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ABSTRACT
In an increasingly mobile connected world, our user experience of
mobile applications more and more depends on the performance of
cellular radio access networks (RAN). To achieve high quality of
experience for the user, it is imperative that operators identify and
diagnose performance problems quickly. In this paper, we describe
our experience in understanding the challenges in automating the
diagnosis of RAN performance problems. Working with a major
cellular network operator on a part of their RAN that services more
than 2 million users, we demonstrate that fine-grained modeling
and analysis could be the key towards this goal. We describe our
methodology in analyzing RAN problems, and highlight a few of
our findings, some previously unknown. We also discuss lessons
from our attempt at building automated diagnosis solutions.

1 INTRODUCTION
Cellular Radio Access Networks (RAN) form the backbone of con-
nectivity on the move for billions of Internet users everyday. Being
such a crucial component in their network infrastructure, cellular
network operators are constantly striving to operate RANs opti-
mally so as to provide high quality of user experience (QoE) to their
subscribers. To achieve high performance in RANs, it is imperative
that operators understand the impacting factors and can diagnose
performance problems quickly.

RAN performance diagnosis is hard. Factors impacting RAN per-
formance include user mobility, traffic pattern, interference, cover-
age, unoptimized configuration parameters, inefficient algorithms,
equipment failures, software bugs and protocol errors [9, 23, 24]. It
is very challenging to diagnose these problems due to the fact that
the performance of multiple base stations are coupled by the shared
radio access media and user mobility. Existing systems [4, 11] for
troubleshooting perform their function by monitoring key perfor-
mance indicators (KPIs), i.e., aggregate counters such as connection
drop rate and throughput per cell, over a several-minute time win-
dow. Persistent poor KPIs of base stations or base station clusters
trigger mostly manual root cause analysis. This process is slow and
ineffective. Often times there are disagreements on who should
∗Li was involved in this work prior to joining Uber.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4916-1/17/10. . . $15.00
https://doi.org/10.1145/3117811.3117813

handle the trouble ticket, such as the RF team, the call processing
team or the modem team. In addition, many of these tickets con-
clude that the problem occurred due to reasons already discovered
by earlier analyses1 after extensive troubleshooting. Even worse, a
large number of these problems reoccur after fixing several times.

Can cellular network operators automate the detection and diag-
nosis of RAN performance problems? In this paper, we attempt to
answer this question by reporting our experience working with
a major cellular network operator. We have studied a portion of
this operator’s RAN that servers over 2 million subscribers for a
period of over a year. During this tenure, we have seen the network
experience thousands of problems, and the effort spent by the oper-
ator in solving them. Based on this experience, we propose a new
methodology to diagnose RAN problems in a better fashion. Our
approach is also amenable to automation.

A key problem of current systems stems from relying on aggre-
gate KPIs, making it hard to isolate the many root causes contribut-
ing to the observed poor KPI. The natural solution to this problem
is to use fine-grained information to do such diagnosis. However,
it is infeasible to continuously log metadata for every transmission
in the physical layer (e.g., SINR) or for every frame in the MAC
layer (e.g., block error rate), or for every packet in the IP layer
(e.g., headers). Instead, in this work, we propose using connection
(bearer) level traces which can be feasibly collected in current op-
erational networks. A bearer is a connection between a UE and the
cellular network. Bearer level traces contain per-procedure (e.g.,
initial attach) information and aggregate data per bearer (e.g., total
physical resources allocated, average uplink SINR).

Our methodology first segregates RAN performance problems
based on the broad underlying root causes, and then builds detailed
performance models at the bearer level. Assigning the problems
to broad buckets allows us to generalize the approach to diagnose
them. We distinguish two types of performance metrics. For event-
based performance metrics such as connection failures and drops,
we use classification techniques in machine learning, such as deci-
sion trees, to build models that explain the problem. For volume-
based performance metrics such as radio link layer throughput, we
build detailed information theoretic regression models based on
physical and MAC layer information. Building these models are
non-trivial due to the availability of only aggregate information
at the bearer level and because the model needs to consider proto-
cols in several layers. We further derive cell-level KPI models from
bearer-level models. This enables us to attribute the root causes
affecting bearer-level to their impact on KPIs at the cell-level (§3).

To validate our proposal, we have applied our methodology to
the data collected at the operator’s RAN, where it revealed several

1e.g., we found multiple tickets that concluded that a particular device model caused
load-balancing issues
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Figure 1: LTE network architecture

interesting insights (§4). First, we found that the detection of pe-
riodic channel quality indicator (P-CQI) feedbacks in the physical
layer is unreliable. When the feedbacks are transmitted through up-
link control channel, they are not protected by CRC. Since the base
station only performs threshold-based detection, it could decode
arbitrary values once the signal passes the threshold. Without the
CRC, there is no way of knowing whether the decoded P-CQI is
spurious or not. Coding redundancy can be applied to avoid most of
these problems. However, we observed that these spurious P-CQIs
are not negligible and causes many ongoing connections to drop.
Second, the link adaptation algorithm in the physical layer is not
efficient and results in poor throughput. Third, many connection
failure alarms can be explained by known root causes. Some of
these insights were not previously known.

Finally, while developing the diagnosis methodology and apply-
ing it on an operational network, we learned that while fine-grained
analysis is tremendously useful, a fully automated diagnosis so-
lution suitable for the next generation cellular networks requires
solving several research and engineering challenges (§5).

2 BACKGROUND
In this section, we briefly review the LTE network architecture and
its data collection mechanism to familiarize the reader with the
basic entities in the network and the characteristics of the data
available for RAN diagnosis. We also discuss how existing state-of-
the-art RAN diagnosis systems function.

