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Abstract. We explore the possible ways modern cryptographic methods

can be applied to the field of medical data analysis. Current systems

require large computational facilities owned by the data owners or exces-

sive trust given to the researchers. We implement one possible solution in

which researchers operate directly on homomorphically encrypted data

and the data owner decrypts the results. We test our implementation on

large datasets and show that it is sufficiently practical that it could be a

helpful tool for modern researchers. We also perform a heuristic analysis

of the security of our system.

1 Introduction

Modern medical dataset analysis methods take large sets of medical records
and attempt to extract truths about the underlying population. Because of
the sensitive nature of the data being analysed and regulations requiring strict
limitations on the sharing of that data, it is difficult for researchers to share
datasets. Today, it can take up to a year before a researcher can actually begin
the computational process of analyzing a dataset that they did not collect on
their own. Data is often shared in sanitized form, with much of the data removed;
this sanitization process requires time, labor and statistical expertise. Some data
owners have chosen to allow researchers to send their queries to the data owners,
who perform the analysis on the researcher’s behalf. The process of analyzing
medical datasets requires large amounts of computation on the part of the data
owner for each question posed by a researcher. To best serve the medical research
community, data owners must acquire technical expertise to properly anonymize
and maintain datasets or contract a trusted third party to do it for them.

In this work we consider an institutional medical researcher, such as a member
of a university or the research division of a company, interested in answering some
query but who is without access to the required data. While it may be infeasible
to independently gather data, it is likely that there exists a dataset containing
sufficient information to answer the researcher’s query. The data owner may want
to share with the researcher but because the information is related to the medical
history of patients, and therefore considered sensitive, sharing that dataset may
be a complicated process.

We explore existing cryptographic methods in an effort to tackle the two
main problems with the current way of sharing medical data. First, we wish to
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move the burden of cost from data owners to the researchers who want access to
the data. All modern solutions that properly secure patient data require data
owners to make large investments in hardware and technical expertise. While it is
possible for a data owner to recoup those costs over time, requiring large startup
costs deters the sharing of data and charging for access to the dataset limits the
kinds of researchers able to use it. Second, it takes far too long for a researcher to
acquire and analyze a dataset that has been properly anonymized and certified.
Even after proper permission has been acquired, it may be extremely inconvenient
to actually run analysis or to tweak the nature of the researcher’s query.

2 Objectives

In order to build something useful to the medical research community, we attempt
evaluate the usefulness of Fully Homomorphic Encryption while still ensuring the
following six properties. These objectives were derived from conversations with
professionals working in the medical research industry. Additionally, the analysis
we ran to confirm that our system was practical enough to be used by members
of the medical research community were also informed by these conversations.

Authenticity of results - the results obtained by the researcher should be
as authentic and accurate as possible without compromising the privacy of
individuals.

A rich range of possible analyses - virtually any analytical technique should
be possible to the researcher. More formally, the limits on the possible set of
operations should depend only on the parameters chosen for the FHE scheme.

Minimal computation on the part of the data owner - the computational
responsibility of the data owner should be almost entirely limited to preprocessing
the dataset a single time. We propose that a data owner should only have to
provide a single server to allow for large numbers of researchers to perform
analysis.

Privacy for individuals in the dataset - it should be impossible for a re-
searcher with auxiliary information to learn anything about an individual in the
population using legitimate analysis techniques. Specifically, we invoke differential
privacy to protect information about individuals.

Security against adversarial researchers - an adversarial researcher attempt-
ing to extract information about individuals from the dataset should be caught
with very high probability.

Practicality - our system should shorten the time it takes for a researcher
to conceive of a researcher question to when their computational analysis has
finished. The actual time it takes for a single run of the analysis process may
take longer than current methods, providing this overall time shrinks.

While many existing solutions address some subset of these objectives, none
accomplish all of them. In particular, existing systems lack practicality, proper
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cost distribution or a large space of possible computation. Anonymization presents
security concerns and lacks practicality due to the long wait times for dataset
acquisition. Analysis as a service requires a misappropriation of costs between
the researcher and the data owner. Attempts like [19] have managed to be both
practical and to outsource computation, but failed to allow for rich space of
analytical techniques required by the medical industry. Our construction satisfies
all the requirements of researchers in the medical industry.

3 Background

To understand our motivation, it is important to consider the ways in which
modern medical dataset analysis is done. The reality of current analysis systems
is that they are both extremely expensive for the data owner and take a long
time for the query of a researcher to be fully answered. Researchers interested
in fields as diverse as drug side effects, public health and genetics all utilize the
large amounts of data regularly collected by medical professionals, insurance
companies, or governments to make new discoveries or confirm theories. Under
ideal circumstances, analysis is done with large sample sizes - discussions with
professionals in the field lead us to believe that most studies utilize around 100,000
data points. The analytical models used by researchers vary from simplistic count
and average to complex regressions or machine learning. While complex methods
are gaining in popularity, measurements like regression, covarience and averages
remain the primary tools employed by researchers.

There are various practical constructions employed to allow external re-
searchers access to private data. The obvious, simple, and clearly insecure solution
is to naively share the data without any security. While efficient, this makes the
assumption that the researcher is a trusted party, which is often invalid.

3.1 Anonymization

Anonymization is a technique in which large amounts of information, hopefully
all irrelevant, is purged before a dataset is shared with a researcher. The goal of
anonymization is to allow an untrusted third party to confirm results or perform
original analysis without revealing any personally identifiable information. The
process is computationally expensive because it requires a data owner to reprocess
the dataset each time a researcher posits a new query. For example, a researcher
may start the process interested in a certain subset of the information about each
patient only to later decided that other qualities of each patient are also required
to confirm their hypothesis. This method also makes it extremely expensive for a
researcher to explore a dataset without a specific hypothesis in mind. Additionally,
there have been recent results showing that anonymization is not as secure as
previously thought [28]. While a single instance of an anonymized dataset leaks
minimal information under most circumstances, combining it with a version of
the same dataset anonymized for a different query can certainly allow a malicious
researcher to compromise the privacy of individuals.



4 Gabriel Kaptchuk, Matthew Green, and Aviel Rubin

3.2 Analysis as a Service

This model has becoming increasingly popular recently as the medical community
has adopted cloud technologies. Data owners or trusted third parties provide
a service through which researchers are able to submit requests for work. The
data owners or their surrogates then perform the computation over the dataset
stored as plaintext. This requires data owners to acquire the technical expertise
to maintain the system. More importantly, this forces data owners to shoulder
the cost of providing their data to the medical research community or possibly
charge researchers for the use of their data which would discourage collaboration.

