
Guided Problem Diagnosis through Active Learning

Songyun Duan and Shivnath Babu
Department of Computer Science, Duke University, Durham, NC, USA

{syduan,shivnath}@cs.duke.edu

Abstract

There is widespread interest today in developing tools
that can diagnose the cause of a system failure accurately
and efficiently based on monitoring data collected from the
system. Over time, the system monitoring data will con-
tain two types of failure data: (i) annotated failure data
L, which is monitoring data collected from failure states
of the system, where the cause of failure has been diag-
nosed and attached as annotations with the data; and (ii)
unannotated failure data U . Previous work on wholly- or
partially-automated diagnosis focused on L or U in isola-
tion. In this paper, we argue that it is important to consider
both L and U together to improve the overall accuracy of
diagnosis; and in particular, to proactively move instances
from U to L. However, such movement requires manual
diagnosis effort from system administrators. Since manual
diagnosis is expensive and time-consuming, we propose an
algorithm to make the best use of manual effort while max-
imizing the benefit gained from newly diagnosed instances.
We report an experimental evaluation of our algorithm us-
ing data from a variety of failures—both single failures and
multiple correlated failures—injected in a testbed, as well
as with synthetic data.

1 Introduction

A recent study [20] found that 72% of the top-40 Web
sites suffer user-visible problems, such as slow responses,
blank pages or error messages being displayed, items not
being added to shopping carts, unexpected database slow-
downs, and others. Walmart.com was unavailable for al-
most 10 hours during the peak U.S. 2006 holiday sea-
son. Such deviation of systems or applications from de-
sired behavior may violate service-level objectives (SLOs)
that specify what an acceptable level of service is. For ex-
ample, an SLO for an online brokerage may stipulate that
all transactions complete within 1 second, regardless of how
much middleware, databases, or networks are involved.

SLO violations in a system indicate failures. When a
system meets all specified SLOs, it is in a healthy state,

otherwise, it is in a failure state. Failures may be caused
by a variety of factors including performance problems like
resource contention, crashes due to hardware or software
faults, and mistakes by system administrators. The increas-
ing scale, complexity, and dynamics of modern systems is
making it harder than ever to track down the cause of fail-
ures manually [7, 12, 15].

At the same time, it is important to diagnose failures and
recover systems quickly. Brokerages and banking firms can
lose up to $75,000 per minute of downtime [12]. A 22-
hour outage at eBay cost the company more than $3 Mil-
lion in customer credits and $4 Billion in market capitaliza-
tion. These factors motivate interest in wholly- or partially-
automated tools that can diagnose the cause of a system fail-
ure accurately and efficiently. The lack of such tools will
continue to raise the total cost of system ownership, which
can be as high as 18 times the original purchase price [15].

When a system experiences a failure, a system admin-
istrator (sysadmin) or system-management software would
want to diagnose the cause of the failure quickly. We are
building a system called Fa to aid this process [11]. Fa’s
goal is to automate, as much as possible, the process of di-
agnosing system failures based on monitoring data collected
continuously from the system; and if possible, to bring the
system back to a working state automatically (self-healing).

System Monitoring Data: When a system is running,
Fa collects monitoring data periodically and stores it in a
database. For example, Fa uses the sar [19] utility to col-
lect more than 100 performance metrics (e.g., average CPU
utilization, number of disk I/Os) periodically from Linux
servers. Most database servers maintain performance coun-
ters (e.g., number of index updates, number of full table
scans) that Fa reads periodically. Fa collects 100-300 such
metrics periodically from the systems that it monitors.

Over a period of time, the monitoring data collected by
Fa will contain three types of instances:

• Healthy data H , which is monitoring data collected
when the system was in a healthy state. Recall that
a system is in a healthy state when it experiences no
SLO violations; and in a failure state otherwise.

 cpu_util num_io failures Annotation

f1 70.0 80.7 1 ?
f2 71.9 85.6 1 ?

(b)

 h7 49.8 119.5 0
h8 49.3 141.2 0
h9 50.4 13.5 0

h2 48.5 63.6 0
h3 51.9 97.9 0
h4 49.0 43.6 0
h5 72.4 65.4 0

h1 51.3 76.1 0

h6 50.8 51.2 0

 cpu_util num_io failures Annotation

h11 82.6 33.5 1 ?

h13 73.5 23.2 1 Problem 2

h10 70.4 43.5 1 Problem 1

h12 20.4 73.8 1 ?

(a)

Unannotated
data (U)

Cluster 1

data (L)
Annotated

from clusters
Deviation

Healthy
data (H)

Cluster k

(b)

F

(c)

Diagnosis result

or automated diagnosis
Sysadmin

Diagnosed instances

Selected instances

Annotated
data (L)

F

Yes

No

annotation of known failure

(a)

high confidence
prediction?

FalconClassifier

signature database)
(decision tree or

classifiertrain

Figure 1. Sample data Figure 2. Different phases of diagnosis in Fa

• Unannotated failure data U , which is monitoring data
collected from failure states of the system where the
cause of failure has not been diagnosed so far.

• Annotated failure data L, which is monitoring data
collected from failure states of the system where the
cause of failure has been diagnosed. A successful di-
agnosis can happen any time after the failure occurs.
Upon diagnosis, information about the type and cause
of failure is attached as an annotation (or metadata)
to the corresponding monitoring data. Specifically, the
addition of an annotation to an instance t in the unan-
notated data U , moves t from U to L. The annotation
corresponding to a failure may also include informa-
tion on how the failure can be fixed automatically to
recover the system back to a healthy state; such anno-
tations enable self-healing [9].

