opposite to that of Charge(z). The set of clauses
Clauses(G’) is the union of all the sets Clauses(z), for z a vertex in G. Let us
write Charge(G’) for the sum modulo 2 of the charges on the vertices of G'; a
labeling G’ of G is even or odd depending on whether Charge(G') is 0 or 1.

Lemma 5.3 If G is a connected graph, then Clauses(G') is contradictory if and
only if the labeling G’ is odd.

Proof. Assume that the labeling G’ is odd. If we sum the left-hand sides of all
the mod 2 equations associated with the vertices of G, the result is 0, because
each literal is attached to exactly two vertices, and so appears twice in the sum.
On the other hand, the right-hand sides sum to 1, by assumption, so the set of
equations, and so the set of clauses, are contradictory.

Conversely, suppose Charge(G’) = 0. Let 2 and y be vertices in G connected
by an edge e. The set of clauses Clauses(G’) is unchanged if we perform the
following operation: replace the literal labeling e by its complement, and replace
Charge(z) and Charge(y) by their complements. Let us refer to this operation
as transferring a charge between z and y. If z and y are two vertices in G with
Charge(z) = Charge(y) = 1, then there is a chain of vertices z = v1,...,v; =y
forming a path from z to y. If we successively transfer a charge from v to v
to ... vj, the result is a set of clauses associated with a labeling in which two
fewer vertices have an odd charge. Repeating this process, we obtain a labeling
in which all vertices have the charge 0. A satisfying assignment is obtained by
setting all the literals on the edges to 0. i

For the remainder of this section, we assume that G’ is a graph with an
odd labeling; we identify an edge with the literal labeling it. The proof of the

14

preceding lemma shows that any two sets of clauses associated with an odd
labeling of a connected graph G are logically isomorphic, so we shall sometimes
write Clauses(G) to represent any such set.

Let G' be a labeled graph, and ! an edge in G'. Define G'[[l := 0] to be the
labeled graph resulting from G’ by deleting I, and G'[[l := 1] the labeled graph
resulting ;from G’ by deleting ! and complementing the charges on the vertices
incident with [.

Lemma 5.4 For any graph G' with an odd labeling, Clauses (G'|[l := 0]) =
Clauses (G| [l := 0], and Clauses (G'] [l := 1]) = Clauses (G")[[l := 1].

Proof. By definition. a

Regular resolution refutations of sets of clauses based on graphs can be
visualized in terms of joining together connected subgraphs, as we show in the
next two lemmas.

Lemma 5.5 Let G’ be a labeled graph. If T is a resolution proof of a clause C
from Clauses(G'), then there is a connected component H' of G' so that T is a
resolution proof of C from Clauses(H').

Proof. By induction on the size of T. a

Let G be an unlabeled connected graph. A deletion tree for G is a binary
tree labeled with connected subgraphs of G so that the root is labeled with G,
and if an interior node is labeled with a subgraph G, then the children of that
node are labeled with graphs resulting from the deletion of an edge e in Gj.
That is, if the deletion of e results in the disconnection of Gi, then the two
children are labeled with the two resulting connected subgraphs Ga and Gs;
otherwise, the children are labeled with two copies of G; with e deleted.

Lemma 5.6 Let G be an unlabeled connected graph, and G' an odd labeling of
G.

1. A deletion tree for G can be labeled with clauses so that it becomes a tree
resolution refutation of Clauses(G’).

2. A tree resolution refutation of Clauses(G') can be labeled with subgraphs
of G so that it becomes a deletion tree for G.

Proof. (1) We prove this by induction on the number of edges in G. If G has
no edges, then a deletion tree for G consists of a single node; label this node
with A. Let T be a deletion tree for a graph G with immediate subtrees T7 and
T> whose roots are labeled with graphs G; and G obtained by deleting an edge
labeled with the literal [in G’. Let G} and G% be the odd labeled components
of G'I [l := 0] and G'[[l := 1] respectively. When the deletion of [disconnects G
these components must be distinct, and so G and G2 correspond to the graphs

15

immediately below G in the deletion tree. By induction hypothesis, 77 and
T5 can be labeled with clauses so that they are regular resolution refutations
R1, R; of Clauses(G}) and Clauses(G%). Since by Lemma 5.4, Clauses (G}) C
Clauses (G')[[l := 0], we can add ! to the appropriate clauses in R; so that
it is a regular resolution proof of ! from Clauses(G’). Similarly, we can add [
to Ry to produce a regular resolution proof of I from Clauses(G’). Hence, by
labeling the root of T' with A, we have produced a regular resolution refutation
of Clauses(G').

(2) We prove this by induction on the depth of the refutation of Clauses(G').
If the refutation has depth 0, then it consists of A alone, so G consists of a
single node. Label the root with this node. Let R be a regular tree resolution
refutation of Clauses(G’) in which the immediate subtrees R; and R are proofs
of I and I. By Lemma 5.2 and Lemma 5.4, if we delete [and [from R; and R»
respectively, we obtain resolution refutations R} and R} of Clauses(G'[[l := 0])
and Clauses(G'[[l := 1]). By Lemmas 5.3 and 5.5, R} and R} are refutations of
Clauses(G1) and Clauses(G%), where G and G4 are connected components of
G'[[l:= 0] and G'| [l := 1] with an odd labeling. By induction hypothesis, the
nodes of R} and R, can be labeled with subgraphs of Gy and G so that they
become deletion trees for G; and Gs. If the deletion of [disconnects G, then
G1 and G» are distinct components of the resulting disconnected graph. Hence,
if we label the root of R with G, the result is a deletion tree for G. a

The above lemma shows that we can compute the complexity function
tr(Clauses(@)) directly from the graph G. Thus, we have reduced the prob-
lem of proving lower bounds for tree resolution to that of finding graphs that
require large deletion trees. The next result is due in its essentials to Tseitin

[62].
Theorem 5.2 Tree resolution cannot p-simulate the Davis-Putnam procedure.

Proof. For n > 0, let the graph G,, consist of N = 2" vertices vy,..., vy with
adjacent vertices v; and ;41 joined by n edges. The set of clauses Clauses(G,,)
contains 23"(1/2 — O(27")) clauses of size at most 2n.

Let T be a minimal deletion tree for G,,. Define a branch in T as follows:
whenever the children of a node in T' are labeled with distinct graphs resulting
from the disconnection of the parent graph, then the branch contains the larger
of the two sibling graphs. Since it requires the deletion of n edges to disconnect
such components, it follows that there are at least n(n — 1) interior nodes g
in T along the chosen path where the deletion of the chosen edge does not
disconnect the graph at the node. At such a node ¢, the complexity of the
subtree rooted at ¢ must be twice that of either of its subtrees. Thus the size of
T is at least 27("~1) showing that #r(Clauses(G,)) = 2"~V a function that
is not bounded by a polynomial in the size of Clauses(Gy).

On the other hand, there are Davis-Putnam refutations of Clauses(G,,) with

sizes linear in the size of the input clauses. The order of elimination is first to

16

eliminate all edges between vy and vy, then between vs and vz and so on. Since
the size of the clauses produced by this procedure is at most 2n, the result is a
refutation whose size is linear in the size of Clauses(Gy). 0O

By considering a different sequence of graphs, we can find a family of clauses
for which the smallest resolution refutations are exponentially big. The basic
idea of the lower bound proof given below, from Urquhart [63], is due to Armin
Haken [35], who introduced an ingenious “bottle-neck” counting argument to
prove the corresponding result for the pigeonhole clauses.

The analysis of refutations of Clauses(G’) is facilitated by considering those
assignments that make exactly one clause in Clauses(G’) false. These are easy
to describe. If ¢ is an assignment to the edges of G, and z a vertex in G,
then Charge(¢,z) is defined to be the sum modulo 2 of the values assigned by
¢ to the edges attached to z. An assignment to the edges of G is z-critical
if Charge(¢,y) = Charge(y) for all vertices y in G except for z. An z-critical
assignment falsifies exactly one clause in Clauses(z), while all other clauses in
Clauses(G') are satisfied; it is easy to see that this property characterizes -
critical assignments for G.

If G is a connected graph, we say that an assignment ¢ of truth-values to
some of the edges of G is non-separating if the graph that results by deleting
the edges assigned a value by ¢ is connected.

Lemma 5.7 If ¢ is a non-separating assignment to some of the edges of a
connected graph G with an odd labeling, and x is any vertex of G, then ¢ may
be extended to an z-critical assignment for G.

Proof. Fix a spanning tree for G that does not contain any edge assigned a
value by ¢. Assign values arbitarily to any edge not in the spanning tree that has
not yet been assigned a value. Fix z as the root of the spanning tree; proceeding
from the leaves of the tree inward towards z, assign values to the edges attached
to vertices other than z so that Clauses(y) is satisfied. The resulting assignment
must be z-critical since Clauses(G) is contradictory. a

The graphs used in the lower bound for resolution are the expander graphs
used by Galil [31] to prove an exponential lower bound for regular resolution,
with a small modification to simplify the proof. The expander graph H,, is
a simple bipartite graph in which each vertex has degree at most 5 and each
side contains m? vertices (for brevity we write n = m?). The particular family
of expander graphs used here was first defined by Margulis [44]. The exact
definition of the graphs is not needed; for the lower bound all that is needed is
the expanding property proved by Margulis and stated in the next lemma.