2.1 LTE Network Architecture & Protocols
LTE networks enable User Equipments (UEs) such as smartphones
to access the Internet. The LTE network architecture is shown in
fig. 1, which consists of several network entities. When a UE is in
idle mode, it does not have an active connection to the network.
To communicate with the Internet, a UE requests the network to
establish a communication channel between itself and the Packet
Data Network Gateway (P-GW). This involves message exchanges
between the UE and the Mobility Management Entity (MME). The
MME may contact the Home Subscriber Server (HSS) to obtain UE
capability and credentials. To enable the communication between
the UE and MME, a radio connection called radio bearer between
the UE and the base station is established. GPRS Tunneling Proto-
col (GTP) tunnels are established between the base station and the
Serving Gateway (S-GW), and between the S-GW and the P-GW
through message exchanges involving these entities and the MME.
The radio bearer and the two GTP tunnels make up the the com-
munication channel between the UE and the P-GW called Evolved
Packet System (EPS) bearer (or simply bearer in short).

When an active UE moves across a base station boundary, its
connections will be handed off to the new base station. There are
several different types of handoffs: handoffs that require the bearer

to be handled by a new S-GW, a new MME, or handoffs that require
the change of radio frequency or radio technology (e.g. from LTE
to 3G). Some of these procedures are very involved. For an active
UE, the network knows its current associated base station. For an
idle UE, the network knows its current tracking area. A tracking
area is a set of base stations that are geographically nearby.

S-GWs are mainly used as mobility anchors to provide seamless
mobility. P-GW centralizes most network functions like content
filter, firewalls, lawful intercepts, etc. P-GWs sit at the boundary of
the cellular networks and the Internet. A typical LTE network can
cover a very large geographic area and can have a pool of MMEs,
S-GWs and P-GWs for reliability and load balancing purposes.

From a UE’s perspective, LTE network protocols consist of pro-
tocols between the UE and MME, and between the UE and the base
station. When a UE powers up, it initiates the attach procedure with
MME. When a UE has data to send, it initiates a service request
with the MME. These procedures trigger the radio resource control
(RRC) connection setup procedure which involves several message
exchanges with the base station. When the network has data to
send to a UE when it is idle, a paging procedure is invoked.

2.2 Data Collection
Due to the sheer traffic volume, LTE networks do not continu-
ously collect packet traces2. LTE networks continuously collect the
following types of data.

Bearer and signaling procedure recordsAUE communicates
with the network by establishing one or more bearers. Each bearer
may have a different QoS profile or connect to a different IP net-
work. Multiple TCP connections can be carried in one bearer. LTE
networks keep track of a rich set of bearer statistics at the pro-
cedure level, like (1) transmitted and retransmitted bytes in the
RLC sublayer of the data link layer, (2) number of transmissions
and retransmissions in the MAC sublayer of the data link layer, (3)
physical radio resources allocated, radio channel quality known as
CQI, in the physical layer, (4) bearer success or failure reasons, (5)
associated base station, S-GW, P-GW, MME, (6) bearer start and end
time. LTE networks also collect data on many signaling procedures
such as initial attach request, service request, handoff, paging (wake
up a UE to receive incoming traffic). Data is collected at MMEs and
base stations and is organized as records. Each record can have
several hundred fields. In a LTE network, there is a pool of MMEs,
S-GWs and P-GWs. A base station can communicate with multiple
MMEs. Hence bearer level records need to be merged across MMEs.

Network element records Network elements such as base sta-
tions, MMEs have operational statistics such as aggregate downlink
frame transmitted per time window and number of bearers failed
per time window. These records are collected continuously. Data
accumulated for each time window are sent to the operation center.
Cellular analytics systems [3, 4, 10] at these centers use the data
and configuration information of network elements and subscriber
profiles for network monitoring, troubleshooting, trending analysis,
planning and network optimization.

Figure 2 shows the number of active daily users and the amount
of RLC layer traffic per hour during the peak hours from 4PM to
8PM in a typical week in the network we study. We define active

2Packets may be collected for a duration to enable fine-grained troubleshooting.
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Figure 2: Active users and RLC layer traffic volume per peak hour
(4PM to 8PM). Each bar represents the average for one peak hour.

users as those who used the network at least once in a given day.
The portion of the network we studied serves over 2 million active
subscribers using over 14,000 base stations, each with multiple cells.
The volume is more than 6 TB per hour. We collected data for over
a year, resulting in several 100s of TB of data.

2.3 RAN Performance Troubleshooting
Operators monitor a large number of KPIs per cell or per cluster of
cells. These KPIs are classified into:

• Accessibility. Captures how available the RAN is. Includes
attach and RRC connection failure rates.

• Retainability. Captures how well the network can complete
the connection. It includes total bearer drop rate.

• Uplink and downlink physical layer throughput.
• Quality. Downlink & uplink block error rate (BLER).
• Traffic volume. Captures the uplink and downlink radio link
layer traffic volume.

• Connected user counts. This include average RRC connected
users and maximum RRC connected users.

• Mobility. Includes failure rates of various handoff types,
tracking area update failure rate and paging success rate.

Existing practice, adopted by most major cellular network op-
erators, is to use performance counters to derive these KPIs. The
derived KPIs are then monitored by domain experts, aggregated
over certain pre-defined time window. Based on domain knowledge
and operational experience, these KPIs have service level agree-
ments (SLA) to meet. For instance, an operator may have designed
the network to have no more than 0.5% call drops in a 10 minute
window. When a KPI that is being monitored crosses the threshold,
an alarm is raised and a ticket created. This ticket is then handled by
experts who investigate the cause of the problem. Our conversation
with the network administrators revealed that such investigations
can extend for several months, and may require expensive field
trials. We have also confirmed with the experts that many of such
alarms have known causes, but it is not possible to quickly conclude
so due of the use of aggregated counters in deriving the KPIs.

3 METHODOLOGY
Our work focuses on access network problems. While there are
other factors that affect application performance (e.g., poor interac-
tion of the network with TCP [14] and buffer bloat [16]), they are
orthogonal to our work since they do not originate in the RAN. Ac-
cess network problems are among the hardest to diagnose because

of the inherent nature of wireless networks; it is hard to capture the
intricate details of the numerous procedures in an LTE network.