3.3 Cost Consideration

While both anonymization and analysis as a service are common models for
sharing statistical datasets, cutting-edge systems combine both techniques. The
largest data owners maintain massive datasets on expensive computational in-
frastructure. When a researcher wants to answer some new query, they access
the infrastructure itself, either physically or over a secure channel. Then, based
on the requirements of their query, they select a certain anonymization of the
dataset to use. A certain anonymization of the data may leave more information
about income, but may contain little geographical information. Each time a new
anonymization of the data is required by a researcher, the data owners must
prepare a new subset of the data and get statisticians to certify it.

Once an appropriate version of the dataset has been prepared, the analysis is
run on the data owner’s systems. Because of inference attacks, allowing researchers
to remove even anonymized datasets can be dangerous, especially when the
researcher is likely to return to the same data owner to perform a different
analysis soon afterwards. The two main concerns addressed in this work are time
and cost. It is not uncommon for the time between the conception of a question
and the moment when computational analysis begins to be months or even a
year.

It is nearly inevitable that research will involve high costs for at least some of
the parties involved. While typically one might assume that the burden of cost
should be on the researchers themselves, given that they are the ones directly
benefiting from computation, it is often the data owners who are forced to acquire
expertise and infrastructure to service the researcher community. One company
with which we spoke had $1 million in hardware costs to support the needs of
researchers. While costs might eventually be recouped by charging researchers
for use of the dataset, the costs from purchasing hardware alone may make it
infeasible for a data owner to securely share their data. Especially if their dataset
becomes desirable to many researchers, the costs of scaling up their operations
quickly make it impossible to support widespread interest.

3.4 Existing Cryptographic Options

In order to construct a system that addresses the problems above, we call upon
existing cryptographic primitives and systems. Some, like differential privacy,
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have been widely used in the field and their limitations are well understood. The
practicality of others, like FHE and homomorphic signatures, has yet to be fully
tested. Because we are attempting to build a practical system that minimizes
the amount of time between the medical researcher’s initial query and receiving
the final answer, we choose our cryptographic primitives carefully. Additionally,
various primitives may be helpful in achieving some of the objectives in Section
2 but may prohibit the achievement of others. We give a broad summary of the
cryptographic methods chose to use in our case study below and include methods
we chose not to utilize in Appendix D.

3.5 Fully Homomorphic Encryption

FHE allows for addition and multiplication on encrypted data without the need
for decryption. The first construction of FHE was published in [21] but was
too inefficient for practical computation. Subsequent efforts, most notably the
BGV construction in [9], have attempted to increase the efficiency and modern
constructions are teetering on the edge of practicality. To make the schemes more
usable, there has been a push towards “leveled” homomorphic encryption schemes
which can compute a certain depth of circuit before inherent noise renders the
ciphertext useless. For a full background on the intricacies of FHE and a more
complete list of citations, refer to [33].

Smart and Vercauteren proposed an addition to the BGV FHE in [31], in
which many plaintext values could be encoded into a single ciphertext. To do this,
the plaintext values are put into a vector and all additions and multiplications are
computed entrywise. This allows for single instruction multiple data operations
and significantly increasing the efficiency of the scheme. Our implementation
requires that the FHE scheme used supports Smart-Vercauteren plaintext packing
and for the rest of this work all homomorphic operations can be considered to be
done within this framework.

3.6 HELib

The best available implementation of a modern leveled FHE is the C++ library
HELib. While most of the code currently written using HELib implements rela-
tively simple computations, our testing shows that is both robust and reasonably
efficient for more complex computations. The FHE scheme it implements encodes
integers into BGV ciphertext, supporting addition and multiplication operations.
The underlying plaintext values are added and multiplied modulo some prime.
The choice of primes, the maximum level of the circuit, and security parameter
all influence the size of the ciphertext and the efficiency of the operations. Details
about the use of HELib and the FHE scheme it implements can be found at [23].

3.7 Differential Privacy

Differential privacy prevents an attacker from learning anything about individuals
while still gleaning meaningful information from aggregated statistics. This is
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not the only notion of privacy that can be applied to statistical datasets, but
it has recently become the most popular. With the rise of laws requiring the
protection medical data, ensuring it is impossible to recover the information of
any given individual effectively shields data owners from legal action. We give a
more detailed background of differential privacy in Appendix C.

4 Construction

We assume a data owner 𝒟 with a medical dataset 𝐷initial of vectors 𝑑 ∈
R𝑛. 𝒟 transforms the dataset into the proper format, encrypts it using fully
homomorphic encryption as 𝐷* = Encrypt(Dformatted) and publishes it on the
internet. A researcher ℛ then prepares a program to be run on the dataset,
described in the form of a transcript 𝑇 and performs the computation 𝑇 (𝐷*).
The result of this computation is a ciphertext 𝑐 with an embedded integrity
check and transmits 𝑐 to 𝒟. Finally 𝒟 verifies that 𝑇 and 𝑐 match, computes the
decryption, adds noise to guarantee differential privacy and sends this final result
to ℛ. A protocol diagram can be found in Appendix B.

4.1 Dataset Formatting

We assume that the data owner 𝒟 has some set of 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑|𝐷|} s.t. 𝑑𝑖 ∈
R𝑛 where each dimension of 𝑑𝑖 represents part of the medical record for patient
𝑖. Each vector 𝑑 is made up of data entries 𝛼 and binary entries 𝛽. The data
entries are real valued and represent information about the patient like age, blood
pressure or income. The binary entries represent the qualities of a patient, like
the presence of a medication or medical condition.

𝐷initial =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1
...

𝛼𝑚

𝛽1
...

𝛽𝑛−𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. . .

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼1
...

𝛼𝑚

𝛽1
...

𝛽𝑛−𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
If 𝒟 has a dataset that is formatted differently, it is clear how to transform any
dataset into this format. The only intricacy of this transformation is that all
values in the vector must be integer valued, while real medical datasets also
contain both text and real-number values. For the most part, this problem can
be easily solved while only losing a little granularity in the data. Real-number
values can be scaled and rounded such that the information is still rich enough
to convey meaning. Text data can either be automatically binned, adding a 𝛽
value for each possible value of that text field, or can be manually translated into
a integer scale as appropriate.