Lemma 5.8 There is a constant d > 0 such that if V1 is contained in one side
of Hp, |Vi] < n/2, and Vs consists of all the vertices in the other side of Hy,
that are connected to vertices of Vi by an edge, then |Va| > (1 + d)|V4].

17

Proof. See Gabber and Galil [30], who also provide a numerical lower bound
for the expansion factor d. a

The graph Gy, is obtained from H,, by the following modification. We add
n— 1 edges to each side of the graph so that each side forms a connected chain.
We call the new edges side edges and the edges in the original graph middle
edges. The resulting graph still satisfies Lemma 5.8, and each vertex in it has
degree at most 7. Let £, be Clauses(Gp,); O contains at most 128n clauses
of length at most 7, so the entire set of clauses has size O(n).

We now specify for each m a set of restrictions Ry, a family of assignments
to some of the edges in G,. Let d be the constant in Lemma 5.8, and let f be
d/16. A restriction in R, is specified by choosing a set of [fn] middle edges,
and then assigning truth-values arbitrarily to the chosen edges. For P € Ry,
we write E(P) for the set of chosen edges in P. Every restriction P in R, is
non-separating because at least one middle edge must be unset by P.

If C is a clause, and P € Ry, then we define Crit(C, P) as the set of vertices
z € Gy, such that there is an z-critical assignment ¢ extending P so that ¢(C') =
0. In a resolution refutation of Q,,, a clause C' is P-complez, where P € R, if
C is the first clause in the refutation for which |Crit(C, P)| > n/4; a clause is
complex if it is P-complex for some P. For every P € R,,, a P-complex clause
must exist in a refutation of Qy,, because by Lemma 5.7, |Crit(A, P)| = 2n. The
complex clauses in a refutation form a “bottle-neck” in that a given clause can
only be P-complex for an exponentially small fraction of all P € R,,.

Lemma 5.9 If C is a P-complex clause, then at least | fn| middle edges are
mentioned in C.

Proof. If C is an input clause in Clauses(z), then Crit(C, P) = {z}, so we
can assume that C is inferred ;from earlier clauses D and E by the resolution
rule. Since the resolution rule is sound, Crit(C, P) C Crit(D, P)UCrit(E, P).
Because both |Crit(D, P)| and |Crit(E, P)| are less than n/4, |Crit(C, P)| <
n/2. Let Crit(C, P) = Wy U W,, where W; and W; are contained in opposite
sides of Gy, and |[Wy| > |Wa]; let Y2 be the set of vertices not in W, that are
connected to Wy by a middle edge. Since |Crit(C, P)| > n/4, |W1| > n/8, so
by Lemma 5.8, |Y2| > dn/8.

Let e be an edge connecting a vertex x in Wj with a vertex y in Y5 that is not
one of the chosen edges in the restriction P. By the definition of a restriction,
there are at least |fn] such edges. Since z € Crit(C, P), there is an z-critical
assignment ¢ extending P so that ¢(C) = 0. If e is not mentioned in C, then
the assignment ¢’ obtained from ¢ by reversing the truth-value of e also falsifies
C. The assignment ¢’ is y-critical, and since e is not a chosen edge in P, ¢’ also
extends P. This contradicts the assumption that y is not in Ws. a

Theorem 5.3 There is a constant ¢ > 1 such that for sufficiently large m any
resolution refutation of Q, contains ¢® distinct clauses.

18

Proof. Let us fix a resolution refutation of €,,, with respect to which the notion
of complex clause is defined. Every P € R, is associated with exactly one P-
complex clause in the refutation, but a given complex clause may have a number
of restrictions associated with it. We show that the number of restrictions
associated with a given complex clause is exponentially small, so that there
must be exponentially many complex clauses in the refutation.

Let C be a complex clause. By Lemma 5.9, there is a set E(C) of middle
edges mentioned in C, where |E(C)| = | fn]. The fraction of restrictions P with
|E(P)N E(C)| = i with respect to which C is P-complex is at most 27¢, since
the edges in P are set independently. Hence, the ratio between the number of
restrictions associated with C' and the total number of restrictions is bounded

by 3
2 CHCnE) = ®)

where M = |E(C)| = | fn], s = |E(P)| = [fn], and N is the number of middle
edges in H,,.

We can find a bound for (8) by adapting Chvétal’s elegant bound [14] for
the tail of the hypergeometric distribution. First, we establish an inequality:

COCIeNe)
e
)
(30)0)

() () g
The bound on the ratio (8) follows from this inequality by the computation:
SO ()
(NN =05

S

§—

<.

I
=]

i

N

=

-~ e
i{yg
o ~

N

S

E

TN TN

J
J
J

I
[N
.

.
I

I
[N
.

IN
[N

.
e

o

TN
]
N——
~——
=
=2 |
N——
o

<1 - %) (10)

Since N < bn, M/2N > f/11, for sufficiently large m. It follows that there
must be at least ¢” complex clauses in the refutation, where ¢ = (1 — f/11)~7.
O

The basic properties of the graph-based clauses that are exploited in the
lower bound argument are an “expansion” property (reflected in Lemma 5.9),
and an “independence” property (rveflected in the fact that in a restriction the
chosen middle edges can be set independently). Chvatal and Szemerédi, in a
far reaching generalization of the preceding theorem, proved a lower bound for
sets of randomly chosen clauses, by showing that sets of random clauses satisfy
appropriately generalized forms of these properties. Define the random family
of m clauses of length k over n variables to consist of a random sample of size m
chosen with replacement ;from the set of all clauses of length k with variables
chosen from a set of n variables. Chvatal and Szemerédi [15] prove the following
result.

Theorem 5.4 For every choice of positive integers n,c, k such that k > 3 and
c27% > 0.7, there is a positive number € such that, with probability tending to
one as n tends to infinity, the random family of e¢n clauses of size k over n
variables is unsatisfiable and its resolution complexity is at least (1 + €)™.

6 Cut-free Gentzen systems

Cut-free Gentzen systems have proved popular in work on automated deduction,
since they allow simple search strategies in constructing derivations. In the
present section, we consider a sequent calculus G based on the biconditional
as the only connective. A sequent has the form I' H A, where T and A are
sequences of formulas. The axioms of G are sequents of the form A - A. The
rules of inference of G are as follows:

T, A4, B,ToF A DEALAB A o
T, B AT, FA TFALB,A A, - ormuraton
A ATFA DEAAA o tion)
ATFA TFA, 4 \omracon

20

kA

m (Thznnzng)
T,ABFA TFAARB
(=)
T.(A=B)F A
T,AFA,B RBFAA(Fﬂ
TFA (A=DB) =

An alternative formulation of G is possible in which the axioms are sequents
of the form I'; 4 F A, A, and the thinning rule is omitted. We denote this
alternative formulation by G’. It is the version adopted by Smullyan [59, pp.
105-106], and is usually employed in automatic theorem provers; the system
of Wang [67] is of this type. The Leningrad group headed by Shanin in their
work on computer search for natural logical proofs [55] used a formulation of the
second type for the proof search, but then transformed the resulting derivations
into simplified derivations in a system of the first type by a pruning procedure.

It is natural to use a system of the second type in a computer search, be-
cause if the usual ‘bottom-up’ search procedure is employed, the thinning rule
can (when employed in reverse) result in potentially useful information being
discarded. However, as we show below, the two formulations are quite distinct
from the point of view of worst case complexity. There are certain sequents for
which short proofs can be found only by employing the thinning rule.

Derivations in G have the subformula property, that is, any formula occurring
in the derivation must occur as a subformula in the conclusion of the derivation.
In fact, an analysis of derivations in G shows that occurrences of formulas in the
derivation can be identified with occurrences of formulas in the conclusion. This
can be seen by tracing occurrences of formulas step by step up the derivation
from the conclusion. Thus in an application of (F=), for example, the displayed
occurrences of A in the premisses are to be identified with the displayed oc-
currence of A in the conclusion of the inference. Similarly, in an application
of Contraction, both occurrences of the displayed formula A in the premiss are
to be identified with the occurrence of A in the conclusion. This identification
of occurrences will be used subsequently to prove lower bounds for the proof
systems.

The Cut rule

T,AFA TFAA
TFA

(Cut)

is not necessary for completeness, but in some cases results in much shorter
derivations. The formula 4 in the Cut rule is said to be the cut formula. The
subformula property fails for derivations in the system G + Cut that results by
adding the Cut rule to G. However, the property is preserved if we restrict the
Cut rule appropriately. We shall say that a derivation of a sequent I' - A is a

21

derivation in G with the analytic Cut rule if the derivation belongs to G + Chut,
and all cut formulas are subformulas of formulas in the conclusion T' - A.

We shall now prove some results from [65] that settle the relative complexity
of resolution and cut-free Gentzen systems, at least for the case of tautologies
involving the biconditional. As in the case of tree resolution, we define the
complexity of a derivation in Gr,¢. to be the number of leaves in the derivation
(that is, the number of occurrences of axioms). The simulation in the following
theorem is due to Tseitin [62].