The path towards problem diagnosis starts with detectingwhether
a problem exists. This can be done in two ways: passively, where
the operator comes to realize the problem when affected end-users
report them, or actively, where the operator continuously monitors
the network for problem detection before they become worse. Since
passive approaches significantly degrade user experience, most cel-
lular network operators actively monitor their networks. For this
purpose, they define and monitor a number of performance metrics,
which are termed Key Performance Indicators (KPI). We focus on
access network KPIs for the rest of this paper.

3.1 Problem Isolation to RAN
Our quality of user experience can be impacted by many factors in
the client side, cellular network and the Internet server side. The
first step in analyzing performance issues is to isolate problems
related to the access network.We achieve this by eliminating known
non-RAN problems and modeling exogenous factors as noise.

Problems in the core network will impact a large number base
stations. For example, if the Serving Gateway (S-GW) is overloaded,
all base stations communicating with the S-GW will be impacted.
Similarly, if a router in the core network has problems, it will impact
all base stations that route through it. Although not common, core
network problems do occur [9]. For example, we found a case where
AS prependingwas not configured properly, and caused reachability
problem which impacted many base stations. However, due to their
larger footprint, core network problems are relatively easy to detect.

Problems in the client side can also adversely impact access
network KPIs. During conversations with network experts, we
learned that there were cases where known phone models caused
significant degradation of access network KPIs. We model other
exogenous factors at the client side, Internet and server side as the
noise impacting access network KPIs. These factors typically do not
contribute to the KPIs problems of a large number of cells. However,
theymay be themain factor for a small number of cells. For example,
if many users attached to a cell access the same overloaded server,
then the throughput KPI will be adversely impacted.

Manually isolating the problem to RAN is cumbersome and infea-
sible to scale. Fortunately, there already exists a system for problem
reporting and resolution, albeit manual, in the form of trouble tick-
ets. We leverage this ticket system to automatically isolate problems
to RAN. For instance, when a problem is detected, we can make
sure that there are no core network problems by checking the ticket
system. Similarly, we can ensure there is no significant correlation
between KPI degradation to avoid device specific problems. We
further use years of ticket resolution history and expertise of the
network operator to form filtering rules.

3.2 Classification of RAN Problems
In the second step, we classify the access network problems, ob-
tained as described earlier, into different categories. Classifying
them into broad bins lets us analyze classes of problems rather than
individual issues. In addition to letting us focus on the important
problems, this also helps us with our goal of developing diagnosis
methods that can be automated. We broadly classify problems into
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LTE Physical Layer Parameters
Name Description
RSRP Reference Signal Received Power: Average of reference signal

power (in watts) across a specified bandwidth. Used for cell selec-
tion and handoff.

RSRQ Reference Signal Received Quality: Indicator of interference expe-
rienced by the UE. Derived from RSRP and interference metrics.

CQI Channel Quality Indicator: Carries information on how good/bad
communication channel quality is.

SINR Signal to Interference plus Noise Ratio: The ratio of the power of
the signal to the interference power and background noise.

BLER Block Error Ratio/Rate: Ratio of the number of erroneous blocks
received to the total blocks sent.

PRB Physical Resource Block: The specific number of subcarriers allo-
cated for a predetermined amount of time for a user.

Table 1: A description of key parameters in LTE physical layer

the following, in the order of importance, based on our discussions
with domain experts:

Coverage: Coverage represents one of the worst problems. Poor
coverage can even lead to network inaccessibility, which often
frustrates users. Unfortunately, such issues are hard to diagnose
because traces cannot be generated when there is absolutely no
coverage. However, it is possible to obtain insights on problems
related to poor coverage using physical layer measurements. The
primary physical layer parameter that influences coverage is RSRP
(table 1).

Interference: Another major factor impacting user experience
is interference. A user can be in an area with great coverage but
still not be able to use the network due to the interference from
nearby cells and/or users. This is especially true in LTE networks
which is fundamentally designed for channel reuse. The amount of
interference is influenced by the physical layer parameters RSRQ,
CQI and SINR (table 1).

Congestion:While coverage and interference are characteris-
tics of the user location, other factors also affect end-user experience.
For instance, a base station can be overloaded. Congestion impacts
many access network KPIs.

Configuration: Base stations have hundreds of configuration
parameters, many of which are created and managed manually. It
is easy to envision errors in these configurations, leading to many
problems. For example, incorrect neighbor list or PCI configuration
can adversely affect KPIs.

Network State Changes: Operators frequently update their
networks (e.g., new releases and/or features). During the upgrades,
problems can occur due to conflicts in software and/or because of
compatibility issues.

Others: Software bugs, protocol implementation problems and
hardware malfunction are some of the many other reasons for
problems occurring in the RAN.

3.3 Root Cause Diagnosis
In the third step, we diagnose the root cause for these problems.

3.3.1 Issues with Cell-Level Metrics. Existing RAN trouble-
shooting techniques are based on cell-level metrics. Specifically,
these methods build cell-level KPIs using aggregated counters. For
example, the operator may create the RSRP histogram for each cell
in each time window (e.g., every 10 minutes). Unfortunately, aggre-
gating information at the cell-level results in major shortcomings
due to its coarse-grained nature. Not only does aggregation result

in many problems not being detected, the mixing of several bearers’
RSRP in the aggregate counter makes it impossible to identify the
impact of root causes in detected problems.

3.3.2 Modeling Bearer-Level Metrics. Our approach is to
model performance metrics at the bearer-level using physical and
MAC layer parameters. The use of bearer-level metrics eliminates
the problems with cell-level metrics; and having a model lets us
explain why things happened, thus diagnosing the problem. Our
diagnosis methodology starts with eliminating known root causes,
such as call admission control failures. Based on the classification of
RAN problems, we distinguish two types of performance metrics:

Event Metrics: Several of the key performance metrics in RAN
are discrete events. For instance, failures and drops are based on
binary outcome. These metrics present a natural fit for models
based on classification models, hence we use them. In particular,
we describe a model for call drops using decision trees in §4.1.