Example 1.1 Figure 1(a) shows the historic data for a
database server collected by monitoring the server at one-
minute intervals. In each interval, attribute cpu util is
the average server CPU utilization; num io is the num-
ber of disk I/Os; failures denotes whether the average
response time of database transactions in that interval ex-
ceeded a threshold (causing SLO violations) or not; and
Annotation records the cause of each failure that has
been diagnosed. In this historic dataset, healthy data H
consists of instances h1, . . . , h9, annotated data L consists
of failure instances h10 and h13, and unannotated data U
consists of failure instances h11 and h12.

Failure Diagnosis using Monitoring Data: When the sys-
tem experiences a failure, Fa provides support for diagnos-
ing the cause of the failure based on two sets of data:
• Monitoring data F collected from the system during the

failure (or just before the failure in the case of a system
crash).

• All historic data collected so far, namely, H ∪U ∪L. (∪
denotes the union operator.)

Example 1.2 Figure 1(b) shows recent monitoring data F
from the same server as in Example 1.1. The values of the

failures attribute in F indicate that the server is ex-
periencing some type of failure. To diagnose the cause of
this failure, Fa will use F as well as the full historic data
H ∪ U ∪ L from Figure 1(a).

To diagnose the cause of the failure represented by a
set of instances F , a sysadmin or system-management
software poses a diagnosis query to Fa of the form
Q=Diagnose(F, H ∪ U ∪ L). Fa will process this query
in two phases, as illustrated in Figure 2.

• In Phase I (Figure 2(a)), Fa determines whether the
failure represented by F is the same as a previously-
diagnosed failure in L. That is, Phase I translates Q to
QI=Diagnose(F, L). If the diagnosis result produced
by this phase has high confidence, then Fa returns this
result to the issuer of the query; otherwise Fa goes to
Phase II of diagnosis.

• In Phase II (Figure 2(b)), Fa compares F with the
healthy data H collected so far, to see whether the
cause of the failure can be characterized succinctly as
deviation of F from the data representing the healthy
states of the system. That is, Phase II translates Q to
QII=Diagnose(F, H).

Phase I of Diagnosis: Many techniques have been pro-
posed in the literature to implement Phase I which essen-
tially is a multi-class classification task [22]. (A survey is
given in [9].) Each instance t in L can be viewed as a record
that belongs to a unique class. In our setting, t’s class is its
annotation which is determined by the cause of the failure
that t comes from. Given the instances in L and their re-
spective annotations, Phase I’s task is to predict the correct
annotation for F .

The general approach to perform Phase I is to train a
classifier C [22] from the current set of annotated instances
L. C can then be used to predict F ’s class. A popular clas-
sifier used in the literature (e.g., [6]) is a decision tree. The
nonleaf nodes in the tree define partitioning conditions on
selected attributes in the data (e.g., cpu util> 60). Each

2

leaf node N is associated with an annotation that is pre-
dicted for all instances that satisfy the conditions along the
path from the root node to N .

Another popular classifier is a signature database (e.g.,
[4, 9]) that contains a unique signature for each distinct type
of failure in L. Intuitively, the signature for a failure type
captures the unique set of symptoms for that type. F is
compared with each signature in the database. If there is a
strong match between F and a particular signature s, then
F represents the same failure as s with high confidence.

Phase I leverages previous diagnosis efforts, which is
valuable because diagnosis of failures is laborious and ex-
pensive in complex, large-scale systems. Furthermore, pre-
vious studies indicate that most failures in practice tend
to have occurred before. Reference [4] reports that typi-
cally half, and sometimes as much as 90%, of all software
problems reported by users today are recurrences of known
problems, i.e., those whose cause has already been ascer-
tained or is under investigation. At the same time, Phase
I will be effective only if failure instances appearing in U
are annotated and moved to L in a timely fashion; thereby
making L sufficiently comprehensive.

Phase II of Diagnosis: If F corresponds to a previously-
unseen or previously-undiagnosed failure, then Phase I will
not be able to do a diagnosis with high confidence. In this
situation, Phase II of Fa attempts to diagnose F based on
the healthy data H . Figure 2(b) illustrates the basic idea,
and the details are in [2]. The instances in H are first
grouped into clusters such that each cluster represents a
distinct healthy state of the system. Fa then characterizes
the deviation of F from these healthy states to pinpoint the
probable cause of the failure. Similar approaches have been
proposed by other researchers, e.g., [3, 8].

While both Phase I and Phase II have their pros and cons,
Phase II has a harder task than Phase I. Consequently, di-
agnosis results from Phase II tend to be less accurate than
those from Phase I. In machine-learning terminology, Phase
I is a supervised learning task and Phase II is an unsuper-
vised learning task [22]. In supervised learning, the train-
ing data consists of pairs of input objects (L in Fa) and the
corresponding outputs (annotations in Fa). The goal is to
create a function (e.g., a classifier like decision tree) that
can predict the output for any legal input. However, in un-
supervised learning, the training data contains input objects
only—the outputs are unknown—and the goal is to learn a
model that fits the input (e.g., a clustering of the input).

Recall that our monitoring datasets contain 100-300 at-
tributes. Supervised learning often has an accuracy advan-
tage over unsupervised learning on such high-dimensional
datasets. Reference [9] empirically evaluates techniques for
Phase I and Phase II and comes up with similar observa-
tions. For example, Phase II is shown to be prone to misdi-
agnosis under multiple correlated failures.

A New Background Phase III: The above observations
about Phases I and II motivated us to consider a new phase
in Fa where we move data actively from U to L, with the
goal of increasing the accuracy and coverage of Phase I with
the least manual effort. Figure 2(c) illustrates this step. We
can move a failure instance t from U to L after annotating
t with the cause of the failure that it represents. To get the
correct annotation for t, we can leverage the manual diag-
nosis efforts of sysadmins.