Theorem 6.1 The system Res(=)rree p-simulates Grree.

Proof: If D is a derivation in Gr,c. of a sequent - 4, and © - = is a sequent
in D, then any formula B that occurs as an antecedent or consequent formula
in ©@ F = is a subformula of 4, and hence is assigned a literal [p as part of
Def(A). We construct a clause corresponding to the sequent © - E by forming
the disjunction of all the propositional variables Ip if B is an antecedent formula,
together with the [p if B is a consequent formula.

The resulting tree of clauses is not a resolution proof, but is easily converted
into a resolution derivation of A from Def(A) U {la} by inserting some added
resolvents. In every case except when a sequent is an axiom, we show that we
can derive a subclause of the clause corresponding to the sequent. The rules
(= F) and (F =) are simulated by forming two resolvents by resolving the clauses
corresponding to the premisses against clauses in Def(A4), and then resolving
these in turn to derive a subclause of the clause corresponding to the conclusion
of the inference. The result is a resolution refutation having complexity O(n),
where n is the complexity of D. a

We now define the sequence of biconditional tautologies that form the basis
of the lower bounds in this section. For any n > 0, let U,, be the formula

P,=P,1=..=P=P,=P,_1=...= P,

where we are omitting parentheses according to the convention of association to
the right; for example, A = B = C abbreviates (4 = (B = C)). All the variables
in U, occur exactly twice, so that U, is a tautology. To distinguish between
two occurrences of the same variable Py, we shall write the first occurrence
as P!, the second occurrence as PZ. The subformula of U, beginning with
the subformula occurrence P,g will be denoted by U,i. Thus U? contains k
occurrences of variables, while Ul contains n + k occurrences; in particular,
Ul =0,.

IfT' F A is asequent, we use the term O-assignment to refer to an assignment
of truth-values {0,1} to the occurrences of the variables in I' A. An O-
assignment is extended to all the occurrences of subformulas in the sequent by
the usual truth table method. The entire sequent takes the value 0 under an
O-assignment if all occurrences of formulas in T' take the value 1, and all the

22

occurrences of formulas in A the value 0. It is essential to the notion of O-
assignment that distinct truth values can be assigned to different occurrences
of the same variable. In particular, by choosing an appropriate O-assignment,
1t 1s possible to falsify a tautological sequent. If D is a cut-free derivation of a
sequent I' = A, then any O-assignment for I' F A can be extended to all the
sequents in D; this is possible because of the identification noted earlier between
occurrences of formulas in the conclusion and occurrences of formulas in D. A
given occurrence of a subformula in the conclusion can correspond to multiple
occurrences in a sequent earlier in the derivation; the form of the rules, however,
guarantees that all of these occurrences have the same value as the occurrence
in the conclusion. The notion of O-assignment was used earlier in a somewhat
different form in [64] to prove an exponential lower bound for cut-free Gentzen
systems. An exponential lower bound for the tree version of a cut-free Gentzen
system was proved earlier by Statman [61].

The formula U,, has 22" O-assignments associated with it. We are interested
only in certain of these. We shall call an O-assignment to U, critical if there
1s exactly one variable in U, whose occurrences in U, are assigned different
values. If this variable is Py, then we say that the O-assignment in question
18 k-critical. All critical O-assignments falsify the formula U,; a critical O-
assignment is uniquely determined by k, and the values the O-assignment gives
to the occurrences P}, for 1 < i < n, so that there are n - 2" distinct critical
O-assignments for the sequent U,.

Theorem 6.2 The minimal complexity of ¢ derivation of U, in the system
Grree 181 -2™.

Proof: Any critical O-assignment for - U, falsifies the conclusion of the deriva-
tion, - Uy, and if it falsifies the conclusion of an inference, then it also falsifies
one of the premisses. Hence, if ¢ is any critical O-assignment for - U, , we can
trace a branch in the derivation from the conclusion to an axiom, so that all the
sequents in the branch are falsified by ¢. If ¢ is a k-critical O-assignment, then
the only subformula of U,, whose occurrences have distinct values assigned to
them under ¢ is Py. Thus the axiom at the tip of the branch must have the form
P, F P;, where the antecedent and consequent occurrences of P correspond
to distinct occurrences of Py in U,. It follows from this that if ¢ and) are
respectively k-critical and j-critical for 7 # k, that the branches for ¢ and
are distinct. Furthermore, since the axiom at the tip of the branch for ¢ must
contain PZ, it follows that the branch must contain occurrences of all P}, for
1 < ¢ < n, as whole formulas on some sequent in the branch. Since distinct
k-critical O-assignments give distinct sequences of values to the occurrences P,
all these branches must also be distinct. There are n - 2" O-assignments for
F Up, so that the complexity of the derivation is at least n - 2". It is easily
verified that there is a derivation of this complexity. a

23

Py Py Ps P, P Q:

- /

Figure 3: The labeled graph Gs

We now show that there are relatively short proofs of U, in the resolution
system. To describe the proofs, it is useful to give a graphical representation of
these tautologies. The sets of clauses derived from the sequence of formulas U,
will be represented in the form Clauses(G,,), for a sequence of graphs G,.

The graph G, associated with the formula U, is a planar graph that we
describe by giving the co-ordinates of its nodes. G, has as its nodes the set of
points {(4,1) : 0 < ¢ < n}U{(4,0): 1 <4< n—1}. The following nodes are
joined in Gp: (4,1) to (¢4 1,1), (4,0) to both (¢,1) and (¢ + 1,0), (n, 1) to both
(n—1,0) and (1,0). The graph may be described as a ladder with a few extra
attachments. The labels attached to G, are as follows. The vertical lines, and
the line joining (n,1) to (n — 1,0) are labeled with the variables P, to P; from
left to right. The horizontal lines joining the points with y co-ordinate 1 are
labeled with the variables Q1 to @} from left to right; the horizontal lines joining
points with y co-ordinate 0 are labeled with the variables Q% _; to Q32 ;from left
to right. The line joining (n, 1) to (1,0) is labeled with the variable Q%. The
node (0, 1) is labeled with 0; all other nodes are labeled 1. The accompanying
figure shows the labeled graph corresponding to Us. A node is shown filled in
only if it is labeled with 0.

The set of clauses Def(U,) U {~QL}, where the variable Qi is correlated
with the subformula U,i, is identical with Clauses(G,). The graphs G,, are sim-
ilar to examples used by Galil ([31, Fig. 3.2.4]) to show that the Davis-Putnam
procedure is very sensitive to the order of elimination adopted in forming resol-
vents; with one order of elimination, ladder-like graphs result in exponential-size
refutations, while a different order gives rise to linear-size refutations.

Theorem 6.3 The tautologies U, have proofs in Res(=)rree of complexity
O(n?).

24

Proof: Because the set of clauses Def(U,) U {~QL} can be described in terms
of the graph G,,, Lemma 5.6 shows that it is sufficient to find a deletion process
for G, in which the underlying tree has O(n?) leaves. Such a process can be
constructed as follows: first, remove four edges so that the result is a 2 x (n—1)
grid graph. Now delete a top edge and the corresponding bottom edge in such
a way as to break the graph into two components that are as nearly equal in
size as possible; repeat this process till subgraphs are reached that consist of
two nodes linked by a vertical line, then delete the vertical line. A branch in
the resulting tree has length at most 2 logn 4+ ¢, for some constant ¢, so that the
tree has O(n?) leaves. a

Corollary 6.1 The system Grree cannot p-simulate Res(=)rree-

In contrast to the foregoing results, if derivations are presented in linear form,
then resolution and cut-free Gentzen systems are equally powerful systems (up
to a polynomial) when pure biconditional tautologies are considered.

Theorem 6.4 Each of the following systems can p-simulate any of the others:

G, G + analytic Cut, Res(=).

Proof: It is trivially true that G + analytic Cut can p-simulate G. In addition,
the simulation of Gryee by Res(=)rree in Theorem 6.1 can be extended readily
to a simulation of G + analytic Cut by Res(=).

The simulation of G + analytic Cut by Res(=) can be reversed as follows.
Given a refutation of Def(A)U{l4} in Res(=), we can convert it into a shorter
derivation of I4 in Res(=) by omitting any resolution involving the literal 7.
We can then simulate this derivation in G + analytic Cut by using the reverse
of the translation employed earlier; the analytic cut rule can be employed to
simulate resolution inferences.

It remains only to show that G can p-simulate G + analytic Cut . We shall
show how to replace an analytic cut inference by a sequence of inferences using
the inference rules of G so that the number of inferences of G used is a linear
function of the length of the conclusion of the derivation. Thus let D be a
derivation of a sequent I' - A in G + analytic Cut . Let

T,AFA TFAA
TFA

(Cut)

be an inference by the analytic Cut rule in D. The formula A is a subformula of
a formula B occurring as an antecedent or consequent formula in the conclusion
of the derivation. Thus there is a sequence of formulas A = Bg---Br, = B so
that B; is an immediate subformula of B;;1. By using the rules of G, we can
derive I', B; - A and T' F B;, A for any ¢. Thus, let us suppose that B;;1 has the
form (B; = C), and that we have already derived the sequents T', B; - A and
T'k B;, A . By the weakening rule, we can derive I', B;, C - A and T + B;,C, A
and so I', B;41 F A by (=) . Symmetrically, we can derive T' - B;y1, A.