Non-event/Volume Metrics: For continuous variables such as
bearer throughput, we use the underlying information-theorymodel.
§4.2 describes a regression model to diagnose throughput problems.

We describe the bearer-level modeling in detail in the next sec-
tion. While our models are based on bearer-level, it may be useful
to analyze problems at the cell level. For instance, the operator may
wish to isolate cells that are consistently bad, or compare cells for
troubleshooting. Our bearer-level approach makes this easy to do.

3.3.3 Computing Cell-Level Models. Given a bearer-level
model, Y = f (X ), we can compute the cell-level model. We have
two cases. First, Y is an event-based metric, e.g., RRC failure. The
cell-level failure rate Z for time window j can be modeled as:

zj =
1
Nj

Nj∑
i=1

yi =
1
Nj

Nj∑
i=1

f (xi ) (1)

Nj is the number of bearers that start in time window j. zj is es-
timated failure rate in time window j. If X is RSRP, then f is a
multi-step function. If we only have RSRP histogram information
(and not bearer-level information) in time window j , it will be very
hard to model fit the histogram with failure rate.

Second,Y is a transmission-based metric, e.g., bearer throughput.
The cell-level aggregate throughput Z at time window j is:

zj =
1
Tj

Nj∑
i=1

yi × τi =
1
Tj

Nj∑
i=1

f (xi )τi (2)

Tj is the total non-idle time of the cell and Nj is the number of
bearers fall into time window j . τi is the fraction of scheduled time
that is in time window j.

Comparing Cell-Level Models: If all the cells in the network
are identical, the model we derive is equivalent to a per-RAN model
that will apply across all cells. However, performance characteris-
tic vary across cells. For example, we have learned that different
cells may configure different number of retries in the random ac-
cess procedure. Intuitively, for the same RSRP, a cell with a high
number of retries will lead to fewer RRC failures and vice-versa.
Our methodology can accommodate clustering cells based on their
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Figure 3: A sample decision tree used to explain drops. A random
forest might provide better accuracy, but understanding the reason
behind the drop is crucial for operators.

model similarity (§5). This helps in comparing these clusters in
terms of configuration parameters and base station capabilities.

4 BEARER-LEVEL MODELING
In this section, we discuss bearer-level modeling in detail using two
key bearer performance metrics, connection drops and throughput.
These represent the two types of metrics our work aims to model.
To build models for each of these metrics, we leverage protocol
details in the physical, link and MAC layers.

4.1 Connection Drops Model
One of the core performance metrics for the cellular network op-
erator is retainability, which captures how well the network can
complete the connection. The retainability KPI is affected by RRC
connection drop events, and are thus crucial for end-user QoE. Our
traces give us ground truth (they indicate drops, but not the reason).

For certain drop events, we have known root causes recorded in
the data, e.g., call admission control failure or access denied. We
filter these out. This pre-processing step helps us avoid false alarms
during troubleshooting. For example, one ticket showed that the
connection failure KPI degradation of one cell was actually due
to an unauthorized UE repeatedly trying to access the network.
Note that the network can not block a UE from trying to access it
because the UE can make an emergency call without subscription.

4.1.1 Decision Trees for Modeling Event Metrics. Due to
the intricate nature of the wireless medium, connection drops are
influenced by a combination of the underlying layer parameters
instead of any single one. Such a setting, along with the availability
of tremendous amounts of data lends itself a good fit for machine
learning (ML) techniques [18]. Since we are interested in event
metrics, we leverage classification techniques in ML.

In particular, we use decision trees to model event metrics. While
there are several other, more sophisticated, techniques such as
random forests [12], our primary goal is to obtain a model that
can reason about the model decision. A decision tree is simple to
understand, and directly provides us the underlying reason for a
classification it makes. We use the collected data to train supervised
decision trees (since we know the ground truth). The features for
the learning are all those that fall into our broad categories. We also
leverage domain knowledge for feature engineering. For instance,
connection drops are affected directly by uplink and downlink
channel conditions. Decoding probability depends on SINR. Hence
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Figure 4: Impact of coverage on connection drops

we consider uplink and downlink SINR, which are available as
raw features in the data. For downlink, we convert raw CQI to
engineered feature, SINR.

An example of a learned decision tree is shown in fig. 3. Aswe can
see, it first classifies based on uplink SINR, and then makes use of
RSRQ if available. Otherwise, it uses uplink SINR and CQI. Experts
confirm that the model agrees with their manual, labor intensive
troubleshooting experience. In many of this network’s cells, con-
nection drops are mainly due to interference. Uplink SINR is more
unpredictable because the interference comes from subscribers
associated with neighboring base stations. In contrast, downlink
interference is from neighboring base stations. This model achieved
an accuracy of 92.1% with a cross-validation error of 10.1%.

4.1.2 Findings fromPer-RootCauseAnalysis. Wewere sur-
prised by the decision tree models built by our approach, such as
the one depicted in fig. 3, for many cells in this operator’s network.
Intuitively, we would have associated connection drops with poor
coverage (RSRP). However, the model ignored RSRP and picked
interference instead as the primary reason for drops. In addition,
the model distinguishes between downlink RSRQ and CQI, which
should affect interference similarly in theory.

To understand why our approach built this model, we studied the
impact of each underlying root-cause (§3.2) individually. We plot
the probability distribution of connection drops against physical
layer parameters. This resulted in interesting insights.

Coverage Physical layer parameter RSRP is the received signal
power of reference signals from the base station which can act as
an indication of coverage. We plot the emperical distribution of
connection drop with respect to RSRP in fig. 4. Areas with RSRP <
−130 dBm experience high drops, but are relatively less in number.