Outsourcing Medical Dataset Analysis: A Possible Solution 7

4.2 Data Binning

Data binning beings with 𝒟 dividing the range of each data entry 𝛼𝑖 into
continuous disjoint bins {𝛽𝛼𝑖

1 , 𝛽𝛼𝑖
2 , . . . , 𝛽𝛼𝑖

𝑏𝑖
}, where the number of bins 𝑏𝑖 is

chosen separately for each 𝛼𝑖. 𝒟 then inserts a new row into the data set for each
𝛽𝛼𝑖

𝑗 and sets the 𝛽𝛼𝑖
𝑗 = 1 containing the value for 𝛼𝑖 for each 𝛼𝑖. For example, if

𝛼𝑖 represents age, 𝒟 might create 𝛽𝛼𝑖
𝑗 as 5 year bins from 0 to 100. A patient of

age 37 would have 𝛽𝛼𝑖
8 = 1 and 𝛽𝛼𝑖

𝑗 = 0 ∀𝑗 ̸= 8.
The increased number of bins for each 𝛼 give researchers greater granularity

of possible computations but also increases the size of the dataset. Because this
dataset will be prepared only once, the data owner chooses the maximum possible
granularity for all researchers at once. Many fields, like age or income, have
natural bin sizes while other fields will be completely at the discretion of the
data owner.

4.3 Integrity Check Embedding and Encryption

The FHE scheme used in encrypting the dataset should include Smart-Vercauteren
plaintext packing. This property allows a vector of plaintext values to be encrypted
into a single ciphertext and all operations are computed entry-wise. The length
𝑙 of the plaintext vectors is determined by the various parameters to the FHE
scheme, but in general we will consider vectors of about 1000 values.

Each plaintext vector contains values from a single row of the database (ie.
a specific 𝛼 or 𝛽 from multiple patients). Each vector begins 𝑙

2 values from the
dataset, in the order listed in the dataset. Thus, the first ciphertext will be an
encryption of the 𝛼1 entry from the first 𝑙

2 patient record; the second will be
the 𝛼1 entries from the next 𝑙

2 patient records, and so on. For each such vector,
𝒟 embeds the tools to allow for rapid verification. 𝒟 selects a random value 𝜋
and a random permutation 𝛷, both to be used for all vectors in the 𝐷. For each
entry 𝑒 in the vector 𝑣, 𝒟 computes 𝑒′ = 𝜋𝑒 mod 𝑝, where 𝑝 is a prime and a
parameter to the FHE scheme, and appends that value to 𝑣. Next, 𝒟 appends a
different random value 𝑘 to the end of each vector and records 𝑘 for each vector.
Finally, 𝒟 applies 𝛷 it to all vectors in 𝐷.

𝛷
(︁

𝛼1
1 𝜋𝛼1

1 𝛼2
1 𝜋𝛼2

1 𝛼2
1 𝜋𝛼2

1 . . . 𝛼
𝑙
2
1 𝜋𝛼

𝑙
2
1 𝑘

)︁
To encrypt the dataset, 𝒟 runs FHEKeyGen() to generate a public key pk and

a secret key sk. Each permuted vector is then encrypted under sk and the entire
encrypted data set is released to researchers, along with pk. In the scheme we
use, the evaluation key is the same as the public key, but if another scheme with
a separate evaluation key were to be substituted, the evaluation key would be
released to the researcher instead.

4.4 Researcher Computation

Once the new data set 𝐷* has been published, a researcher ℛ prepares a transcript
𝑇 of the steps of some operation they want to perform over 𝐷*. Imagine ℛ wants
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to compute the average age of death of patients with a certain disease who are
also taking a certain medication. To compute this value, ℛ uses the 𝛽 associated
with the disease and the 𝛽 associated with the medication to include only patients
with both characteristics when summing age of death.∑︀

𝑑∈𝐷*
(𝛽1

𝑖 × 𝛽2
𝑖 × 𝛼𝑗)∑︀

𝑑∈𝐷

𝛽1
𝑖 × 𝛽2

𝑖

While machine learning style analysis has been growing more popular among
the research community, computing more simple metrics like counts, correlations,
and linear regressions are still the main methods of conducting computational
analysis. All of these techniques can clearly be implemented using the same filter
and sum method above. For example, a simple linear regression between the
variables 𝑥1 and 𝑥2 can be computed as

𝑥2 = 𝑎𝑥1 + 𝑏

Such that 𝑎 and 𝑏 can be calculated as

𝑎 =
∑︀

𝑥2−𝑏
∑︀

𝑥1

𝑛 𝑏 = 𝑛
∑︀

𝑥1𝑥2−
∑︀

𝑥1
∑︀

𝑥2

𝑛
∑︀

𝑥2
1−(

∑︀
𝑥2)2

where 𝑛 is the number of samples in the dataset. Clearly all of these sum-
mations are easy to compute. Because of the data binning process, a researcher
can also restrict their analysis to certain cohorts, focusing their attention on,
for instance, subsets of the socioeconomic ladder or only more urgent hospital
admittances.

4.5 Verification

When 𝒟 receives the result of ℛ’s computation, he runs the verification algorithm
Verify(T, m*). It is important that the multiplicative depth of the transcript can
be easily extracted; we denote the multiplicative depth 𝑑.

Verify(T, m*) takes a transcript 𝑇 and some encrypted vector 𝑐 as input. The
goal of the verification algorithm is to quickly decide if the steps taken in 𝑇
would result in the vector 𝑐, returning 1 if it is the result vector and 0 if it is not.
The verification algorithm is as follows:

1. 𝑚 = Decrypt(c)
2. Compute 𝜑−1(𝑚)
3. For each plaintext value 𝑎 in 𝜑−1(𝑚) make sure the corresponding verification

value is 𝜋𝑑−1𝑎, where 𝑑 can be learned from 𝑇

4. Perform the computation described in 𝑇 over the random tags in each vector
and make sure it matches the tag of 𝜑−1(𝑣)

5. Return 1 if steps 3 and 4 both pass, otherwise return 0
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While running the verification algorithm is constant in the computation time
because the random tags must be computed, it is still much quicker and less
memory intensive than running the computation itself. There is a single value
for 𝑘 in each vector, so the runtime will be at least 1

𝑙 , where 𝑙 is length of each
plaintext vector.