25

This involves 6 extra steps in the proof, so it is possible to derive I', B - A
and I' - B, A in 6k extra steps. By repeating this manoeuvre, for any sequent
O F = in the derivation D, we can derive a corresponding sequent in G of the
form ©,T' - Z, A’, where TV and A’ are subsets of T' and A. The derivation of
'+ A in G that results has complexity O(k.m), where k is the complexity of
D, and m is the number of symbols in T' - A. a

This somewhat unexpected simulation result depends on the special features
of the inference rules for = in G. It extends easily to include negation, but does
not appear to extend to conjunction and disjunction. Whether the simulation
result holds when the cut-free Gentzen system includes these connectives is
oper.

We now sketch a result mentioned earlier, that the addition of the Thinning
rule results in an exponential shortening of derivations in some cases.

Theorem 6.5 A derivation of U, in the system G’ must contain at least n.2"
distinct sequents.

Proof: The proof of this result is essentially the same as the proof of Theorem
6.2. As in the earlier proof, we can trace an O-assignment back up a derivation
of U, to an axiom. Axioms corresponding to distinct O-assignments must be
distinct, by the argument given earlier to show that the branches of the tree
must be distinct. ad

Techniques similar to those used in the lower bound for resolution can be
used to proved exponential lower bounds for cut-free Gentzen systems. The
following result is proved in Urquhart [64].

Theorem 6.6 There is a sequence Fy, of biconditional tautologies, where each
formula has length O(n?), but the shortest proof of F, in G contains at least
2n/16 distinet sequents.

This result can be improved to a lower bound exponential in the size of a family
of biconditional tautologies based on expander graphs by adapting the proof of
Theorem 5.3.

We conclude this section with the observation that a cut-free Gentzen system
for a given set of connectives and the corresponding analytic tableau system are
p-equivalent. This can be seen most easily by using the form of Gentzen system
where the thinning rule is omitted. Then (as Dowd [26] first observed) there is
a straightforward and eflicient translation procedure between the two systems;
the details are to be found in Smullyan’s book [59, Ch. XI]. The proof of
equivalence is completed by showing that (in contrast to the case where proofs
are represented as sequences) the system without thinning can simulate the
system with the thinning rule in an efficient way.

26

7 Frege systems

Proof systems p-equivalent to axiomatic systems with schematic axioms and
rules form a natural and important class. This family of systems are called
“Frege systems” in the literature of proof complexity. Strictly speaking, this
is a misnomer, since Frege’s original system of propositional logic [28] included
a tacitly applied rule of substitution; according to Church [13, p. 158], von
Neumann [66] was the first to use axiom schemes to avoid the use of a substi-
tution rule. However, the term “Frege system” seems well entrenched in the
complexity literature, so it is employed here.

We assume in this and the following sections a language for propositional
logic based on a functionally complete set of connectives, for example the lan-
guage based on binary disjunction V and negation ~. We shall include in ad-
dition the propositional constants 0 and 1 standing for “false” and “true” re-
spectively. As we shall see below, the exact choice of language is in many cases
not crucial. If A is a formula and p;,...,pn a sequence of variables then we
write A[B1/p1,..., Bym/pm] for the formula resulting ;from A by substituting
By,..., By, for p1,...,pm.

A Frege rule is defined to be a sequence of formulas written in the form
Aq,..., A F Ag. In the case that the sequence Ai,..., A is empty, the rule
is referred to as an aziom scheme. The rule is sound if A;,..., Ay |E Ao, that
18, if every truth-value assignment satisfying A4,,..., A also satisfies A4g. If
Ay, ..., A F Ap is a Frege rule, then Cy is inferred from C4,...,Cy by this
rule if there is a sequence of formulas By,..., B, and variables p1,...,Pm SO
that for all 4, 0 <i <k, C; = Ai[B1/p1,-- ., Bm/Pm]-

If F is a set of Frege rules and A a formula, then a proof of A in F from
A, ..., A, is a finite sequence of formulas such that every formula in the se-
quence is one of Aj,..., A, or inferred from earlier formulas in the sequence
by a rule in F, and the last formula is A. The formulas in the sequence are the
lines in the proof.

If F is a set of Frege rules, then it is tmplicationally complete if whenever
A1, ..., A |E Ao then there is a proof of Ag in F from Ay,...,Am. A Frege
system 1s defined to be a finite set of sound Frege rules that is implicationally
complete.

Example 7.1 Shoenfield’s system [56, p. 21], in which the primitive connec-
tives are V and ~:

27

Excluded middle: F ~pV p;

Expansion rule: plF gV p;

Contraction rule: pVpt p;
Associative rule: pV(¢gVr)F(pVg)Vr;

Cut rule: pVg,~pVrbkgvr.

We define the size of a Frege proof as the number of occurrences of symbols
in it. Another measure is that of the number of lines in a proof; we shall refer
to this measure as the length of a proof. The length and size measures of a
proof may not be polynomially related, since it is possible for a Frege proof to
contain lines that are exponentially large, as a function of the proof’s length.
The complezity of a Frege rule is the number of distinct formulas occurring in
the rule; for example, the Cut rule in Shoenfield’s system has complexity 7.

Many types of systems familiar in the logical literature are p-equivalent
to Frege systems. Among these are systems obtained by adding the cut rule
to cut-free Gentzen systems, and systems of natural deduction containing the
deduction theorem as a primitive rule. The statement of this equivalence forms
one of the main results in Reckhow’s thesis [52].

Theorem 7.1 Any two systems from the following classes are p-equivalent:
Frege systems, natural deduction systems, Gentzen systems with cut.

The proof of this theorem is straightforward when the two systems are based
on the same connectives, or when there is a direct translation possible (for
example, such a translation is possible between the connective sets {—,~} and
{V,~}). However, an efficient direct translation is not possible, for example,
in the case of the connective sets {—,~,=} and {A,~}. In this case, it is
necessary to employ a technique of indirect translation based on the well known
construction of Spira [60], [68, pp. 218-221], [27, pp. 68-73]. The reader is
referred to Reckhow [52] or the book by Krajicek [40] for details of the proof.

For general Frege systems only very weak lower bounds on the size of proofs
are known. This failure in proving lower bounds mirrors the corresponding lack
of success in proving strong lower bounds on the size of formulas or circuits com-
puting explicitly defined Boolean functions (the books by Wegener and Dunne
[27, 68] provide good surveys of work in this area). Strong lower bounds have
been proved only in the case where significant restrictions are placed on the
structure of the proofs considered. These restrictions are a counterpart in proof
theory of restricted classes of circuits for which strong lower bounds are known.

We conclude this section with a sketch of the lower bounds just mentioned.
We give a full outline of the proof, but omit the rather intricate details of the

28

central combinatorial lemmas on which the proof rests. For the purpose of
these lower bounds, we employ the language based on disjunction and negation,
together with the constants 0 and 1; a conjunction 4 A B is treated as an
abbreviation for the formula ~(~4 V ~B).

A formula can be represented by its formation tree in which the leaves are
labeled with propositional variables or constants, and an interior node is labeled
with V if it is the parent of two nodes, and with ~ if it is the parent of only one.
A branch in the tree representing a formula, when traversed from the root to the
leaf at the end of the branch is labeled with a block of operators of one kind (say
~), followed by a block of the other kind (say V), ..., ending with a variable or
constant. The logical depth of a branch is defined to be the number of blocks of
operators labeling the branch. The depth of a formula is the maximum logical
depth of the branches in its formation tree.

Example 7.2 The formula (~pV ~~1)V ~(~q V r) has depth 4.

The depth of a proof in a Frege system is the maximum depth of a line in
the proof. The lower bound sketched below is for proofs of bounded depth, in
which all formulas have depth bounded by a fixed constant.

The lower bound is based on the propositional pigeon-hole principle, men-
tioned above as the basis for Haken’s exponential lower bound [35] for resolution.
Let D, R be finite non-empty sets where DN R = (), and let S = DUR. A
matching between D and R is a set of mutually disjoint unordered pairs {4, j},
where ¢ € D, j € R (that is to say, a matching in the complete bipartite graph
D x R). A matching covers a vertex ¢ if {4, j} belongs to the matching for some
vertex j; a matching covers a set X if it covers all the vertices in X. If 7 is a
matching then we denote by V() the set of vertices covered by 7. A matching
between D and R is perfect if it covers all of the vertices in D U R.

The pigeon-hole principle states that if |D| = n+ 1, |R| = n then there
is no perfect matching between D and R. To formalize this as a tautology in
propositional logic we introduce propositional variablesP;; for i € D, 7 € R. The
language built from these variables and the constants 0,1 using the connectives
V, ~ we shall refer to as L(D, R); we also refer to the language as L, in contexts
where D, R are understood as the basic sets. The tautology PHP(D, R) is the
disjunction

\/ (P,'k/\ij)\/ \/ (P]“'/\ij)\/\/ /\N ik\/\/ /\N k-

i£j€D i£jER i€DkKER keRieD
EER keD
We shall also refer to this as PH P, when the underlying sets are understood.
The negation of P H P, is equivalent to the conjunction of a set of clauses; Haken
[35] showed that this set of clauses requires resolution refutations of size ¢”, for
c> 1.