Phase III is implemented using a new algorithm, called
Falcon, that can select some instances u from U , and pose
an annotation query to the sysadmin of the form: What are
the annotations for the instances in u? To answer this anno-
tation query, the sysadmin will have to actually diagnose the
cause of the failure represented by u. She can take the help
of Fa’s Phase II for this purpose. If the sysadmin is able to
respond back with the annotations for u, then Falcon will
remove u from U , and add u and its annotations to L. Oth-
erwise, these instances are left in U . Falcon then iterates by
selecting a new set of instances from U , and posing a new
annotation query to the sysadmin.

Phase III can be run continuously in the background as
the system executes, or it can be invoked on demand by
the sysadmin—e.g., when she has the time to do more di-
agnosis, or when she feels that the classifier trained from
the current L needs to be improved. As new annotated in-
stances appear in L, the classifier used by Phase I can be
retrained on the new L to potentially improve its accuracy
and coverage. The main challenge we need to address in
Phase III is to design the sequence of annotation queries
posed to the sysadmin. Since diagnosis is expensive and
time-consuming, our goal is to make the best use of manual
diagnosis efforts while maximizing the information gained
from the newly diagnosed instances. Addressing this chal-
lenge is the focus of this paper.

This rest of this paper is organized as follows:
• Section 2 discusses guidelines that algorithms for Phase

III should meet. We then give an overview of how Fal-
con adheres to these guidelines.

• Sections 3 and 4 describe the components of Falcon.
• Section 5 reports an experimental evaluation based on

failures injected in a testbed, as well as synthetic data.
• Section 6 reports related work, and Section 7 concludes.

2 Preliminaries and Overview

2.1 Guidelines for Phase III

Recall from Section 1 that Fa’s Phase III poses a se-
quence of annotation queries to the sysadmin. For efficiency
and ease of use, we require this sequence to adhere to three
guidelines G1, G2, and G3 that we discuss next.

Guideline G1: Each individual annotation query posed to a
sysadmin should contain multiple instances belonging to a

3

single type of failure. The intuition behind this guideline is
that it will be hard for a sysadmin to diagnose the cause of a
failure from a single instance of monitoring data. Multiple
distinct instances per failure make it easier to spot patterns
both manually as well as when Fa’s Phase II is used [2].
It is even more important to ensure (as much as possible)
that the instances in an annotation query correspond to the
same type of failure. A query that mixes instances from an
assorted set of failures will easily confuse sysadmins. The
consequences can be higher cost and labor for diagnosis,
higher chances of misdiagnosis, and subsequent loss of faith
in the usefulness of Phase III.

Guideline G2: The instances selected in each annotation
query should be sufficiently different from the existing an-
notated instances in L. Adhering to this guideline ensures
that manual diagnosis efforts are not duplicated needlessly.

Guideline G3: The instances selected in each annotation
query should be representative of the failures seen in the
system that are not covered by the existing annotated in-
stances in L. Adhering to this guideline ensures that man-
ual diagnosis efforts are spent on failures actually seen in
the production system.

2.2 Overview of Falcon
Our goal is to design an algorithm that adheres to all

three guidelines. Guidelines G2 and G3 can be met us-
ing techniques for active learning from supervised machine
learning [14]. In conventional supervised learning, a classi-
fier C is trained on a pool of instances that are all annotated.
C can then be used to predict annotations for instances with
unknown annotations. Active learning is used when the
training pool consists largely of unannotated instances for
which getting annotations are costly. This approach has
been applied widely, e.g., in text and image classification,
speech recognition, and software testing [14].

Starting with a small set of annotated instances, an ac-
tive learner searches the unannotated pool for instances that
provide useful information in creating an accurate classifier.
Once an unannotated instance t is chosen, a request is made
to a human expert (in general, an oracle) to provide the cor-
rect annotation for t. The expert annotates t at some cost,
and the classifier is retrained on the new set of annotated
instances. Based on the newly gained information, the ac-
tive learner searches the unannotated pool again; and the
process repeats.

Notice that an active learner is exactly what we need to
implement Phase III. However, conventional active learners
(described in Section 3) adhere to guidelines G2 and G3,
but not to G1. The complication posed by G1 is that the cost
incurred by the sysadmin to answer an annotation query is
very high if the instances belong to more than one type of
failure. Falcon1, illustrated in Figure 3, addresses this issue.

1Fa’s Active Learning with Clustering Online

Algorithm Falcon /* Fa’s implementation of diagnosis Phase III */
1. Let L be the current set of annotated failure instances, and U

be the current set of unannotated failure instances;
/* Clustering step to adhere to guideline G1 */

2. Group instances in U into a minimal set of clusters where each
cluster has instances of same failure type with high probability;
/* Use of active learning to adhere to guidelines G2 and G3 */

3. Use an active learner to pick one cluster from the set of
clusters generated in the previous step;

4. Pick some k ≥ 1 instances from the chosen cluster in U to
pose an annotation query to the sysadmin;

5. Move the annotated instances returned by the sysadmin, if
any, from U to L. Update the classifier trained from L;

6. Go to Step 1;
Figure 3. Outline of our Falcon algorithm

Falcon proceeds in iterations where each iteration picks
an annotation query—i.e., a set of unannotated instances
from U—that is posed to the sysadmin for annotation. Fal-
con adheres to guideline G1 by ensuring that each query
contains multiple instances that all correspond to the same
type of failure with high probability. To meet this require-
ment, Falcon first groups instances in U into clusters such
that instances from the same failure type go into the same
cluster. Section 4 describes Falcon’s clustering techniques.