If the verification algorithm returns 1, 𝒟 strips out all values associated with
the verification process before the data is put through the differential privacy
process. In this way, the permutation, the random tag, and 𝜋 all stay secret and
the adversarial researcher gains no advantage once they perform a single valid
computation. If the algorithm returns a 0, 𝒟 must assume ℛ is attempting to
circumvent the encryption on the data. A cheating researcher is banned from
further use of the system and their results immediately discarded.

4.6 Additive Noise

One of the goals of our construction is to make it difficult for a malicious researcher
to extract information about an individual while performing a legitimate analysis.
Because of the verification algorithm, we can show that it is difficult to gain
information by cheating on computation. To ensure that it is difficult to gain
information from legitimate analysis, we introduce differential privacy as the
final step in the process. To this end, 𝒟 adds noise sampled from a laplacian
distribution with variance equal to the sensitivity of the function computed,
where sensitivity is defined in Appendix C. This method has been shown to
ensure differential privacy for single queries in previous works [17]. There have
been no constructions for imposing differential privacy when an adversary can
make any number of queries.

5 Security Analysis

It is clear that an adversarial researcher cannot directly access the plaintext data
because the encryption scheme is semantically secure. We must give a heuristic
argument that it is impossible for the system to leak unintended information when
decrypting queries. This model is odd because it allows for limited decryption
queries even though the underlying encryption scheme is not CCA2. The goal of
our security analysis is to determine if it is possible for an adversarial researcher
to gain information about the contents of the dataset besides the answer to the
exact query specified in the transcript. Because it is difficult to characterize every
kind of attack that a researcher might mount to learn about an individual in the
population, we must ensure that there has been no deviation whatsoever from
the supplied transcript.

In order to formalize our argument about the security of our scheme against
information leakage, we begin by creating a security game. Unlike traditional
games in the cryptographic setting, we do not allow an adversarial researcher to
continue accessing the system once they have been caught attempting to cheat
the system. In modern systems, it is common for the researcher to sign documents



10 Gabriel Kaptchuk, Matthew Green, and Aviel Rubin

making them liable for large sums of money if they are noticed attempting to
recover the private information of a patient. Currently, these agreements are
enforced by human log auditors. We borrow this notion and include it in our
security game. The goal of the adversary is to cheat undetected; if their cheating
is detected they are banned from use of the system and heavily fined.

1 : (x, F ) Client()

2 : (⇡, r) Server(x, F )

3 : y  Verify(⇡, r)

4 : if y = 1 :

5 : return Decrypt(r)

6 : else :

7 : return ?

1 : T  Select(T)

2 : D⇤  Encrypt(D)

3 : c A(T, D⇤)

4 : y  Verify(T, c)

5 : if y = 1 :

6 : return Decrypt(r)

7 : else :

8 : return ?

1

Fig. 1. Left: Traditional verifiable computation game. Right: Our updated version of

this game

The traditional game for verifiable information is between a client, correspond-
ing to the data owner, and a server, corresponding to the researcher. The client
chooses some function 𝐹 , usually represented in circuit form, and an input 𝑥. The
server is then charged with computing 𝐹 (𝑥) and proving that the computation
was done honestly. We modify this game slightly to allow an adversary to select
their own function, represented as a transcript, from a family of acceptable
transcripts T. We put some minimal limitations on T, but additional limitation
can be imposed by each individual data owner as needed. Valid transcripts must
have the following properties:

1. The first level of computation must be performed within a single patient
vector and the same computation must be performed on each patient vector.

2. The results of each such computation must be combined in a way such that
the result of 𝑇 when computed over the dataset is a single value (or a constant
number of values with respect to the size of the dataset).

3. Results of the computation, including the processing of the results vector,
must be independent of the order of vectors in the dataset.

The first property should ensure that a researcher doesn’t combine 𝛽’s from
one patient with 𝛼’s from another patient. If a researcher somehow learns about
the contents of the record for a single patient and learns its location in the dataset,
it should be impossible for them to leverage that information to compromise
the privacy of another patient. Similarly, we require that all of the results of
the computations on individual are combined into a single result. This prevents
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an adversarial researcher submitting a transcript that simply decrypts patient
vectors directly. Finally, the order of the vectors in the dataset should not impact
the final results. Because the result of a computation over the ciphertext will
yield a result vector instead of a single value, shuffling the order of the patient
vectors will likely affect the individual values in the results vector but will have
no impact on the sum (or product, as appropriate).

It is known to be hard to impose security policies on queries. In order to
impose this specific set of security policies, the researcher is required to state
their transcript in two pieces, (1) the computation to be done on each patient
vector and (2) the method used to combine the results of each patient vector.
Because there are no limitations on the valid kinds of computations that can be
done within a single patient vector and we require that the method for combining
vector results must be written in a vector independant way, any transcript that
can be written in this form is valid.

We show that with our construction, the probability of creating a transcript 𝑇
and ciphertext 𝑚* that verify but were not generated honestly is bounded by the
probability of guessing the random permutation 𝛷, specifically the location of the
random tag 𝑘 in the permuted vector. We assume the adversary has submitted
a transcript-message pair which passes the verification algorithm, specifically
recomputation of 𝑇 over the random tags only. One of two things must be
true: (1) the computation was done honestly or (2) some of the vectors used in
the computation were altered. In the first case, clearly there is no unintended
information leakage; only the answer to the adversaries exact, legitimate query
has been decrypted. If some of the vectors were altered, there are two possibilities.

1. In a given vector 𝑗 < |𝑣| values of the vector were altered. Given that 𝛷 is
unknown to the adversary

𝑃𝑟[Successful Edit of 𝑗 elements] = 𝑃𝑟[Editing 𝑘] +

𝑃𝑟[Not editing 𝑘] × 𝑃𝑟[Edit results in format] =

𝑗

|𝑣|
+ |𝑣| − 𝑗

|𝑣|

⎛⎜⎝1 −
(︀|𝑣|

𝑗

)︀
(︀ |𝑣|

2
𝑗
2

)︀
⎞⎟⎠ < 𝑃𝑟[guessing location of 𝑘]

2. All values in some vector were edited without editing the tag 𝑘. In the worst
case, an adversary has all elements of the vector besides 𝑘 properly formatted
(ie. the contents of another vector in the dataset). The probability of switching
out the contents of vector with the contents of another without editing the 𝑘
is 1

|𝑣| .