Uplink Interference As shown in fig. 5, the drop probability
for uplink SINR has a rather steep slope and peaks at -17dB. This is
because the scheduler stops allocating grants at this threshold. If
conditions do not improve, the connection will be dropped.

Downlink Interference There are two metrics to consider:
RSRQ and downlink CQI. RSRQ is only reported when the UE
might need to handoff. CQI is available independent of handoffs.
Under normal circumstances, they should have identical shape. But
from fig. 6 and fig. 7, we see that is not the case. To reveal the
difference of these two distribution, we converted them to a com-
mon base, SINR. To convert CQI, we just use the standard CQI to
SINR table. To convert RSRQ, we use the formula derived in [22],
SINR = 1

1
12RSRQ −ρ

, where ρ depends on subcarrier utilization. For

two antennas, it is between 1/3 and 5/3. For connection failure cases,
we show the emperical distribution of their SINR differences with

Paper Session II: Can You Hear Me Now? MobiCom’17, October 16-20, 2017, Snowbird, UT, USA

83



0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

-20 -10 0 10 20 30 40 50

Pr
ob
ab
ili
ty

Uplink SINR (dB)

Figure 5: Impact of UL SINR on drops

0
0.2
0.4
0.6
0.8
1

-20-18-16-14-12-10 -8 -6 -4 -2 0

Pr
ob
ab
ili
ty

RSRQ (dB)

Figure 6: Impact of DL RSRQ on drops

0
0.05
0.1
0.15
0.2
0.25
0.3

0 2 4 6 8 10 12 14 16

Pr
ob
ab
ili
ty

CQI

Figure 7: Impact of DL CQI on drops

0
0.2
0.4
0.6
0.8
1

-5 0 5 10 15 20

Pr
ob
ab
ili
ty

SINR Difference (dB)

ρ=1/3
ρ=1

ρ=5/3

Figure 8: SINR gap between CQI and RSRQ

0%, 50% and 100% subcarrier utilization in fig. 8. We see that 10%
has a SINR difference of 10 dB. This large discrepancy cannot be
explained by hardware dependency or channel variations during
our averaging time window.

Finding Insight: After talking to experts, we learned that P-CQI
feedbacks through physical uplink control channel are not CRC
protected. Correct decoding requires setting a threshold for received
signal strengths under different channel conditions. It seems that
the adaptation is problematic sometimes. P-CQI passing detection
threshold can not be decoded correctly. Since there is no CRC, some
spurious P-CQI will be used by the physical layer link adaption
algorithm. This can cause high BLER leading to connection drops.

4.2 Throughput Model
RLC layer throughput is another important KPI in RAN.

4.2.1 Regression for Modeling Volume Metrics. Since vol-
ume / non-event metrics are continuous values, regression tech-
niques in machine learning provides an attractive option to use to
build diagnostic models. Regression models can output continuous
values, and thus can be used to predict volume metrics based on
input features. For instance, we can form an information-theoretic
regression model that predicts throughput based on metrics. Our
traces report the transmitted and retransmitted bits, and the total
transmission time per bearer at the RLC sub-layer. Thus, we know
the RLC throughput as the ground truth. When the predicted values
and the actual values match (when the model is accurate), the re-
gression model provides us the reasoning, in the form of weights on
the input features, for why a particular throughput was achieved.

However, building an information-theoretic model is non-trivial
because we need to account for the overhead in different layers (e.g.,
physical layer control channel overhead, MAC layer retransmis-
sion overhead). We again leverage domain knowledge and feature
engineering to obtain a model for throughput prediction:

SINR Estimation Base stations have two antennas capable of
MIMO spatial multiplexing (two streams) or transmit diversity.
For both type of transmissions, each UE reports its two wideband
CQIs, one per antenna. We use the CQI to SINR mapping table
used at the base station scheduler to convert CQI to SINR. For
transmission diversity, we convert the two CQIs to a single SINR:
First we convert both CQIs to SINR, then we compute the two
spectrum efficiencies (bits/sec/Hz) using Shannon capacity. We
average the two spectrum efficiencies and convert it back to SINR.
We then add a 3dB transmission diversity gain to achieve the final
SINR. For spatial multiplexing, we convert the two CQIs to SINRs.

Account for PRBControl Overhead and BLER Target Each
PRB is 180 KHz, but not all of it is used for transmission. For transmit
diversity, a 29% overhead for each PRB exists on average because of
resources allocated to physical downlink control channel, physical
broadcast channel and reference signals. The physical layer has a
BLER target of 10%.

Account forMACSub-layerRetransmissionsTheMAC sub-
layer performs retransmissions. We denote the MAC efficiency
as βMAC . It is computed as the ratio of total first transmissions
over total transmissions. We compute βMAC using our traces. The
predicted throughput due to transmit diversity is calculated as:

tputRLCdiv = (1.0 − βMAC ) × 0.9 × (1 − 0.29) × 180 ×
PRBdiv × loд2(1 + SINRdiv )/TxTimediv

PRBdiv denotes the total PRBs allocated for transmit diversity.
TxTimediv is the total transmission time for transmit diversity.
Similarly we can calculate the predicted throughput due to spatial
multiplexing. We then properly weigh the two by their respective
fraction of transmission time to derive the final RLC throughput.

Account for Link Adaptation The base station does not use
the SINR corresponding to the UE reported CQI directly. It performs
link adaptation to achieve the desired BLER of 10%. If the observed
BLER is higher than target, it will adjust the SINR by subtracting a
few dB. If the observed BLER is lower than the target, it will adjust
the SINR by adding a few dB. To increase the speed of converging
to the BLER target, the feedback offset is computed differently
according to deviation to the target BLER. For large deviations, the
large step power offset is applied so that BLER can converge faster
to the long term adaptation area. This adaptation is necessary since
the propagation channel is subject to several conditions that vary
in space and time, e.g., path loss, fast fading, UE speed and location.
Since the base station adjusts a maximum of 6dB, we adjust the
SINR used in our prediction by -6dB to compute the lower bound
and +6dB to compute the upper bound. We compute the prediction
error as follows. If the actual throughput is within the two bounds,
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Figure 11: Geographic location (not to
scale) of cells by aggregated dB loss shows
losses are concentrated on a few cells.

the error is zero. Otherwise, the error is the distance to the closest
bounds. The CDF in fig. 9 shows that our model is very accurate.