Once the clusters are generated, Falcon uses an active
learner to pick one cluster from which all instances in the
current annotation query will be chosen. This step requires
some modifications to conventional active learners which
are designed to pick one instance from a pool of unanno-
tated instances, rather than one cluster from a pool of clus-
ters. In Section 3, we describe some conventional active
learners and our extensions that enable Falcon to adhere to
guidelines G2 and G3.

After picking a cluster, Falcon has to decide which sub-
set of instances from this cluster to include in the annotation
query posed to the sysadmin. This decision is discussed in
Section 4. The response given by the sysadmin will be an-
notations for some subset of the queried instances. This
subset could range from all queried instances to an empty
set. The cost incurred by the sysadmin for finding the anno-
tations adds to the overall cost of Falcon so far. The newly
annotated instances will be added to L, and the classifier
that Phase I trains from L will be updated. Falcon then pro-
ceeds to design the next annotation query.

The next two sections present the details of each step of
Falcon in Figure 3.

3 Active Learners

In this section, we first describe three popular active
learners from the machine-learning literature. We will then
describe how Falcon adapts these learners to also adhere to
guideline G1 from Section 2.1. Conventional active learners

4

are best described by where they are positioned in the clas-
sical “exploration” Vs. “exploitation” spectrum in machine
learning [14].

A popular active learner that we consider in Falcon
is called the least-confidence learner (LC) (or uncertainty
sampling) [14]. The unannotated instance t ∈ U that LC
will pick for manual annotation next is the one on which
the classifier C trained from the current L is least confident
about the true annotation. A generic way to quantify the
confidence in C’s prediction of t’s annotation is to measure
how close t is to a decision boundary in C. (Intuitively,
each side of a decision boundary in a classifier will give a
different prediction of t’s annotation.) The closer t is to a
decision boundary in C, the less C is confident about its
prediction of t’s true annotation; hence, the larger the un-
certainty in t.

LC is good at exploitation—namely, acquiring anno-
tations for instances near decision boundaries so that the
boundaries can be refined—but, it does not conduct explo-
ration where the goal is to acquire annotations for instances
so as to create new decision boundaries if required. Pure
exploitation will not find regions of the input space that
contain many unannotated instances for which the current
classifier learned from L predicts the true annotation incor-
rectly. Exploration searches for such regions. A popular
active learner in the exploration category that we consider
in Falcon is called Kernel Furthest First; discussed in Sec-
tion 3.

The third type of active learner that we consider balances
exploration and exploitation by defining a probability—
varied suitably over time—of choosing whether to explore
or exploit whenever an annotation query has to be chosen
[14]. The rest of this section gives the details of how we
implemented these three active learners in Fa.

3.1 Least-Confidence Sampling (LC)

LC first learns a classifier C from the current set of anno-
tated failure instances L. For each instance t ∈ U , LC then
uses C for two things: (i) predicting t’s (unknown) anno-
tation; and (ii) estimating the confidence in this prediction.
The details of confidence estimation are specific to the type
of classifier we train from L, and works as follows for the
two types of classifiers discussed in Section 1:

• While predicting the annotation of an instance t ∈ U ,
a decision tree classifier can compute the probability
of t having each possible annotation from the space of
all annotations (i.e., failure types). The annotation pre-
dicted for t will be the one with the highest probabil-
ity. The confidence in this prediction is the difference
in probabilities between the most probable annotation
and the second most probable annotation.

• A signature-based classifier will predict t’s annotation
to be the same as that of the signature whose distance
to t is minimum, i.e., t’s nearest neighbor in the signa-
ture database. (The distance metrics we consider will
be defined momentarily.) The confidence in this pre-
diction is d2−d1, where d1 is t’s distance to its nearest
neighbor in the signature database, and d2 is t’s dis-
tance to its second nearest neighbor in the database.

Notice that both the above differences estimate the distance
to a decision boundary. When LC has to pick k, k ≥ 1,
instances to pose an annotation query to the sysadmin, it
will pick the k instances from U whose predictions have
the lowest confidence. Ties are broken randomly.

3.2 Kernel-Furthest-First Learner (KFF)

For each instance t ∈ U , KFF computes t’s distance
to its nearest neighbor in L, i.e., the instance in L that t
is closest to among all instances in L. A popular metric
for estimating distances is the L2 norm (or Euclidean dis-
tance). The L2 norm for a pair of instances t and t′ is√∑n

i=1(t.Ai − t′.Ai)2, where A1, . . . , An are the data at-
tributes in each instance. Another distance metric, which
we use by default, is the cosine distance: 1 − cos(θ). Here,
θ is the angle between instances t and t′ treated as vectors.
cos(θ) = 〈t,t′〉

||t|| ||t′|| , i.e., the inner product of t and t′ nor-
malized by the product of their lengths. When KFF has to
pick k, k ≥ 1, instances to pose an annotation query to
the sysadmin, it will pick the k instances from U with the
largest distance to their nearest neighbor in L. Ties are bro-
ken randomly.

3.3 Hybrid Learner (Hybrid)

Whenever an annotation query has to be chosen, Hybrid
decides whether to do an exploration with probability p, or
to do an exploitation with probability 1-p [14]. KFF is used
if exploration is chosen, and LC is used if exploitation is
chosen. A simple option is to use a fixed p. Reference [14]
describes a better approach which we implemented as Hy-
brid in Falcon. Hybrid varies p dynamically such that p
is high initially, and p is reduced gradually as the classi-
fier trained from L becomes more accurate. After each ex-
ploration step, Hybrid estimates how “successful” this step
was. Intuitively, if the exploration was successful, then p
should be kept high; otherwise it should be reduced.