Therefore, in all cases, the probability of an adversarial researcher computing
some 𝑚 without following 𝑇 properly is bounded by the probability of finding
𝑘 in the randomly permuted vector. We assume that the length of the vector
is roughly around 1000, so 1

|𝑣| ≈ 1
1000 . If this probability of being caught is too

low in the eyes of the data owner, additional 𝑘’s can be added to the vector.
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Each additional 𝑘 must also be avoided when editing an existing vector, so the
chance of correcting identifying all 𝑘’s in the vector goes down by approximately
a multiplicative factor of 1

1000 for each additional 𝑘.

6 Implementation

We implemented the above construction to measure its practical feasibility. To
ensure that a medical dataset could be meaningfully transformed into the proper
format, we processed NY State’s public hospital discharge dataset from 2012 [32].
The dataset comprises 2.5 million patient encounters, recording data including
facility information, patient demographics, patient complaint, and medical code
information. While our system can scale to be used with datasets of this size,
discussions with members working in the medical dataset analysis indicated that
most researcher do analysis on smaller datasets of around 100,000 patient vectors.
In order to test the practicality of our system, we chose to test on this normal
cohort size.

The NY State dataset contained data in the form of text, integers and real-
valued numbers. We transformed the dataset into the format described in Section
4.2. Some fields, like length of stay and total charges, mapped cleanly into the
construction; while there were minor choices to be made regarding the granularity
of the bins and how we wanted to round the decimal values to integers, the
process was very intuitive. Other fields, like admit day of week and APR risk of
mortality were less obvious. We chose to map each day of the week to a separate
𝛽 value. In the original dataset, APR risk of mortality was assigned values like
“Minor” and “Major”. We chose to create a scale such that the lowest rating
was a 0 and then each increasing level of risk was one above the previous level.
Additionally we mapped each possible value of this field to its own 𝛽 value.
Through this process, the initial dataset, which was 100,000 vectors of length
39, was transformed into a dataset in which each vector was 912 elements long.

We encrypted large portions of the dataset for testing purposes. We chose not
to encrypt the entire dataset because of space concerns, but we did encrypt 50
rows of the dataset for trial purposes. When stored naively, these 50 encrypted
rows take a total of 752GB, consuming approximately 7MBper ciphertext. The
key information and encryption context was stored in a separate file which was
16GB. We can easily cut the size of the stored data by a factor of 2 using naive
compression and there are other possible optimizations to make the storage
scheme more efficient (see Appendix E.1).

Encryption was done on consumer grade electronics, specifically a MacBook
Pro with a 2.5GHz Intel i7 Core processor and 16GB of RAM. The ciphertext
was written out to an external storage device over USB 3, so the efficiency of the
system was impacted severely by disk IO. We chose to set the maximum circuit
depth to 100, which would accommodate most computations. We chose a security
parameter of 80 and a prime modulo of 17389. Generating the context and secret
key for the scheme took 22.8 minutes. Once the context was set up, we wrote it
out to a file. To encrypt vectors, we read in the context and secret key, which
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Task Key Setup Key Reading Encryption Sum per Ciphertext Sum Total

Time 22.8m 15.2m 10.4s each 33.08s each 1.98hr

Fig. 2. Timing Results

took 19 minutes and then each plaintext vector took 10.4 seconds to encrypt.
We split the encryption onto two separate threads, the first thread encrypting
𝛼 values and the second encrypting 𝛽 values. In total, the encryption time of
50 vectors was 30.04 hours and encrypting the entire dataset would have taken
584 hours. Note that all the times recorded were when operations are performed
linearly and without any optimizations.

We performed a linear regression to test the runtime that a researcher might
encounter. A linear regression is a simplistic metric to compute but is a method
still often used by researchers today. Regressions and averages are basically the
same operations; averages are computed with two sums and linear regressions
are computed with four. Reading in the context and key information takes 15.2
minutes. Processing a single set of ciphertexts take 33.08 seconds, which includes
multiplying an 𝛼 ciphertext by a 𝛽 ciphertext and summing it with a ciphertext
that is a running sum of all previous vectors. We performed our computation
without any parallelization, so a single sum of the linear regression took 1.98
hours to compute when done naively. To compute the full linear regression, it
took approximately 9.5 hours when each sum was computed consecutively.

7 Discussion

In order for this system to be useful, there must be a clear economic incentive for
the data owner. Specifically, it must be beneficial to use homomorphic encryption
rather than simply performing analysis on local plaintext and returning results
to the researcher. We can denote the time it take for the data owner to perform
a some computation on behalf of the user as 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛.

We consider the various costs associated with doing computation. In addition
to the time to perform the computation itself, there is 𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, the total
computation time required to encrypt a single ciphertext, and 𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛, the
time required to decrypt a single ciphertext. Additionally, the time to verify that
a researcher has performed their computation honestly is denoted 𝑡𝑣𝑒𝑟𝑖𝑓𝑦. We
can express the cost of using this system for 𝑞 queries as

Cost𝑠𝑦𝑠𝑡𝑒𝑚 = |𝐷|
ℓ
2

𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑞𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 +
𝑞∑︁

𝑖=0
𝑡𝑖
𝑣𝑒𝑟𝑖𝑓𝑦

Whereas the cost of the data owner performing each query on the plaintext
is given as

Cost𝑛𝑎𝑖𝑣𝑒 =
𝑞∑︁

𝑖=0
𝑡𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛
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The computational time required to impose differential privacy on the result
of the analysis is consistent no matter the manner in which the result is computed
so it can be ignored when comparing the costs of the two alternatives. Thus the
marginal cost of system over simply performing the plaintext in the clear is given
by

Marginal Cost = Cost𝑠𝑦𝑠𝑡𝑒𝑚 − Cost𝑛𝑎𝑖𝑣𝑒 =

2|𝐷|
ℓ

𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑞𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 +
𝑞∑︁

𝑖=0
𝑡𝑖
𝑣𝑒𝑟𝑖𝑓𝑦 −

𝑞∑︁
𝑖=0

𝑡𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =

2|𝐷|
ℓ

𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑞𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 +
𝑞∑︁

𝑖=0
𝑡𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(2

ℓ
− 1)