4.2.2 Finding: Loss of Efficiency. We characterized the dif-
ference between predicted throughput and actual throughput in
terms of loss in dB. To compute this, we first convert the actual
throughput into SINR. We then substract the SINR from the one
used for throughput prediction. Figure 10 shows the distribution. It
has a peak around 8dB. As we can see, around 20% of the bearers
have a loss of efficiency of more than 10 dB.

To obtain insights on these high losses, we analyzed them ag-
gregated by the cell in which the loss was experienced. Figure 11
presents the results of this analysis. For the purpose of anonymity,
we do not provide the actual location of the cell, but only show
the relative locations scaled by a constant factor. We find that a
few cells contribute to many of the losses. Further, two cells from
the same base station contribute to as much as 5 times the losses
experienced by any single cell (including cells not shown).

We further investigated if the loss is a characteristic of the user.
The first question is whether these losses are experienced by the
same user. We find that this is not the case. While users tend to
experience the loss continuously as long as they are in a cell and are
actively utilizing the network, the aggregate loss is contributed by
many users. A second suspect is the device model. Different manu-
facturers use different radio chipsets, and hence the measurements
made by the device may differ. We find that most of the losses occur
in Apple iPhones. But they are also the most used devices in our
network, so we do not conclude that model contributes to losses.

Finding Insight: Due to the high fraction of bearers with high dB
loss, we posit that the link adaptation algorithm is slow to adapt to
changing conditions. We validate this based on two evidences. First,
the link adaptation algorithm uses moving average SINR, which
is a slow mechanism to adapt. Second, field experts confirmed our
observations by replicating them in lab tests.

4.3 Detecting False Positives of KPI Changes
Our models can significantly reduce operator’s troubleshooting
efforts. For instance, it can help remove false positives of significant
cell level KPI changes. We show this using drop rate. To do so, we
apply the decision tree in §4.1 on a week worth of data divided into
10 minute windows. We used this window length since it matches
closely with an interval that is usually used by the operators for
monitoring drop rates. In every window, we predict the number
of drops using our technique. The predicted drops are explainable,
because we know precisely why those drops happened. We use a
threshold of 0.5% for the drop rate (operator’s SLA), hence anything
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Figure 12: Our method can detect false positives in alarms, thus re-
lieving the operator from re-investigating known problems.

above this threshold is marked as an anomaly. The results from this
experiment is depicted in fig. 12. At numerous places the threshold
is exceeded. Normally, these would have to be investigated by an
expert but more than 80% of the drops are explained by our model.

To estimate the confidence, we analyzed our prediction results
during the occurrence of these anomalies. We consider each con-
nection drop or complete event as a Bernoulli random variable X
with probability p (from decision tree). A sequence of n connection
events follow a binomial distribution. The 95% confidence interval
is approximated by np ± 2

√
np(1 − p). We determine that the alarm

is false if X is within the confidence interval. The bound was found
to be (0.7958665, 0.8610155), which is within acceptable range.

4.4 Summary
To summarize our approach, we began by isolating problems to
the RAN by leveraging the operator’s existing ticket resolution
system to filter our non-RAN related problems. We then classified
problems into broad categories based on underlying root causes,
each of which could be influenced by physical or mac layer pa-
rameters. Then we proposed building bearer-level models for key
performance metrics for root cause diagnosis. For event metrics,
we build decision tree models and for volume metrics we build
information-theoretic regression models, in both leveraging do-
main knowledge for feature engineering. These models helped us
unearth interesting insights. Finally, we show how the operator
could leverage these models to reduce troubleshooting efforts.

5 DISCUSSION & FUTUREWORK
In this work, we discussed how using fine-grained, bearer level in-
formation could be beneficial in diagnosing performance problems
in RANs. Based on this, we proposed models for RAN diagnostics
that are amenable to automation. During the course of this work,
we learned several valuable lessons and future work opportunities.
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Figure 13: Number of clusters are small even when the number of
cells are large (>50k).

First, fully automating diagnostics requires building models for
several categories of metrics. Due to the large number of base sta-
tions in a RAN, this results in several thousands of models. Building
and managing them can easily be a bottleneck, and requires engi-
neering efforts to scale as generating models are compute-intensive.
We plan on leveraging advancements in big-data machine learning.

Second, we found that due to the spatio-temporal nature of the
wireless medium, the performance characteristics and thus the
accuracy of the models are also highly spatio-temporal. This means
that the automation system should be able to update the models
it builds periodically. Unfortunately, this is not just a scalability
challenge. Since failures are rare in a relative sense, building effective
and accurate models is a research challenge. In our current system,
we rebuild the models manually, which is not ideal.

We have made some progress towards these challenges. Specifi-
cally, we found that cells exhibit performance similarity. If we build
a model Y = f (X ) for performance metric Y in terms of root cause
X , we can order the predicted Y values as a vector and then use
the vector distance between cells in a K-mean clustering algorithm.
Figure 13 shows the variance between clusters with varying num-
ber of K . We see that the number of clusters can be small even with
a large number of cells (>50k in our case). As an example, cluster-
ing on uplink SINR shows just 10 dominant clusters (fig. 14). The
difference of clusters can be due to different base station releases
(thus may have different algorithms e.g., link adaptation), different
hardware capability (e.g., receiver sensitivity), the number of retries
configured in the random access procedure. This indicates that it
may be possible to use a single model for a group of cells.