Let Cb and Ca be the classifiers trained from the set of
annotated instances L before and after an exploration step.
Let Vb (Va) be the vector containing the annotations pre-
dicted by Cb (Ca) for the instances in L∪U . If Va is signifi-
cantly different from Vb—which can be computed using the
distance metrics from Section 3.2—then Hybrid estimates

5

that the exploration was successful; otherwise it reduces p.
Intuitively, the measure of success of an exploration step
is the magnitude of change produced in the predictions of
the classifier trained from L. The full details of Hybrid are
given in [14].

3.4 How Falcon Uses an Active Learner

The conventional active learners discussed so far in this
section work at the level of individual instances in U . How-
ever, recall from Section 2.1 that guideline G1 requires Fal-
con to work at the level of clusters in U , where each cluster
contains instances of the same failure type with high prob-
ability. When LC is used as the active learner, Falcon will
compute the confidence of each cluster as the average con-
fidence across all instances in that cluster. The cluster with
the least confidence is chosen for the annotation query in
Step 3 of Falcon in Figure 3.

A similar approach is used for KFF. Here, for each clus-
ter, Falcon will compute the average, over all instances in
the cluster, of the distance to the nearest neighbor in L. The
cluster with the largest average distance will be chosen for
the annotation query. Note that Hybrid uses one of LC or
KFF in each iteration.

4 Clustering in Falcon

We first considered conventional distance-based cluster-
ing techniques to group instances in U into clusters that
contain instances of the same failure type with high prob-
ability. However, these techniques performed poorly, so we
developed a new technique that we call time-based chunk-
ing. Both techniques are described next.

4.1 Distance-based Clustering

We will give a brief description of K-means which is one
of the most commonly-used distance-based clustering tech-
niques [22]. K-means uses an iterative refinement algorithm
that starts by partitioning the input instances in U into k ini-
tial sets, either at random or using some heuristic. It then
calculates the mean instance, or centroid, of each set; and
constructs a new partition of the instances in U by associat-
ing each instance with its closest centroid. Any of the dis-
tance metrics from Section 3.2 can be used for measuring
the distance between instances. The centroids are recalcu-
lated for the new clusters, and the algorithm is repeated by
alternate application of these two steps until the instances
no longer switch clusters or the centroids no longer change.

Falcon’s active learner will pick one of the clusters gen-
erated by K-means, as discussed in Section 3.4. The anno-
tation query posed to the sysadmin will consist of one rep-
resentative instance R, which is the centroid of this cluster,
and k − 1 supporting instances, which form a random sam-
ple of k − 1 instances from this cluster.

As we report in Section 5, K-means performed poorly
when used in Falcon. Recall that the monitoring datasets
collected by Fa contain 100-300 attributes, i.e., these
datasets are high dimensional. Distance-based clustering
suffers from the curse of dimensionality in high dimensional
spaces [10]. For any pair of instances in such spaces, it is
highly likely that there are some attributes on which the in-
stances are highly distant from each other. Thus, the clus-
ters generated by K-means from U tend to be impure in that
they contain instances from different failure types.

4.2 Time-based Chunking

We developed a different technique to address the prob-
lems with distance-based clustering. In the system man-
agement domain, it is reasonable to expect a strong time-
based correlation among annotation values. That is, it is
more likely that two failure instances that are close together
in time belong to the same failure type, compared to two
failure instances that are distant in time. This property can
be leveraged while clustering instances in U . However, the
challenge that we need to solve is how to identify change-
points in U—where one type of failure finishes, and another
type of failure starts.

Often, there are external indicators that make it easy
to detect change-points. For example, instances from two
different types of failure may be separated in time by a
long intermediate phase where the system was in a healthy
state. While such external indicators are useful, we cannot
rely solely on such indicators to identify all change-points.
For example, a type of failure may be workload depen-
dent, causing failure instances to be interleaved naturally
with healthy instances. We have developed a technique to
identify change-points that can leverage external indicators
where available, but does not depend on them.

The basic idea behind our technique is to use patterns
in the confidence estimates of instances in U that are close
together in time. As discussed in Section 3.1, these confi-
dence estimates are generated by first training a classifier C
on the current set of annotated instances L, and then using
C to predict the annotation and associated confidence for
each instance t ∈ U .

Figure 4 illustrates the type of patterns we hope to see,
namely, the values of confidence estimates for instances of
the same failure that are contiguous in time are relatively
close to one another (compared to the confidence estimates
for instances of other failure types). The x axis in Figure
4 corresponds to the instances in U laid out in increasing
order of timestamp. These instances are from a real experi-
ment, and were generated in our testbed by injecting differ-
ent failure types at different points of time. The top graph
in the figure shows the actual change-points in the data that
we generated by changing the type of failure injected.

A small random sample of the failure data was used as

6

0 100 200 300 400 500
0

0.5

1
0 100 200 300 400 500

0

10

20

0 100 200 300 400 500
0

0.5

1

Figure 4. The topmost figure shows the ac-
tual change-points. The middle and bottom
figures show estimated confidence values
before and after time-based chunking.

the current set of annotated instances L, and a decision tree
classifier C was trained. The middle graph in Figure 4
shows the confidence estimate from C for each respective
instance in the top graph. Note that for most failure types,
the majority of confidence estimates for instances of that
type tend to fall within a small range of one another. Thus,
most of the actual change-points in the data can be captured
by change-points in the confidence-estimate plot. This idea
forms the crux of time-based chunking.