Notice that the encryption time is a one-time cost incurred by the data owner;
no additional encryption processing time is required for each new query posed by
researchers. While the cost is very high, it can be amortized over many queries.
In order for the data owner to be incentivized to use this system, the marginal
cost of the system must be negative, that is

2|𝐷|
ℓ

𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 + 𝑞𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 +
𝑞∑︁

𝑖=0
𝑡𝑖
𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛(2

ℓ
− 1) < 0

Fig. 3. Marginal Cost as a function of computation time and decryption time. Negative

values, red, show where this system has advantages over the naive approach

Intuitively, the computational savings from just doing verification instead of
the full computation must outweigh the cost of decrypting the result vector. To
give concrete examples for the variables above, we use the same parameters from
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Section 6. 𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑖𝑜𝑛 is a constant value no matter the query; as computation
gets more complex the advantage of this system increases. With these parameters,
decrypting a ciphertext will take approximately 18 minutes. We note that we
measured decryption time using simple consumer grade electronics and a CPU.
It may be possible to speed this process up using hardware accelerators [12, 13].
In Figure 3 we graph the marginal cost per query as a function of the decryption
time and computation time, ignoring the initial encryption time. Red areas of the
surface represent values for which the the system is more efficient than the naive
strategy. We note that the efficiency of Fully Homomorphic Encryption Schemes
is likely to increase in the future, whereas the statistical tests researchers want
to perform will only grow in complexity.

Remember that 𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 denotes the total time that it would take the data
owner to perform analysis, including system overhead like accessing data, which
can become logistically complicated. Using this system for simple operations on
small numbers of records is actually more computationally intensive for the data
owner; the computation required to decrypt the results vector would be more
than the computation itself. More complex regression methods and statistical
tests are the best candidate operations for which a data owner would gain an
advantage by using this system. Specifically, functionalities that would take more
than the approximately 18 minute decryption time. One concrete example that
fits into this category is computing maximum likelihood estimators (MLE) for
large numbers of parameters over a fairly large datasets. While computing simple
estimators can be faster than decryption time, computing complicated estimators
or estimators when data independence cannot be assumed is far more expensive.
Without data independence, computing even a single iteration of MLE can be
computationally infeasible on consumer hardware. Extreme examples of these
costly functions can be seen in the field of economics, like [10]. While simple
functions like linear regression might be the most common tools for medical
researchers today, the field is growing increasingly computationally complex and
being able to outsource the computation of these costly functions to researchers
is a powerful tool.

In Section 1, we proposed six properties that would ensure that our system is
useful, efficient, and secure. Our system was constructed to specifically address
these properties, and we show that each one is satisfied.

Authenticity of results. Fully homomorphic encryption guarantees addition
and multiplication operate as though there were not encryption layer present.
Because the researcher is doing the computation on internal systems, they do
not have to be worried about some mistake in computation. We assume that the
data owner is a trusted entity so there is no worry that the decrypted results do
not correspond to the ciphertext delivered by the researcher. Therefore, we can
conclude that all results from this system are authentic.

A rich range of possible analyses. We want to ensure that a researcher can
perform any operations required for their analysis. Other solutions that manage to
be both practical and cost efficient are lacking this property. The only limitations
imposed on computation in our system are the limitations on valid transcripts.
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With access to addition and multiplication, most analysis techniques can be
realized including basic machine learning algorithms.

Minimal computation on the part of the data owner. In order to maintain
a secure system that can be helpful to the medical community, it is impossible
not to incur high costs. The construction presented in this work shares that
cost burden with researchers. For the purposes of this work, we restrict our
interest to researchers with access to large computational infrastructure, like
those with affiliations at universities or members of industrial researcher teams.
This infrastructure currently cannot be leveraged because of difficulties obtaining
data. In our discussions with individuals who work in the industry, they consider it
a reasonable assumption that researchers will have access to large computational
infrastructure. Most of the work we have done in our system can utilize many
cores to speed up computation. No matter the computational requirements, most
of the costs associated with computation are placed on the researcher. The
verification time is 1

1000 of the computation itself, so the system offloads 999
1000 of

the computation to the researcher, minus the time required to decrypt the result
vector.

Privacy for individuals in the dataset. Fully homomorphic encryption allows
for exporting the dataset does not compromise the security of any individual in
the dataset. Fully homomorphic encryption guarantees semantic security, so no
information can leak from ciphertext without access to a decryption oracle. Our
limited decryption oracle only decrypts the results of computation that operates
over the entire dataset, meaning that it can only disclose meaningful information
about individuals if the legitimate query only operates over a very small subset of
the dataset population. When this is the case, the noise added by the differential
privacy mechanism makes it impossible to glean any information.

The main concern when sharing data is that an individual’s privacy is com-
promised and differential privacy make that impossible for a single query. While
differential privacy makes it impossible for a single query to reveal any informa-
tion about a single individual in the population, it is still theoretically possible
for a determined researcher to learn about an individual because we allow for
multiple queries. Unfortunately, there are no constructions that we are aware of
that allow for both a rich, repeated query space and multiple query differential
privacy. The notion of a privacy budget, in which a researcher has a maximum
number of queries or an upper bound on the allowable complexity of queries,
might be used to protect about this kind of attack. We choose to leave it to each
data owner if and how they would like to implement a privacy budget.

Security against adversarial researchers. Because we give researchers access
to a decryption oracle, it must be impossible for an adversarial researcher to
simply decrypt arbitrary ciphertext. Clearly, an insecure decryption oracle would
allow an adversary to trivially learn private information about individuals. The
verifiable computation scheme embedded into the system guarantees that only
decryption queries that operate over the entire dataset are processed. We have
argued in Section 5 that it is very unlikely for an adversarial researcher to
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go unnoticed. Indeed, the data owner can tweak the probability of catching a
researcher until they are comfortable with the odds.

In a traditional security model, the probability of catching a cheating adversary
in our system is insufficient. Importantly, in our system a cheating adversary
is banned from ever using the system again and is heavily fined. Banning an
adversary prevents them from searching 𝛷 for the location of 𝑘. Charging them
for attempting to cheat means it is impractical to run multiple analyses under
different identities. If there are two 𝑘’s in each vector, the probability of a cheating
researcher of not being caught is 1

106 , which may be insufficient for a theoretical
system but is sufficient for a practical one.

Practicality. Current systems suffer from two major time related weaknesses.
The first is that it takes a long time to actually begin computation. Second, if a
data owner instead chooses to leverage an analysis as a service style solution, it
becomes more difficult and time consuming for a researcher to access the data.