29

The most important step so far in our understanding of the complexity of
propositional proofs was taken by Ajtai in a remarkable paper [1] in which he
proved the following result.

Theorem 7.2 For a given Frege system F, natural numbers c,d, and suffi-
ciently large n, any depth ¢ proof of PHP, in F must have size greater than
d

nt.

This theorem serves to separate bounded-depth Frege systems ;jfrom Frege
systems in the map of proof systems, since Buss [11] shows that the pigeonhole
tautologies have polynomial-size proofs in a Frege system (this result improves
on the earlier result of Cook and Reckhow [20] showing the same result for
extended Frege systems).

Ajtal’s proof is a highly ingenious blend of non-standard models for number
theory and combinatorics. Subsequent work by a number of authors simplified
Ajtai’s proof, first eliminating the use of non-standard models [9], second im-
proving the lower bound from super-polynomial to exponential [39, 7, 49, 38].
Krajicek [39] proved the first truly exponential lower bounds for bounded depth
proofs, using modified versions of the pigeon-hole formulas for each depth d. In
the same paper, he also showed that depth d Frege systems cannot p-simulate
depth d + 1 Frege systems. Shortly afterwards, Pitassi, Beame and Impagli-
azzo [7, 49] and (independently) Krajicek, Pudldk and Woods [7, 38] improved
Ajtai’s lower bound for the pigeon-hole principle jfrom super-polynomial to
exponential; their proof is sketched here.

Let D, R be fixed, where |D| = n+1, |R| = n. The set of matchings between
D and R we shall denote by M,,. A matching 7 determines a restriction pr of the
variables of L, by the following definition. For a variable P;;, if ¢ or j is covered
by 7 then p.(P;;) = 1if {i,j} € 7, p=(P;;) = 01if {4, 5} & 7; otherwise pr(P;;)
1s undefined. Since a matching uniquely determines and is determined by the
corresponding restriction, we shall identify a matching with the restriction it
determines, and refer to it according to context as a matching or a restriction.
If p1 and p2 are two matchings in M,, and p; U p3 is also a matching, then
we say that they are compatible. If p; and p; are compatible matchings, then
their union will be written as pyps. If p is a matching, then D[p = D\ V(p),
Rip=R\V(p) and S[p = S\ V(p). If M is a set of matchings, and p a
matching, then M| p is defined to be {p' \ p: p’ € M, p’ compatible with p}.

If A is a formula of L,, and p € M, then we denote by Al p the formula
resulting from A by substituting for the variables in A the constants representing
their value under p. That is to say, if P;; is set to 1 or 0 by p, then we substitute
1 or 0 for P;;, otherwise the variable is unchanged. If I is a set of formulas and
p € M, then T'[pis {Alp: A € T'}. The formula Al p can be simplified by
eliminating the constants by the rules -0 =1,-1=10, (0VA) = 4, (AV0) = 4,
(1vA)=1,(Av1)=1. If aformula 4 can be simplified to a formula B using
these rules, then we write A = B.

30

The language L, contains only binary disjunction. However, in the proofs
that follow it is convenient to introduce an auxiliary language that uses un-
bounded conjunctions and disjunctions. We shall distinguish the order of the
terms in such conjunctions and disjunctions.

Let A be an unbounded conjunction each of whose conjuncts is a variable
of L, or a constant. We shall say that A4 is a maiching term if the set of pairs
{3,7} for P;; a variable in A forms a matching. The size of a matching term
is the cardinality |7| of the matching 7 corresponding to it; the set of vertices
V(A) associated with a matching term A is the set of vertices mentioned in the
variables in A, that is, the set V(). If 7 is a matching, then we shall write Ax
for the matching term that describes it, the conjunction containing the set of
variables P;; for {4, j} € 7 as conjuncts.

An unbounded disjunction of matching terms we shall call a matching dis-
junction; it is a matching disjunction over S if all the vertices mentioned in
it are in S. If all of the matching terms in a matching disjunction have size
bounded by 7, then it is an r-disjunction.

Let A be a digjunction in the language L,, and 4;, ¢ € I, those subformulas
of A that are not disjunctions, but every subformula of 4 properly containing
them is a disjunction. Then the merged form of A is the unbounded disjunction
\/iEI A;.

The proof of the lower bound is significantly complicated in this case by the
fact that we are dealing with a system in which all the steps are tautologies. In
contrast, the lower bound for resolution (for example) exploits the fact that a
refutation can be considered as making progress towards a contradiction. It is
plain that to have similar notion of “progress” in this case, we have to employ a
non-standard “truth” definition. The solution to this problem is to assign each
step in a derivation its own space of assignments with respect to which it is a
“tautology”; if we choose the spaces in the right way, the rules of inference are
sound with respect to these “local tautologies.”

The spaces of local assignments are provided by matching trees, that is,
decision trees in which the branches represent matchings. We assume that
the space of matchings is the set M, of matchings between D and R, where
|[Dl=n+1,|Rl=n,S=DUR.

Definition 7.1 A matching tree over S is a tree T satisfying the conditions:
1. The nodes of T other than the leaves are labeled with vertices in S;

2. If a node in T is labeled with a vertex 1 € S, then the edges leading out of
the node are labeled with distinct pairs of the form {i,j} where j € R if
1€D,je€DifteR;

3. No node or edge label is repeated on a branch of T;

4. If p is a node of T then the edge labels on the path from the root of T to
p determine a matching w(p) between D and R.

31

We shall use the notation Br(T) for the set of matchings determined by the
branches of T', that is, {w({) : l aleaf in T'}. If M is a set of matchings, then
T is said to be complete for M if for any node p in T labeled with a vertex
i € S, the set of matchings {7(¢) : ¢ a child of p} consists of all matchings in
M of the form n(p) U{{4,j}}. If the space of matchings is M,, we shall use the
abbreviation “complete” instead of “complete for M,,.”

Lemma 7.1 Let T be a complete matching tree over the space S = D U R,
|ID| =n+1, |R| =n, and p a matching in M, such that |p| + Depth(T) < n.
Then there is a m € Br(T) such that 7 Up € M, .

Proof. We show that by successively choosing nodes in T starting at the root
we can find a branch in T so that the required # labels the chosen path. Let us
suppose that the nodes have been chosen as far as a node p that is not a leaf.
By assumption, p U w(p) € M,; since |p| + Depth(T) < n, |pUn(p)| < n. Let 4
be the vertex in S labeling node p; there exists at least one matching extending
pUm(p) that covers ¢. Since T is complete, at least one edge below p is labeled
with a pair that extends pUn(p) to a matching in M,,. Then we can extend the
path by choosing the node at the end of this edge. ad

If the leaves of a matching tree T' are each labeled with 0 or 1, then it is a
matching decision tree. We define for : = 0,1,

Bri(T) = {n(l) : l is a leaf of T labeled ¢}.

If T is a matching decision tree, then 7T is the matching decision tree that
results by changing the leaf labels of T from 0 to 1 and 1 to 0, while Disj(T)
is the unbounded disjunction \/{A7 : # € Br1(T)}. Figure 4 shows a matching
decision tree where D = {1,2,3,4,5} and R = {6,7,8,9}.

Lemma 7.2 If T is a maiching decision tree, and p extends a matching (1) €
Br(T), then Disj(T)] p =0 or 1 according to whether | is labeled 0 or 1.

Proof. If | is labeled 1, then since p extends w(l), the term Am(l) is set to 1
by p, so that Disj(T)[p = 1. If | is labeled 0, then we need to establish that
for any leaf I’ labeled 1, Ax(I")[p = 0. Let p be the node at which the branches
ending in [and I’ diverge. If ¢ is the vertex in § labeling p, then #(I) and n (')
must disagree on the vertex matched with ¢. Thus Ax(I')] p = 0, showing that
Disj(T)p = 0. O

If F is a matching digjunction, and T a matching decision tree, then we say
that T represents F if for every n(l) € Br(T), F|«(l) = 1if] is labeled 1, and
Flx(l)=0if] is labeled 0.

We now introduce the basic concept of a k-evaluation; a k-evaluation can
be considered as a kind of non-standard truth-definition for a set of formulas.
The notion of k-evaluation is due to Krajiek, Pudldk and Woods [38]. The

32

{271

1
{37

5

{59

1

Figure 4: A matching decision tree

definition of k-evaluation used here differs jfrom that of [38]; in that paper a
more general definition is used in which formulas are assigned sets of restrictions
rather than complete decision trees.