Time-based chunking can be implemented in many
ways, e.g., using recent change-point detection techniques
like [1, 13]. We have implemented a relatively straightfor-
ward technique that has worked satisfactorily so far. We
scan the instances in U in increasing order of timestamp,
grouping the instances into chunks as follows. Let N be
the current chunk, and let e be the confidence estimate of
the earliest instance in this chunk in our scan. The scan
will close chunk N , and start a new chunk, when it finds an
interval that contains many instances whose confidence es-
timates fall outside [e− δ, e+ δ]. Here, δ is a user-specified
constant. Thus, the confidence estimates of all instances in
chunk N will lie in [e− δ, e + δ], and will be approximated
as e. The bottom graph in Figure 4 shows the chunks gen-
erated by our technique, which are reasonably accurate.

Once Falcon’s active learner picks one of the generated
chunks (as discussed in Section 3.4), the annotation query
posed to the sysadmin will consist of one representative in-
stance R, which is the instance at the center (in time) of this
chunk, and k−1 supporting instances around R that belong
to the same chunk.

5 Experiments
Our experiments are run with monitoring data from

a controlled testbed developed using software from the

Name #Attributes #Instances #Distinct failures

1. Rubis-1 105 1334 9
2. Rubis-2 105 1796 14
3. Synthetic 10 528 11

Table 1. Monitoring datasets

Berkeley/Stanford Recovery-Oriented Computing (ROC)
project [16]. The testbed runs a multitier Web service
named Rubis [18]—an auction service modeled on eBay—
running on a JBoss application server (with an embedded
Web server) and a MySQL database server. The monitor-
ing data we collect primarily includes the number of proce-
dure invocations per minute of various Java modules (Java
beans) in the application server while the Web service is in
operation. We employ a failure-injection tool [5] to system-
atically inject failures into Rubis and JBoss. The types of
failures injected in our experiments include Java exceptions,
message drops, deadlocks, JNDI corruptions, data corrup-
tions, memory leaks, and infinite loops. In addition to single
independent failures, we also injected multiple correlated
failures because such failures are common in large-scale
production systems [5]. The testbed is run on a machine
with 1 GHz CPU and 1 GB memory.

Monitoring Datasets: Table 1 summarizes the monitor-
ing datasets generated using failure injection. Rubis-1 con-
tains independent failures and two-way correlated failures.
Rubis-2 contains independent failures as well as two-way,
three-way, and four-way correlated failures. As we have
knowledge of the failure type injected, each failure instance
in Rubis-1 and Rubis-2 is annotated with its actual cause;
providing ground truth for evaluating the diagnosis accu-
racy of our techniques. To test our approach on datasets
with complex patterns, we also consider a synthetic multi-
class dataset (which is actually the VOWEL dataset from
the UCI machine-learning repository [21]).

In each monitoring dataset, 30% of the instances are used
as the independent test data to compute the accuracy of the
classifier trained from the current set of annotated instances
in L. The rest of the instances appear in the pool of unanno-
tated instances U . We randomly pick 20% of the instances
from U and add their annotations to generate the initial an-
notated dataset L.

We consider two experimental settings: (I) all the failure
types that appear in U also appear in the initial annotated
data L, and (II) some types of failure that appear in U are
missing from the initial annotated data L. For setting II, the
fraction of known failure types in the initial L is 75% of all
the failure types in L ∪ U .

Annotation Query: Recall from Section 4 that each anno-
tation query poses one representative instance R and k − 1
supporting instances for the sysadmin to diagnose; k = 10
in our experiments. In response, we assume that the sysad-
min annotates the representative instance R, and also all

7

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

0 5 10 15 20 25
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

Figure 5. Setting I: (a) Rubis-1, (b) Rubis-2

0 10 20 30 40
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

0 5 10 15 20 25 30

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Sysadmin efforts

A
cc

ur
ac

y

RS
HYBRID

Figure 6. Setting II: (a) Rubis-1, (b) Rubis-2

supporting instances that have the same annotation as R.

Sysadmin Effort (Diagnosis Cost): We approximate the
manual diagnosis effort required to answer an annotation
query as the number of distinct failure types among the k
instances in the query. The intuition here is that sysadmins
may be misled while diagnosing the failure type represented
by instance R if the supporting instances belong to one or
more different failure types. Thus, it is highly desirable to
submit a query with k instances from the same failure type.

Algorithms and Defaults: The Falcon algorithm can be
implemented with various combinations of clustering algo-
rithms (K-means or time-based chunking) and active learn-
ers (LC, KFF, or Hybrid). Decision trees are our default
classifier since the decision paths from root to leaf nodes
help understand and verify the diagnosis results [6]. We set
10 as the default for the number of clusters in K-means clus-
tering. The combination of time-based chunking and hybrid
learner is our default strategy for the Falcon algorithm.

Evaluation Metrics: The accuracy metric preferred for
classifiers in the system management domain is called bal-
anced accuracy [17]. Suppose there are N types of an-
notations, and for each annotation Ai, the classifier makes
M ′

i correct predictions for the Mi instances in the test data
that have annotation Ai. Then, the balanced accuracy is
1
N ∗ ∑N

i=1
M ′

i

Mi
. In all the plots in this section, points on the

x-axis record the cumulative diagnosis effort of sysadmins
for the annotation queries submitted so far. The correspond-
ing value on the y-axis records the balanced accuracy of the
current classifier (i.e., the classifier trained on the current
L) on the test data. The maximum number of annotation
queries in our experiments is set to 30. A good algorithm
will enable the classifier to achieve high balanced accuracy
at minimal diagnosis effort from sysadmins.