While fully homomorphic encryption does make running a single analysis
significantly slower, it is important to remember that the vast majority of a
researcher’s time is not spent running their program. Most of the life of a research
project is spent waiting to acquire a dataset or waiting to access a dataset. Our
system requires a one-time cost of formatting and encryption and every future
researcher will be able to use the same version of the dataset without waiting.
Because we construct a system that reduces the wait time required to access a
dataset, increasing the time it would take to actually perform the computation is
acceptable. Recall that our goal was to make the entire process of doing research
quicker, not the computation itself.

Our system also allows a researcher to perform their analysis on their own
schedule. While working on this project, we found a researcher who waited months
to get permission to use a specific dataset and was only able to run analysis from
2am until 8am while the servers storing the data were not in use; these kinds
of limitations make research impossible. In our system, computation can begin
without ever interacting with the data owner.

8 Conclusion

In this work we have presented a practical system for securely outsourcing medical
dataset analysis. The system ensures that the researcher has the freedom to
compute a rich range of metrics over the database and get results perturbed by
the minimum amount of noise to guarantee differential privacy. Our construction
moves the burden of cost onto the beneficiaries of the analysis and also shortens
the amount of time it takes for them to acquire and analyze a dataset. Together,
these properties provide the alternative the medical research industry needs to
properly incentivize data owners to share their datasets.
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B Protocol Diagram

Protocol for Medical Database Analysis
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Fig. 5. Protocol Diagram

C Differential Privacy

There are a number of different formal definitions for differential privacy, we
choose to use the most common definition from [15–18].

Definition 1. a randomized function 𝒦 gives 𝜖-differential privacy if for all data
sets 𝐷1 and 𝐷2 differing on at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝒦)

𝑃𝑟[𝒦(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖 × 𝑃𝑟[𝒦(𝐷2) ∈ 𝑆]

Intuitively this means that an adversary with access to arbitrary auxiliary
information can not use the function 𝒦 to distinguish if the dataset in question is
𝐷1 or 𝐷2. Because 𝐷1 or 𝐷2 differ in at most one element, an adversary learns
the same information about an individual no matter if they are in the dataset or
not. Obviously a dataset without the individual contains no information about
that individual, so an adversary can also learn nothing from a dataset with all
information about that individual.
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The most practical methods for imposing differential privacy on functions
without completely destroying the usefulness of their results is introducing noise.
A number of attempts have been made to create noiseless differential privacy
in [14] and [6], but neither solution proves robust enough for our purposes.
Additionally, a summary of alternative differential privacy methods can be found
in [25]; we chose our solution for its elegance and computational simplicity. The
most effective way to introduce noise is to add it in once the entire computation
has finished; if noise is added to the underlying data before computation, the
effects of the noise are harder to predict and control [1]. Because the noise used is
additive, this means that any noise-based differential privacy is secure against only
single queries. If many queries are allowed, the additive noise can be cancelled out
by taking an average over the multiple results. Because it is hard to decide if two
queries are equivalent, protecting against these attacks is usually implemented
with a privacy budget, in which only a certain number of queries are allowed for
each researcher. In our construction, we do not address the issue of a privacy
budget and if cancelling out the additive noise is concerning to a data owner,
they should implement a privacy budget as appropriate.

C.1 Sensitivity

The method we choose for adding differential privacy to our system is adding
noise sampled from a laplacian with variance equal to the sensitivity of the
function computed, where sensitivity is defined as
Definition 2. For 𝑔 : 𝑆 → 𝑅𝑘, the sensitivity of 𝑔 is

𝛥𝑔 = max
𝑆1,𝑆2

||𝑔(𝑆1) − 𝑔(𝑆2)||1

for all datasets 𝑆1, 𝑆2 differing in at most one element.
Because the noise is related directly to the maximum change that changing a

single vector could have on the function 𝑔, it is intuitive that this method would
introduce differential privacy. Computing the sensitivity of a function, at least
for the class of functions relevant to this work, can be done in constant time with
respect to the function itself.

Because the space of computation is limited by the transcript 𝒯 , it is easy to
compute the sensitivity of any valid function. The limitations on transcripts are
formalized in Section 5. The data owner stores a patient vector with maximum
values in each 𝛼 entry and a patient vector with minimum values in each 𝛼
entry. Both of these vectors have all 𝛽 values set to 1. The main limitation on
transcripts is that the same computation is done to each vector. If we denote this
computation 𝑔(·), the sensitivity can be computed as |𝑔(𝑣maximal) − 𝑔(𝑣minimal)|.

D Related Solutions

D.1 Data Simulation

One current alternative solution to anonymization and analysis as a service is
data simulation. While real datasets contain information about real individuals,
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it is possible to construct synthetic datasets that contain no actual people but
contain the same trends as a real data set. These synthetic datasets can then
be released to the public without fear of compromising the privacy of any of the
original patients. This is a common practice particularly in genetics research [36].

Data simulation provides an interesting solution to the same problem we are
attempting to address but ultimately limits the creative abilities of researcher.
Because the data is generated using statistical methods and machine learning, it
is inherently limited by the foresight of its creators. The data is generated by
trends observed by the data owner, but if some trend is missed, the resulting
dataset will clearly not contain that trend. For this reason, synthetic data offers
a wonderful opportunity to confirm previous findings but is not the best way to
allow researchers to find some new information.

D.2 Verifiable Delegation of Computation

Verifiable computation or delegation of computation is a rich field of research
in computer science in which a client wants to outsource some computation to
an untrusted server. Because the server is an untrusted entity, the client must
be able to verify that the server has done the computation honestly. In general,
the problem assumes that the client has insufficient computational power to
perform the original computation so the verification algorithm must be less
computationally intensive than the original computation.

While there are many verifiable computation and delegation of computation
constructions that we could use in our system, including [3,5,11,20,24,27], there
are many requirements that are different for our problem than the traditional
verifiable computation problem. Firstly, in the traditional problem there are
no bounds on the computational abilities of the server; constructions prioritize
lowering the asymptotical complexity of the verification algorithm at the cost
of the running time of the server. Modern methods have found polylogarithmic
verification algorithms, but in general the runtime of the server is completely
impractical. Because we aim to construct a system that is feasible to use for
both researchers and data owners, we attempt to balance the runtime on the two
system such that neither is unreasonable.