Definition 7.2 Let T' be a set of formulas of L,, closed under subformulas,
where S = DUR, [D|=n+1, |R| =n. Let k > 0. A k-evaluation T is an
assignment of complete maiching decision trees T(A) to formulas A € T so that:

1. T(A) has depth < k;

2. T(1) is the tree with a single node labeled 1, and T(0) is a tree with a
single node labeled 0;

3. T(P;;) is the full matching tree for {i,j} over S, with a leaf ! labeled 1 if
(1) contains {i,5}, otherwise 0;

4. T(=4) =T(A)*;

5. If A is a disjunction, and \/;.; A; is the merged form of A then T(A)
represents \/;.; Disj(T(A;)).

If T is a k-evaluation for a set of formulas I'; then the set of matchings
Br(T(A)) can be considered as a space of truth-value assignments for 4; thus
if T(A) has all its leaves labeled 1, we can think of A as a kind of “tautology”
relative to this space. However, in contrast to the classical notion of tautology,
this notion is not preserved under classically sound inferences (this fact is the
key to the lower bound argument).

33

Example 7.3 Let D = {1,2,3} and R = {4,5}, and letT = {P14V P15, P15V
—Py5, P1y V —Pas}t. Then there is a 2-evaluation for T' so that the first two
formulas in T have 1 on all their leaves, but the third formula does not, although
1t 1s a logical consequence of the first two.

The following lemma shows that examples like this do not exist if the depth
of a k-evaluation is small enough relative to the size of the inference rules of the
proof system.

Lemma 7.3 Let F be a Frege system in which the complexity of the rules is
bounded by f, and P a proof in F in the language L(D, R), where S = DU R,
|R| =n. If T is a k-evaluation for all the formulas in P and k < n/f, then for
any line A in P,

Va(m € Br(T(A)) = Disj(T(A))|m = 1),
that is, T(A) has all of its leaves labeled 1.
Proof. The lemma is proved by induction on the number of lines in the proof

P. Let
Al(Bl/pla .. '7Bm/pm)7 .. '7Ak(Bl/p17 .. '7Bm/pm))
AO(Bl/pla . '7Bm/pm)

be an instance of a rule of F, and assume that the lemma holds for all of the
premisses of the inference. Let T' be the set of formulas A(B1/p1, ..., Bm/pm),
where A(p1,...,pm) is a subformula of some A;. By assumption, |T'| < f; let
M={mu...Ux; € M, : m € Br(T(C;))}, where T = {C4,...,C;}. By
Lemma 7.1, if m; € Br(T(C})), then there is a # € M, so that m; C 7. Let us
abbreviate Disj(T(A4)) as D(A). Then for #r € M and 4, B €T,

1. D(A)[r=0o0r D(A) |7 =1;

2. D(O)[r=0and D(1)[7 =1;
3. If ~4A €T then D(-A)[x =1« D(A)| 7 = 0;
4. If (Av B) €T then D(AVB)[r=1< D(A)[r=1or D(B)|7 = 1.

These equivalences follow from the definition of a k-evaluation and from Lemmas
7.1 and 7.2.

For any m € M, define an assignment V; of truth-values to the formulas in
T by setting Vz(C;) = 1if D(C;)[7 = 1, Vx(C;) = 0 if D(C;)[7 = 0. The list of
equivalences above shows that V; respects the rules of classical logic. By Lemma
7.2, the premisses of the inference are all assigned the value 1 by V;; since the
rule of inference is sound, the conclusion of the inference is also assigned 1 by V.
Now let o € Br(T(Ao(B1/p1,- .-y Bm/Pm))). There is a # € M extending o, so
Va(4o(B1/p1,--., Bm/pPm)) = 1, equivalently, D(Ao(B1/p1,- .., Bm/pm))[0 =
1, concluding the proof of the lemma. a

34

The next lemma shows that, relative to a k-evaluation, ¥ < n — 1, the
pigeon-hole tautology PH P, is a “contradiction.”

Lemma 7.4 Let DUR=S, [D|=n+1, |R|=n, PHP, = PHP(D,R). If
T is a k-evaluation for a set of formulas containing PHP,, k <n —1, then all

the leaves of T(PH P,) are labeled 0.

Proof. Left as an exercise for the reader; the proof uses Lemma 7.2. a

We now state without proof the central lemma showing that if a set of
bounded depth formulas of L,, is subjected to a random restriction then, pro-
vided the set is not too large, the set of restricted formulas has associated
decision trees of small depth. From this result the lower bound on the size of
propositional proofs follows by earlier lemmas.

Lemma 7.5 Let d be an integer, 0 < € < 1/5, 0 < é < € and T a set of
formulas of L, of depth < d, closed under subformulas. If |T| < 2”6, qg= fned]
and n is sufficiently large, then there exists p € MY so that there is a 2n°-
evaluation of T'| p.

This lemma is proved by induction on the depth d. The induction step is
handled by a “switching lemma” that says (roughly speaking) that if a match-
ing digjunction is simplified by a random restriction, then with high probability
the resulting simplified disjunction can be represented by a small depth decision
tree. The name “switching lemma” derives from the corresponding combinato-
rial lemmas in circuit theory [29, 34], showing that with high probability, the
application of a random restriction makes it possible to switch efficiently be-
tween conjunctive and disjunctive normal form (“efficiently” in the sense that a
large blow-up in formula size does not occur). These lemmas allow the proof of
strong lower bounds on the size of bounded depth circuits computing functions
such as parity. The reader is referred to papers of Razborov [51] and Beame [5]
for elegant proofs of various switching lemmas.

Theorem 7.3 Let F be a Frege system and d > 4. Then for sufficiently large
n every depth d proof in F of PH P, must have size at least 2”6, for 6 < (1/5)4.

Proof. Let the rules of F have complexity bounded by f, 0 < § < (1/5)%, and
let A;,..., A: be a proof in F of depth d and size < on’

Choose € so that € < 1/5, § < €. By Lemma 7.5, there exists p € M,
q = fned], and a 2n’-evaluation T of T'| p, where I' is the set of subformulas
in the proof Ai,..., 4. Then Ai[p,..., A:]p is a proof in F in the language
L(D] p, R| p).

Since § < €? and n is sufficiently large, 2n® < ned/f, so by Lemma 7.3, for
every step Ay in the proof, T(Ay| p) has all its leaves labeled 1. On the other
hand, PHP,|p = PHP(D]|p, R| p), so by Lemma 7.4, if PH P, were the last

35

line A; of the proof, all the leaves of T(PH P, | p) would be labeled 0. It follows
that A;,...4; cannot be a proof of PHP,. Hence, any proof in F of PHP,
must have size at least 2°. ad

In a subsequent paper [2], Ajtal extended his lower bound to a system ob-
tained from a bounded depth Frege system by adding certain axiom schemes.
The pigeonhole principle P H P, states that there is no perfect matching in the
bipartite graph D x R, where |D| = n+ 1, and |R| = n. Let PAR, be the
tautology defined in a similar way stating that there is no perfect matching in
the complete graph Ksp41. Ajtal proves that even when we add to a Frege sys-
tem all of the pigeonhole formulas P H P,, as new axiom schemes, the tautologies
P AR, still require bounded depth proofs that grow faster than any polynomial
in n, when the proofs are restricted to a fixed depth (the pigeonhole formulas
can be derived very easily by proofs of bounded depth when the formulas PAR,,
are taken as axiom schemes). Beame and Pitassi [8] recently extended Ajtai’s re-
sult by showing an exponential lower bound on the size of bounded depth Frege
proofs of PAR, in Frege systems with the added pigeonhole schemes (Sgren
Riis [53] gave an independent proof of this result).

Ajtai provided a further extension of these results in recent work [3, 4] on the
independence of modular counting principles. The modulo g counting principle
states that no finite set whose cardinality is not divisible by ¢ can be parti-
tioned into g-element classes. For a fixed cardinal number N, this principle can
be stated as a propositional tautology Countflv; in this notation, the principle
PAR, can be expressed as Countgn‘l'l. Ajtal proved that whenever p,q are
distinct primes, the propositional formulas Count%""’l do not have polynomial
size, bounded depth Frege proofs jfrom instances of Count)', where m # 0
(mod p). Beame, Impagliazzo, Krajicek, Pitassi and Pudlédk [6] extended this
result to composite p and q.

The preceding results are significant not just from the point of view of propo-
sitional complexity theory, but also as providing independence results in systems
of bounded arithmetic. The system IAg of first order bounded arithmetic intro-
duced by Parikh [47] has been extensively studied; in it, the induction scheme is
restricted to formulas containing only bounded quantifiers. Let IAg(f) be the
system obtained from IAy by adding a new function symbol f that is allowed
to appear in the induction scheme. Let PHP(f) be the formula in the ex-
panded language expressing the fact that f is not a bijection between {0,...,n}
and {1,...,n} for any n. Then Ajtai’s lower bound for bounded depth proofs
shows that PH P(f) is unprovable in IAg(f); similar independence results can
be proved for the modular counting principles. This follows from the fact that
for statements S of an appropriate syntactic form, there is a corresponding se-
quence of tautologies expressing restricted versions of S so that if S is provable
in bounded arithmetic, the sequence of tautologies has polynomial-size proofs in
a bounded-depth Frege system. This connection between bounded arithmetic
and propositional logic was first observed by Paris and Wilkie [48]. They showed

36

that if PHP(f) were provable in IAg(f) then there would be polynomial size
Frege proofs of the pigeon-hole tautologies; Buss [11] strengthened the conclu-
sion of this theorem to apply to bounded-depth Frege systems. The reader is
referred to Buss’s paper [11] and the book by Krajicek [40] for details of this
connection.