Finally, with the industry moving towards software-defined cel-
lular networks [1, 2], network operators must be able to support
RAN performance diagnostics in real-time. The methodology we
discussed here has the potential to be a real-time solution, and can
even go further by predicting potential future problems because of
its use of models. An open research challenge is in building and
updating the models in real-time in a scalable fashion. We plan
on leveraging learnings from our work on real-time analytics on
cellular networks [15] for addressing some of these challenges.

6 RELATEDWORK
Cellular Network Monitoring and Troubleshooting A num-
ber of cellular network monitoring and diagnosis systems exist [3–
5, 8, 11]. AT&T GigaScope [8] and Alcatel-Lucent Wireless Net-
work Guardian (WNG) [3] generates per IP flow records and mon-
itors many performance metrics such as aggregate per-cell TCP
throughput, delay and loss. Because these tools tap interfaces in

 
          

           
      

   

    
 

   

 

 
     

   

                    
 

      
     

 
  

  
 

  

 
 

   
 

 

             
 

      
          

    

 

 

  
 

    
 

   
  

   
             

  
 

            

 
 

 

 

    
 

    
 

 
              

  
    

  

 
 

   
  

  
           

 

           
 

     

   
 

  

 

 

 

      
 

 

  
  

 
  

 

            
 

     
 

  

  
  

 

  
 

 

 
  

   
   

 
 

 

   
            

 
    

 
 

 
    

   
 

 
 

  

 
 

  

    
 

 

     

 

    
 

 
    

 
   

  
 

  
  

 
                                                                      

                              
                 

    
                              

 
    

               
 

 
                           

                                      
       

 
       

 
      

 

 
  

 

 

 

  

 

 
 

 
  

  

       

 

 

 
 

  

  

 

 

 

 
 

 

 

  

 

 
  

  
 

 

 
 

 

  

 

  

  
 

 
 

   
     

 
       

 

 
 

 
 

                                          
  
  

  
          
  

 
 

   
  

  
   

  
  

 

 
 

     
 
 

  
   

                                     
          

      
                              

          
       

     
                                                       

 
 

  

 
 

 

 

 
 

                                                                                   

 
 

 
   

 

 
  

 

 

    
 

    
   

  
                   

     
      

          
 

     
 

  
  

 

    
 

 
               

  
 

   
 

 
        

 
 

  
 

    
                                                      

                  
      

           
     

                                       
       

 
        

          

 

 
 

 

 

              
     

       
                                 

   
      

        
    

 

  
 

 
 

 
     

 
 

   
 

 

   
   

     

 

        

 

 
 

 
 

 
 

  

 

 

  
 

  
  

 
   
 

  

 

 

 
 

  
                

  
 

  
 

 
  

 

 
                                                 
 

          
  

 
          

   
  
     

 
   

   

 
     

 
  

 
      

  
 
  

                                               
         

   
                          
       

                   
                                                           

   

 

  

 
 

 
 

 

                                                
                                            

 

 

    

 
 

     
  

   
   

 
 

                   
       

      
       

 
  

 

 
 

 

 
 

 
 

             
   

    
 

     
    
    

     
                                                                     

               
     

    
        

    
                                           

          
      

 

 

 

 
                                                             

  
      
           

 

 
  

  
 

   
   

 

 

 
    

   
 

     

 
  
  

 
    

  

 

  

  

 

 

  
      

  
  

 

 

 
     

 
   

         
 

  
   

 
  

 
 

 
 

        
   

                                 
              

 
 

  
   
 
         

 
   

 
      

 
 
 

  
  

   

     
 

  
 

  

       
                                    

 
                 

 
                                         
 

     
              

   
                                                   

 

 

   

                             
                   

                                         

 

  
  

 
  

            
  

 
 

 
 
      

 
                            

 
        

 

  
 

 
   

 
                

  
 

 
 

       
  

         
 

                                                                               
       
 

       
                                               

                   

 

 
 

 

            
                    

                            
    

  

 
   

    
   
 

 
 

 
   

 
       

       

 

  
 

  
 

 

 

 

 

 

 
 

 
  

   
 

   
 

 

   

 

 

 
  

 
 

       
 

 
 

 
 

 
 

 
                                          

   
 

   
    

   
   

 
  

      
 

 
 

  
  

  
     

    

    
 

 
                                            

     
     

    
  

     
                                 

 
   

 
           

                                              

    
 

      
 
  

 

         
                                                                      

 

 

 

 

 
 

  
 

           
  

    

 
  

 
 

 
 

         
           

                
     

 
 

   
 

  

 
 

 

  
 

  
 

             
   

 
 

 
                   

  
                                                                                             

   
       

 
  

         

 

                                      
             

     
 

 
      

                                                                   

 
        

 
  

 

  
   

 

 
   

 
  

 
 

 
    

        

 
 
 

 

 
 
  

 
  

 
 

    
 

  
 

 
  

  

 
 

  

 
 

 

      

 
   

 
 

     
 

    
 

                 
                        

  
 

 
   

 
 

   
     

   
    

 

  
 

 
 

         

 
                                          

                 
 

   
 

                                         
                    

                                            

  

 

 

 

   
 

 

               
                   

     
                                       

  
 

  
 

 
 

   
 
  

    
 

 
  

 
 

 

             
      

                    
   

 
 

   

 

   
                

     
  

 
     

   
         

    
                                                                  

               
 

      
             

                                                  
   

   
 

                                                          
 

 
 
         

 

  
    

 
    

 
 

   
   

     
 

       

 
   

   
 

 
 

   
 

 

 

 

 

 

  
 

    

 

 

  

      
  

 
 

    
 

 

  
  
  

  
  

 
                                                  

   
  

 
 

   
  

    
    

 
   

   
          

   
  

  

     
 

                                         
 

  
                  

                            
 

    
      

 
    

    
                                                     

  

 

     
 

 

 

                                                                     

 

 

 

 

 
 

          
 

 
 

 
            