0 10 20 30 40

0.4

0.5

0.6

0.7

0.8

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

0 5 10 15 20 25 30
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

Figure 7. Setting I: (a) Unbalanced Rubis-1,
(b) Unbalanced Rubis-2

5.1 End-to-End Validation: Falcon Vs.
Random Sampling

We first compare our Falcon algorithm using the de-
fault active learner (Hybrid) with random sampling (RS).
RS generates annotation queries as follows: a representative
instance is picked randomly from U , and its k−1 neighbors
in time are used as supporting instances.

Figures 5 and 6 plot the performance of Falcon and ran-
dom sampling in experimental settings I and II respectively.
In setting I, it is clear that (i) Falcon requires less diagnosis
effort from sysadmins than random sampling, and (ii) Fal-
con achieves much better balanced accuracy for the same
number of annotation queries. In setting II, we do not have
information about the failure types not seen in L. Thus, it
requires some exploration effort to get annotated instances
for failures not seen in L, in order to improve L’s coverage.
Random sampling is good at exploration, hence it performs
comparable to Falcon for Rubis-2 in setting II.

It is possible that failure instances are unbalanced in pro-
duction environments. That is, some types of failure may
occur more commonly or persist for longer periods than
other types. To create this situation, we replicate instances
from some failure types in our monitoring data, thereby
making L ∪ U unbalanced. Figures 7 and 8 compare Fal-
con with random sampling in the two settings. It is clear
that Falcon is now consistently better than random sam-
pling: random sampling can keep picking instances with
one or more frequent failure types, say Ai, although the ex-
tra information contained in the newly annotated instances
of failure Ai drops significantly.

These experiments show that Falcon can perform signifi-
cantly better than simple strategies for guiding the diagnosis
efforts of sysadmins.

5.2 Comparing Clustering Methods

Figures 9 and 10 compare time-based chunking
(CHUNK) with K-means clustering when they are com-
bined with an active learner (LC) in our two experimen-
tal settings. Note that time-based chunking is much better
than K-means clustering. Our monitoring datasets contain
a large number of attributes (105 attributes in Rubis-1) or
have complex patterns (Synthetic). Distance-based cluster-

8

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

0 5 10 15 20 25 30
0.2

0.3

0.4

0.5

0.6

0.7

Sysadmin efforts

A
cc

ur
ac

y

RS

HYBRID

Figure 8. Setting II: (a) Unbalanced Rubis-1,
(b) Unbalanced Rubis-2

0 20 40 60 80 100

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Sysadmin efforts

A
cc

ur
ac

y

CHUNK_LC

KMEANS_LC

0 20 40 60 80
0.2

0.3

0.4

0.5

0.6

0.7

Sysadmin efforts

A
cc

ur
ac

y

CHUNK_LC

KMEANS_LC

Figure 9. Setting I: (a) Rubis-1, (b) Synthetic

ing like K-means puts instances from different failures into
the same cluster. Therefore, the instances from any cluster
picked by the active learner tend to contain several distinct
failure types, incurring high diagnosis cost per annotation
query because of the extra burden placed on the sysadmin.

5.3 Comparing Active Learners

We now compare the three active learners described in
Section 2, namely, LC, KFF, and Hybrid. Figures 11 and
12 compare these active learners for datasets Rubis-2 and
Synthetic in the two respective settings. Figure 13 considers
Setting II for Rubis-1 in the regular and unbalanced cases.
The results are along expected lines: Hybrid is able to match
up to the best of LC and KFF in each setting. For example,
KFF performs very well (and Hybrid matches it) in Figure
13(b) because exploration is important in this setting.

6 Related Work
There has been plenty of previous work on wholly- or

partially-automated techniques for diagnosing performance
and availability problems in systems. However, previous
techniques tend to focus on one of what we identified in
Section 1 as Phases I and II of diagnosis. To the best of
our knowledge, ours is the first work to focus on Phase III,
where the goal is to make the best use of the manual diag-
nosis efforts of system administrators while maximizing the
information gained from the newly diagnosed instances.

References [4] and [24] are recent examples of work on
Phase I that build different forms of classifiers to map cur-
rent failures to previously-diagnosed failures. There has
also been work on constructing signatures to characterize
different system states [8, 23]. Reference [8] extracts in-
dexable signatures from system states, which are character-
ized by correlations between low-level system metrics and

0 20 40 60 80
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Sysadmin efforts

A
cc

ur
ac

y

CHUNK_LC
KMEANS_LC

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sysadmin efforts

A
cc

ur
ac

y

CHUNK_LC
KMEANS_LC

Figure 10. Setting II: (a) Rubis-1, (b) Synthetic

0 10 20 30 40
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

Figure 11. Setting I: (a) Rubis-2 (b) Synthetic

the overall performance metric. From these signatures, a
searchable database of historical system states can be cre-
ated to identify recurrent problems. Reference [23] uti-
lizes signatures to represent correlations between failures
and their symptoms in networked systems.

Previous work on automated or semi-automated diag-
nosis based on unannotated monitoring data (i.e., Phase
II) predominantly takes one of the correlation-based or
baselining-based approaches. Recent examples of the
correlation-based approach include [6, 7]. [6] applies
decision-tree learning techniques to rank different system
components based on their correlation with system failures.
[7] applies Bayesian-network learning techniques to cor-
relate performance metrics with high-level system behav-
ior. Reference [3] is a recent example of the baselining-
based approach where a heuristic is proposed to capture and
represent the baseline behavior of a Web service; and two
techniques—one based on the χ2 statistical test, and another
based on naive Bayesian networks—are proposed to detect
and categorize deviation from the baseline behavior. In [2],
we describe a new clustering algorithm that pays particu-
lar attention to the failure data while clustering the healthy
data; see Figure 2(b). Reference [9] empirically evaluates
techniques for Phase I and Phase II, and points out many
hurdles that Phase II faces (e.g., failure propagation).