Traditional Solution The classic strategy for constructing a solution to the
verifiable computation problem involves generating many function inputs, all of
which look like they were selected from the same distribution [22]. One of these
inputs is the true input and the others are random inputs for which the output
is known to the client. The server computes the function over all the inputs and
returns them all to client. If all the known outputs match the previously known
outputs, the client accepts the unknown output. Otherwise, the client rejects the
output and knows that the server is untrustworthy.

The obvious problem with this solution is that it requires the client to know
many input - output pairs. Moreover, each time the client wants the server to
perform a new computation, a new set of dummy inputs is required. Clearly this
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is not sustainable for a system that needs to be operational long term. Moreover,
we want the server to be able to select their own circuits to compute, as a
researcher in this work does. This model does not easily extend to accommodate
this stipulation.

PCP and SNARKs Modern solutions to the verifiable computation problem
leverage the PCP theorem to create proofs of computation that can be checked
in polylogarithmic time. Probabilistically Checkable Proofs and Probabilistically
Checkable Arguments [26] are powerful cryptographic tools that allow a verifier
to probabilistically sample small parts of a proof and still be convinced of its
reliability. Recently, projects like [29], [30], and [34] make the first steps towards
usable PCP constructions but still fall short of being practical tools. While
verification of a proof can be done quickly, the process of constructing the proof
is prohibitively slow. Because one of our goals was to create a system that could
be practically usable, we chose to not use any kind of PCP. As the constructions
of these proofs get more efficient, it may become practical to use them instead of
the proof embedding and verification methods we use in our construction.

Succinct non-interactive arguments of knowledge, or SNARKs, are an exten-
sion of zero-knowledge proofs that do not require interaction [4, 7]. SNARKs
allow a verifier to be convinced that a challenger possesses a witness to some
NP statement without revealing the witness itself. Critically, they allow it to be
done without interaction. While the zero-knowledgeness property of a SNARK
would not be easily utilized, SNARKS provide another possible way to prove
work. Unfortunately, SNARKs suffer from similar weaknesses as PCPs and are
not practical enough for use or rely upon non-standard assumptions.

It is worth noting that the computation done by the researcher is assumed
to be polynomial in the size of the dataset. If we allow the researcher to be
able to compute circuits that are exponential in the size of the dataset, PCPs
and SNARKS may be the only viable solutions as our verification algorithm
is proportional to the computation time. Additionally, giving the researcher
exponential computational power would be problematic given that the security
parameter of the FHE scheme is almost certainly going to be smaller than the
size of the dataset.

D.3 Systems with Limited Analytics

The work that does the best job addressing the issues with medical research is
by Fiore, Gennaro, and Pastro [19]. Their work creates a set of protocols to do
verifiable computation on a limited set of functions computed over BGV encrypted
data. They use the classic verifiable computation model in which a trusted client
supplies both the encrypted data and the function 𝐹 to be computed. They
introduce the notion of a homomorphic, collision resistant, one-way hash function
that allows the client to quickly verify if the untrusted party correctly computed
𝐹 . They are able to guarantee amortized verification time that is either linear
or constant in the time of computation. They are able to create protocols for
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performing a number of helpful functions, including linear combinations and
multivariate polynomials of degree two.

While this work provides solutions to the issues of privacy, practicality and
allows for the outsourcing of cost, it does not provide the flexibility required by
medical researchers. While their scheme is more efficient for linear combinations,
the limitations of only being able to compute multivariate polynomials of degree
two or univariate polynomials of higher degree renders their construction unsuit-
able for the needs of researchers. The examples cited in our implementation were
already using higher order multiplication than would be supported in their work
and our examples are still reasonably simple.

Another similar work is [35], in which the authors investigate the practicality
of calculating statistical metrics over encrypted data. Their results of overall
positive and similar to our findings. Additionally, the space of operations in their
experiments are similar to our experiments. While this work provides a good
start towards outsourcing medical analysis, they lack verifiable computation, a
critical component given an untrusted researcher.

D.4 Personalized Medicine

Some work has been done utilizing the analysis as a service model for personalized
medicine, in which a patient uploads their data to a service provider to learn some
metric about their health. In [8] a system for using homomorphically encrypted
data to allow the owner of a proprietary algorithm to compute a patient’s risk of
heart disease without learning about the patient. A similar system is [2], in which
medical units can access genomic, clinical, and environmental data to compute
risk metrics for a patient. The computational requirements from the FHE scheme
for this problem setting are far lower than in our problem setting. The circuits
computed are of lower complexity and the number of datapoints are fewer. Most
importantly, computation in these system are done only over a single patient’s
information making the threat vectors different.

E Optimization and Future Work

E.1 Ciphertext Compression

We utilize the ciphertext I/O in the HELib to write our ciphertexts to file. While
HELib provides efficient ciphertext operations, it stores its ciphertexts extremely
inefficiently. The coefficients on the polynomials are all written as ascii numbers
separated by spaces. To store ciphertext more efficiently, these coefficients can be
stored in some binary form and then compressed. We chose to store all ciphertext
in a single file for simplicity, but to minimize the size of the file a researcher
would have to download, all ciphertexts containing values from a given row of
the dataset should be stored in a compressed file. This storage scheme allows a
researcher to pick and choose exactly what subset of the data is important to
their query.
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E.2 Multithreading

Much of the computation done by the researcher can be completely parallelized.
Because the same operation must be done on each patient vector before the
results of those computations can be combined, each of the vector operations must
be completely independent. When illustrating the viability of our system, we did
no parallelization whatsoever, so all timing results are worst case. To optimize
efficiency, each set of ciphertext can be processed in parallel and then combined
pairwise in a tree structure. Additionally, the one-time cost of encrypting the
dataset can also benefit from parallelization. Each row in the dataset can be
formatted and encrypted independently.

E.3 Future Improvements to FHE

The efficiency of this system is directly tied to the efficiency of the underlying
FHE scheme. We have seen tremendous strides in the efficiency of FHE since its
initial construction in 2009. While we cannot anticipate the rate at which FHE
will improve, it is reasonable to assume that we will see better constructions of
FHE in the near future. Although we leverage the Smart-Vercauteren vectors
in our construction, if future implementations do not support SIMD ciphertext
operations, similar strategies can be used to bind many plaintext values together
so verification can be done quickly.
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