8 The extension and substitution rules

A natural way to extend a Frege system is to allow the possibility of abbreviating
formulas by definitions. This idea was first proposed by Tseitin [62] in the
context of resolution, but is perhaps more natural in the context of axiomatic
systems.

Let F be a Frege system; for convenience, let us assume that the language
of F contains a symbol = for the biconditional. If T U {A} is a set of formulas
of F, then a sequence of formulas ending in A is a proof of A from T in F with
extension if each formula in the sequence either belongs to I, or is inferred from
earlier formulas in the sequence by one of the rules of F or has the form P = A4,
where P is a variable not in appearing in I' U {4}, nor in any earlier formula in
the sequence. In the case of a step of the last type, the variable is said to be
introduced by the eztension rule. We shall refer to the system with the addition
of the extension rule as an extended Frege system. The extension rule appears
to be very powerful; since abbreviations can be iterated, very long formulas can
be abbreviated to short ones by using the extension rule.

The substitution rule is another natural rule that appears in the earliest
systems for propositional logic, such as those of Frege [28] and Whitehead and
Russell [69]. (Since the substitution rule is unsound, in proofs from assumptions,
we must disallow substitution for variables appearing in assumptions.) It is not
hard to prove that a Frege system with the addition of the substitution rule can
p-simulate the same system with the extension rule added. Surprisingly, the
converse simulation also holds, a result first proved by Dowd [26].

Theorem 8.1 Any two systems from the following classes are p-equivalent: ex-
tended resolution, extended Frege systems, Frege systems with substitution.

Proof. See Krajicek and Pudldk [41]. O

Extended Frege systems are significant in themselves as a natural class of
proof systems, but also because of a connection with another form of bounded
arithmetic. This was the first connection to be observed between propositional
logic and bounded arithmetic; it appeared in a fundamental paper of Cook
[18]. The system PV is a free variable system of arithmetic that bears the
same relation to the polynomial-time computable functions as Skolem’s recursive
arithmetic bears to the primitive recursive functions. Whereas Skolem’s system
has a function symbol for each primitive recursive function, PV has one for each
polynomial-time computable function; for details, see [21].

37

Cook introduced PV as a way of formalizing the intuitive notion of ‘feasibly
constructive proof’: feasibly constructive proof is to polynomial-time algorithm
as constructive proof is to algorithm. The next theorem (from Cook [18]) em-
phasizes the power of extended Frege systems; it shows that if a combinatorial
principle has a feasibly constructive proof, then the corresponding family of
tautologies has polynomial-size proofs in an extended Frege system.

Theorem 8.2 If t = u is an equation of PV then there is a polynomially
growing family of propositional formulas |t = ul, so that:

1. The formula |t = ul|, is a tautology iff t = u is true when restricted to
numerals of length n or less;

2. If Fpy t = u then there is a polynomial p(n) so that |t = ul, has an
extended Frege proof of length at most p(n) for alln.

Proof. A detailed proof is contained in Dowd’s thesis [25]. O

The next theorem shows that an extended Frege system can p-simulate any
proof system whose soundness is provable in PV. In Section 2, a proof sys-
tem was defined as a polynomial-time computable function; thus any proof
system 1s represented by a primitive function symbol of PV. In particular,
let EF be the function symbol of PV representing a fixed extended Frege sys-
tem. Let TRUE(z,y) be the arithmetical function with range {0, 1} such that
TRUE(m,n) = 1 if and only if m is the encoding of a propositional formula 4
and n the encoding of an assignment under which A is true. If P is a function
symbol of PV representing a proof system, then the soundness of P can be

expressed in the form VaVy[TRUE(P(z),y) = 1].

Theorem 8.3 If PV - TRUE(P(z),y) = 1, then there is a function symbol G
of PV so that PV F EF(G(z)) = P(z).

This is the main result of Cook [18]. A detailed proof is in Dowd [25].
Combined with Dowd’s observation that the soundness of a Frege system with
substitution is provable in an extended Frege system, it leads immediately to
Theorem 8.1.

The foregoing results all emphasize the power of extended Frege systems,
and tend to show that proving lower bounds for such systems is a formidable
challenge. There are also some theoretical reasons to think that such results
will be hard to obtain. Cook and Urquhart [21] show that in a precisely defined
sense there can be no feasibly constructive proof of a super-polynomial lower
bound for an extended Frege system. Buss [12] and Krajicek and Pudldk [42]
have proved further results along the same lines.

We conclude this survey of proof systems by mentioning the quantified
propositional calculus, the form of second order logic obtained by adding rules

38

for propositional quantifiers to a Frege system [13, §28]. By restricting our atten-
tion to theorems not containing propositional quantifiers, we can consider such
systems as proof systems for tautologies in the usual sense. Such systems can
simulate Frege systems with substitution, but otherwise little is known about
their complexity. There are significant connections between complexity ques-
tions about such systems and problems in bounded arithmetic. The reader is
referred to the work of Dowd [25] and Krajicek and Pudlak [43].

It is not known whether in the p-simulation ordering there is a greatest
element, that is, whether or not there is a propositional proof system that p-
simulates all propositional proof systems. Kraji¢ek and Pudlak [41] discuss the
relation of this question to other well known open problems in computational
complexity theory.

9 Open Problems and Acknowledgments

The major questions in the area of the complexity of propositional proofs remain
unsolved. Of these, perhaps the most important and challenging is that of
proving super-polynomial lower bounds on the length of proofs in Frege and
extended Frege systems. Even substantial improvements on the currently known
weak lower bounds would be of considerable interest.

The best known lower bound on the size of Frege proofs is quadratic. It
rests on the observation that in a Frege proof, each application of a schematic
rule can involve only a finite number of “active” subformulas. Hence, in a Frege
proof of a tautology that is not a substitution instance of a smaller tautology,
all the subformulas must occur as active subformulas somewhere in the proof.
(For the details of this result, see Kraji¢ek [40, Ch. 4].)

Problem 9.1 Prove a lower bound on the size of Frege proofs that is better
than quadratic.

The next problem is probably not too difficult, but might require a new idea.

Problem 9.2 Can a cut-free Genizen system based on the connectives {V,~}
p-simulate resolution as a system for refuting contradictory sets of clauses?

A natural extension of the results on bounded depth Frege proofs would
be to prove lower bounds for proofs of bounded depth where we allow not
only unbounded disjunctions and conjunctions, but also unbounded connectives
computing the parity function. That is to say, we alter the definition of depth
above to allow unbounded logical gates (z1 @ ... ® z,) computing addition
modulo 2 to count as formulas of depth 1. Strong lower bounds have been
proved by Razborov and Smolensky using the corresponding model of bounded

depth circuits [50, 58].

39

Problem 9.3 Can we prove superpolynomial lower bounds on the complexity
of bounded depth Frege proofs, using the modified definition of depth?

The author wishes to thank Paul Beame, Andreas Blass, Samuel R. Buss,
Stephen A. Cook, Jan Krajicek, Toniann Pitassi, Richard Shore, Charles Silver
and the referee for helpful comments, and for pointing out errors and omissions
in earlier versions of this survey.

References

[1]

Miklés Ajtai. The complexity of the pigeonhole principle. In Proceedings
of the 29th Annual IEEE Symposium on the Foundations of Computer Sci-
ence, pages 346-355, 1988.

Miklés Ajtai. Parity and the pigeonhole principle. In Samuel R. Buss
and Philip J. Scott, editors, Feasible Mathematics, pages 1-24. Birkhauser,
1990.

Miklés Ajtai. The independence of the modulo p counting principles.
Preprint, 1993.

Miklés Ajtai. Symmetric systems of linear equations modulo p. Preprint,

1993.
Paul Beame. A switching lemma primer. Preprint, 1993.

Paul Beame, Russell Impagliazzo, Jan Krajicek, Toniann Pitassi, and
Pavel Pudlak. Lower bounds on Hilbert’s Nullstellensatz and propositional
proofs. In Proceedings of the 35th Annual Symposium on Foundations of
Computer Science, pages 794-806. IEEE Computer Society Press, 1994.

Paul Beame, Russell Impagliazzo, Jan Krajicek, Toniann Pitassi, Pavel
Pudlédk, and Alan Woods. Exponential lower bounds for the pigeonhole
principle. In Proceedings of the 24th Annual ACM Symposium on the theory
of computing, pages 200-220, 1992.

Paul Beame and Toniann Pitassi. An exponential separation between the
matching principles and the pigeonhole principle. Forthcoming, Annals of
Pure and Applied Logic, 1993.

Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approxima-
tion and small-depth Frege proofs. SIAM Journal of Computing, 21:1161—
1179, 1992.

Samuel R. Buss. Bounded Arithmetic. Bibliopolis, Naples, 1986.

Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole
principle. Journal of Symbolic Logic, 52:916-927, 1987.