Active learning and change-point detection are two tech-
niques that we leverage in our algorithm for Phase III. Ref-
erence [14] contains a survey of existing active learners, in-
cluding detailed descriptions of the active learners that Fal-
con uses. References [1] and [13] are recent techniques for
change-point detection that Falcon could leverage in future.

7 Conclusions
In this paper, we showed that diagnosis of failures based

on system monitoring data consists of multiple phases.

9

0 10 20 30 40

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

0 10 20 30 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

Figure 12. Setting II: (a) Rubis-2, (b) Synthetic

0 10 20 30 40
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

0 5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Sysadmin efforts

A
cc

ur
ac

y

HYBRID

CHUNK_LC

CHUNK_KFF

Figure 13. Setting II: (a) Rubis-1, (b) Unbal-
anced Rubis-1

Phase I of diagnosis uses annotated failure data L, which
is monitoring data collected from failure states of the sys-
tem where the cause of failure has been diagnosed and at-
tached as annotations with the data. Previous work has
shown that this phase is extremely valuable—because fail-
ures often reoccur—and accurate. However, this phase can
be effective only if unannotated failure instances are diag-
nosed accurately, and moved to L in a timely fashion. Such
movement requires manual diagnosis effort from system ad-
ministrators. Since manual diagnosis is expensive and time-
consuming, we proposed an algorithm to make the best use
of manual effort while maximizing the benefit gained from
newly diagnosed instances. An experimental evaluation us-
ing data from a variety of failures—both single failures and
multiple correlated failures—injected in a testbed, and with
synthetic data, showed the effectiveness of our algorithm.

References

[1] C. C. Aggarwal. A framework for change diagnosis of data
streams. In Proc. of the 2003 ACM SIGMOD Intl. Conf. on
Management of Data, June 2003.

[2] S. Babu, S. Duan, and K. Munagala. Processing diagno-
sis queries: A principled and scalable approach (poster). In
Proc. of the Intl. Conf. on Data Engineering, Apr. 2008.

[3] P. Bodik et al. Combining visualization and statistical analy-
sis to improve operator confidence and efficiency for failure
detection and localization. In Proc. of IEEE Intl. Conf. on
Autonomic Computing, 2005.

[4] M. Brodie, S. Ma, G. M. Lohman, L. Mignet, N. Modani,
M. Wilding, J. Champlin, and P. Sohn. Quickly finding
known software problems via automated symptom match-
ing. In Proc. of IEEE Intl. Conf. on Autonomic Computing,
June 2005.

[5] G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic
Failure-Path Inference: A Generic Introspection Technique
for Internet Applications. In Proc. of 3rd IEEE Workshop on
Internet Applications, June 2003.

[6] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer.
Failure diagnosis using decision trees. In Proc. of the First
IEEE Intl. Conf. on Autonomic Computing, June 2004.

[7] I. Cohen et al. Correlating instrumentation data to system
states: A building block for automated diagnosis and con-
trol. In Proc. of Operating Systems Design and Implemen-
tation, Dec. 2004.

[8] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T. Kelly,
and A. Fox. Capturing, Indexing, Clustering, and Retrieving
System History. In Proc. of the ACM Symp. on Operating
Systems Principles, Oct. 2005.

[9] B. Cook. Towards self-healing multitier web services. M.S.
thesis, Duke University, 2007.

[10] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-
Razgan, and D. Papadopoulos. Locally adaptive metrics for
clustering high dimensional data. Data Mining and Knowl-
edge Discovery, 14(1), 2007.

[11] S. Duan and S. Babu. Proactive identification of perfor-
mance problems. In Proc. of the 2006 ACM SIGMOD Intl.
Conf. on Management of Data, June 2006. Demonstration.

[12] P. Horn. Autonomic computing: IBM’s perspective on the
state of information technology. Technical report, IBM
Corp., 2001. http://www.research.ibm.com/autonomic.

[13] D. Kifer, S. Ben-David, and J. Gehrke. Detecting change in
data streams. In Proc. of the 2004 Intl. Conf. on Very Large
Data Bases, Sept. 2004.

[14] T. Osugi. Exploration-based active machine learning. M.S.
thesis, University of Nebraska, 2005.

[15] The RADical Approach to Next-Generation Information Ser-
vices: Reliable, Adaptive, Distributed. Invited talk by David
Patterson, University of California, Berkeley, at ACM SIG-
MOD 2006.

[16] D. Patterson et al. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case studies. Techni-
cal report, UC Berkeley Computer Science, UCB//CSD-02-
1175, 2002.

[17] R. Powers, M. Goldszmidt, and I. Cohen. Short term per-
formance forecasting in enterprise systems. In Proc. of the
2005 ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining, 2005.

[18] Rice University Bidding System. http://rubis.objectweb.org.
[19] Performance monitoring tools for Linux.

http://perso.wanadoo.fr/sebastien.godard.
[20] Business Internet Group. The black Friday report on Web

application integrity. San Francisco, CA, 2003.
[21] UCI Machine Learning Repository.

http://www.ics.uci.edu/˜mlearn/MLRepository.html.
[22] I. H. Witten and E. Frank. Data Mining: Practical Machine

Learning Tools and Techniques. Morgan Kaufmann, second
edition, June 2005.

[23] A. Yemini and S. Kliger. High speed and robust event cor-
relation. IEEE Communications Magazine, 1996.

[24] C. Yuan et al. Automated known problem diagnosis with
event traces. In EuroSys, Apr. 2006.

10