40

[12]

[13]
[14]

[15]

[20]

[21]

[22]

[23]

[24]

[25]

Samuel R. Buss. On model theory for intuitionistic bounded arithmetic
with applications to independence results. In Samuel R. Buss and Philip J.
Scott, editors, Feastble Mathematics, pages 27-47. Birkhauser, 1990.

Alonzo Church. Introduction to Mathematical Logic. Princeton U. P.; 1956.

Vasek Chvatal. The tail of the hypergeometric distribution. Discrete Math-
ematics, 25:285-287, 1979.

Vasek Chvatal and Endre Szemerédi. Many hard examples for resolution.
Journal of the Association for Computing Machinery, 35:759-768, 1988.

Stephen A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the Third Annual ACM Symposium on the Theory of Compu-
tation, pages 151-158, 1971.

Stephen A. Cook. An exponential example for analytic tableaux. Manu-
script, 1973.

Stephen A. Cook. Feasibly constructive proofs and the propositional calcu-
lus. In Proceedings of the Seventh Annual ACM Symposium on the Theory
of Computation, pages 83-97, 1975.

Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the
propositional calculus. In Proceedings of the Sixth Annual ACM Sympo-
stum on the Theory of Computing, 1974. See also corrections for above in

SIGACT News, Vol. 6 (1974), pp. 15-22.

Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propo-
sitional proof systems. Journal of Symbolic Logic, 44:36-50, 1979.

Stephen A. Cook and Alasdair Urquhart. Functional interpretations of
feasibly constructive arithmetic. Annals of Pure and Applied Logic, 63:103—
200, 1993.

Marcello D’Agostino. Are tableaux an improvement on truth-tables? Jour-
nal of Logic, Language and Information, 1:235-252, 1992.

Martin Davis, G. Logemann, and D. Loveland. A machine program for
theorem proving. Commaunications of the Association for Computing Ma-

chinery, 5:394-397, 1962. Reprinted in [57], Vol. 1, pp. 267-270.

Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the Association for Computing Machinery, 7:201—
215, 1960. Reprinted in [57], Vol. 1, pp. 125-139.

Martin Dowd. Propositional representation of arithmetic proofs. PhD the-
sis, University of Toronto, 1979. Department of Computer Science, Tech-
nical Report No. 132/79.

41

[26] Martin Dowd. Model-theoretic aspects of P # AP. Unpublished MS, 1985.

[27] Paul E. Dunne. The Complezity of Boolean networks. Academic Press,
London and San Diego, 1988.

[28] Gottlob Frege. Begriffsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Nebert, Halle, 1879.

[29] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and
the polynomial-time hierarchy. In Proceedings of the 22nd Annual IEEE
Symposium on the Foundations of Computer science, pages 260-270, 1981.

[30] Ofer Gabber and Zvi Galil. Explicit constructions of linear size super-
concentrators. In Proceedings 20th Annual Symposium on Foundations of
Computer Science, pages 364-370, New York, 1979. IEEE.

[31] Zvi Galil. On the complexity of regular resolution and the Davis-Putnam
procedure. Theoretical Computer Science, 4:23-46, 1977.

[32] Michael R. Garey and David S. Johnson. Computers and Intractability. A
Guide to the Theory of NP-completeness. W.H. Freeman, 1979.

[33] Andreas Goerdt. Comparing the complexity of regular and unrestricted
resolution. In Proceedings of the 14th German Workshop on A.I Informatik
Fachberichte 251, 1990.

[34] Johan T. Hastad. Computational Limitations of Small-Depth Circuits. MIT
Press, 1987.

[35] Armin Haken. The intractability of resolution. Theoretical Computer Sci-
ence, 39:297-308, 1985.

[36] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[37] R. Kowalski and P. J. Hayes. Semantic trees in automatic theorem-proving.
In Meltzer and Michie, editors, Machine Intelligence Vol. 4, pages 87-101.
Edinburgh U. Press, Edinburgh, 1969.

[38] Jan Krajicek, Pavel Pudlak, and Alan Woods. Exponential lower bound to
the size of bounded depth Frege proofs of the pigeonhole principle. Random
Structures and Algorithms, 7:15-39, 1995.

[39] Jan Krajicek. Lower bounds to the size of constant-depth propositional

proofs. Journal of Symbolic Logic, 59:73-86, 1994.

[40] Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complezity
Theory. Cambridge University Press, 1996.

42

[41]

[42]

Jan Krajicek and Pavel Pudldk. Propositional proof systems, the consis-
tency of first order theories and the complexity of computations. Journal

of Symbolic Logic, 54:1063-1079, 1989.

Jan Krajicek and Pavel Pudldk. Propositional provability in models of
weak arithmetic. In E. Borger, H. Kleine-Bunning, and M.M. Richter,
editors, Computer Science Logic (Kaiserlautern, Oct. '89), pages 193-210.
Springer-Verlag, 1990. LNCS 440.

Jan Krajicek and Pavel Pudlak. Quantified propositional calculi and frag-
ments of bounded arithmetic. Zeitschrift fir Mathematische Logik und
Grundlagen der Mathematik, 36:29-46, 1990.

G. A. Margulis. Explicit construction of concentrators. Problems of Infor-
mation Transmission, 9:325-332, 1973.

Neil V. Murray and Erik Rosenthal. On the computational intractability
of analytic tableau methods. Bulletin of the IGPL, Volume 2, Number
2:205-228, September 1994.

Christos H. Papadimitriou. Computational Complerity. Addison-Wesley,
1994.

Rohit Parikh. Existence and feasibility in arithmetic. Journal of Symbolic
Logic, 36:494-508, 1971.

J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In
Methods in Mathematical Logic (Proceedings Caracas, 1983), pages 317-
340. Springer-Verlag, Berlin, 1985. Lecture Notes in Mathematics, Vol.
1130.

Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower
bounds for the pigeonhole principle. Computational Complexity, 3:97-140,
1993.

Alexander A. Razborov. Lower bounds on the size of bounded depth net-
works over a complete basis with logical addition. Matemat. Zametki,
41:598-607, 1987. English translation in: Mathematical Notes, Vol. 41
(1987), 333-338.

Alexander A. Razborov. Bounded arithmetic and lower bounds in Boolean
complexity. In Peter Clote and Jeffrey Remmel, editors, Feasible Mathe-
matics II, pages 344-386. Birkhauser, Boston, Basel, Berlin, 1995.

Robert Reckhow. On the lengths of proofs in the propositional calculus.
PhD thesis, University of Toronto, 1976.

43

[63] Sgren Riis. Independence in Bounded Arithmetic. PhD thesis, Oxford
University, 1993.

[564] J. A. Robinson. The generalized resolution principle. In Dale and Michie,
editors, Machine Intelligence, Vol. 3, pages 77-94. American Elsevier, New
York, 1968. Reprinted in [57], Vol. 2, pp. 135-151.

[65] N.A. Shanin, G.V. Davydov, S. Y. Maslov, G.E. Mints, V.P. Orevkov, and
A.O. Slisenko. An algorithm for a machine search of a natural logical de-
duction in a propositional caleulus. Izdat. Nauka, Moscow, 1965. Reprinted

in [57].
[66] Joseph Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

[67] Jorg Siekmann and Graham Wrightson, editors. Automation of Reasoning.
Springer-Verlag, New York, 1983.

[58] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In Proceedings of the 19th Annual ACM Symposium on
the Theory of Computing, pages 77-82, 1987.

[69] Raymond M. Smullyan. First-order Logic. Springer-Verlag, New York,
1968. Reprinted by Dover, New York, 1995.

[60] P.M. Spira. On time-hardware complexity tradeoffs for Boolean functions.
In Proceedings of the fourth Hawaii International Symposium on System

Sciences, pages 525-527, 1971.

[61] Richard Statman. Bounds for proof-search and speed-up in the predicate
calculus. Annals of mathematical logic, 15:225-287, 1978.

[62] G.S. Tseitin. On the complexity of derivation in propositional calculus. In
A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathemat-
ical Logic, Part 2, pages 115-125. Consultants Bureau, New York, 1970.
Reprinted in [57], Vol. 2, pp. 466-483.

[63] Alasdair Urquhart. Hard examples for resolution. Journal of the Associa-
tion for Computing Machinery, 34:209-219, 1987.

[64] Alasdair Urquhart. The complexity of Gentzen systems for propositional
logic. Theoretical Computer Science, 66:87-97, 1989.

[65] Alasdair Urquhart. The relative complexity of resolution and cut-free
Gentzen systems. Annals of mathematics and artificial intelligence, 6:157—

168, 1992.

[66] John von Neumann. Zur Hilbertschen Beweistheorie. Mathematische

Zeitschrift, 26:1-46, 1926.

44

[67] Hao Wang. Towards mechanical mathematics. IBM Journal for Research
and Development, 4:2-22, 1960. Reprinted in [57], Vol. 1, pp. 244-264.

[68] Ingo Wegener. The Complezity of Boolean Functions. B.G. Teubner and
John Wiley, 1987.

[69] Alfred North Whitehead and Bertrand Russell. Principia Mathematica,
Vols. 1-3. Cambridge University Press, 1910-1913. Second edition, 1925.

Unwersity of Toronto
Toronto, Ontario

45