           
    
 
               

 
 

  
 

     
               

  
         

    
 

  
  

 

 
 

 
    
 

     
                                                            

                     
 

       
 

   
 

       
    

                                                      
   

 
   

                                                               
            

 

   
    

  
   

   
 

    
 

    
   

     

 

 
 

 

  

 
 
    

 

 

 

  

 

 
 

  
  

 

 

  

 

  
 

       
   

 
 

 
   

 
    
   

          
   

                               
 

  
   

 
      

   
 

 
  

 
      

 
 

   
  

    
  

 
 

   
  

  
       

 
                             

 
         

 
      

                                
        

              
                                                   

 
 

 
 

  
 

 

 

 

                                                                      

 

 
 

   
         

  
  

  
            

       
                  

 
 

  
    

                  
     

         
    

 

 

 
     

 
         

                                                                                                   
                

 
       

                                   
         

     
     

    
   

                                             
              

     

 
              

      
 

  
 

 
 

 
  

   
 

  

 
 
   

   

    

 

 
 

       

 

 
  

 

 

  

 

 

  
 

 

 

    

 
  

 

   
 

 

  

     
    

  
     

 
 

 
 

 
    

                     
 

         
               

  
 

 
 

       
  

  
 

 
  

    
 

        
 

    
 

     
   
 

  
  

   
                                                   

 
     
                                    
  
      

 
        

 
        

                                                             

  
 

 
 

 

          
                               

                                       

 
 

    

 

     
  

 
 

 

 

 
   

 

        
           

               
  

 
    

 
 

 
                      

    
 
 

 
  

 
   

 

     

 

   

 

   
 

     
  

  
     

 
 

                  
 

 
 

 

 

 
   

 
 

 
 

 
 

 
    

 

 
   

 
      

  
  

 
 

 
         

  

   

 

  
  

   
     

 

 
  

 
  

 
 

  

      
 

    
 

     
   

 
 

 
 

    
  

 
    

 
 

 

         

 

 

 
 
    

 
 

 

 

  

          
 

 
    

 

       

 

 

 

  

  
 

  
 

 

     

 

   
 

 
    

 

  

 

       
  

 
 

          
 

      
    

 

 

     
   

  
 

 

  
 

  

    
   

 

 
 

 

 
 

      

  
  

  

 
  

 
    

 
    

 
   

 

   

 
 
 

     
 
    

 

     
 

 

  
 

   

     
 

  
 
  

   

   

 

         

  
 

      
  

 
    

 
 

 

  

 

   
  

      

 
     

  
     

 

  

 

  
 

  
 
 

 

  
  

 

     
 

  
 

 
 

 
 

  
 

 
 

  

  

  

 
  

 

 

       
 

 

  

    

 

     
  

  
   

  
 

   

 

    
 

 

 

     

 

 
 

     
 

 
 

 

 
  

 

 
 

 
   

  
 

 
 

 
   

 

 
     

 

   

Figure 14: Geographic locations of cells clustered by model (color)
shows they share performance characteristics (best viewed in color).

the core networks, they lack information at the RAN. Systems
targeting RAN [4, 11] typically monitor aggregate KPIs and per-
bearer records separately. Their root cause analysis of KPI problems
correlates with aggregation air interface metrics such as SINR his-
tograms and configuration data. Since they rely on aggregates, it
is hard for them to provide fine-grained diagnosis. Several stud-
ies [6, 14, 16, 19, 21, 26] focus on the interaction between applica-
tions and cellular networks. They are orthogonal to our work.

Modeling and Diagnosis Techniques Diagnosing problems
in cellular networks has been explored in the literature in various
forms [7, 13, 17, 20, 25], where the focus has either been detecting
faults or finding the root cause of specific failures. A probabilistic
system for auto-diagnosing faults in RAN is presented in [7]. It relies
on KPIs. However, KPIs are not capable of providing diagnosis
at high granularity. Moreover, it is unclear how their proposals
capture complex dependencies between different components in
RAN. An automated approach to locating anomalous events on
hierarchical operational networks was proposed in [13] based on
hierarchical heavy hitter based anomaly detection. It is unclear how
their proposals carry over to RAN. Adding autonomous capabilities
to alarm based fault detection is discussed in [17]. While their
techniques can help systems auto-heal faults, correlation based
fault detection is insufficient for fine granularity detection and
diagnosis of faults. [20] looks at detecting call connection faults
due to load imbalances. In [27], a technique to detect and localize
anomalies from an ISP point of view is proposed. Finally, [25] uses
machine learning to predict impending call drops and duration.

7 CONCLUSION
In this paper, we share our experience working with a major cel-
lular network operator in answering the question of whether it
is possible to develop automated solutions for problem detection
and diagnosis in RANs. We show that fine-grained analysis is the
key, and propose a bearer-level modeling methodology for RAN
diagnostics. During this process, we were able to unearth several
insights from the operator’s RAN, some previously unknown. We
learned that automatic detection and diagnosis of RAN problems
in real-time requires answering several research challenges. We are
currently pursuing many of them.

ACKNOWLEDGMENTS
We would like to thank the Mobicom reviewers and our shepherd,
Chunyi Peng, for their valuable feedback. This research is supported
in part by DHS Award HSHQDC-16-3-00083, NSF CISE Expeditions
Award CCF-1139158, and gifts from Ant Financial, Amazon Web
Services, CapitalOne, Ericsson, GE, Google, Huawei, Intel, IBM,
Microsoft and VMware.

Paper Session II: Can You Hear Me Now? MobiCom’17, October 16-20, 2017, Snowbird, UT, USA

86



REFERENCES
[1] 2017. Bringing SDN to the RAN. https://www.sdxcentral.com/articles/news/

cord-partners-xran-bring-sdn-ran/2017/02/. (2017).
[2] 3gpp. 2016. Self-Organizing Networks SON Policy Network Resource Model

(NRM) Integration Reference Point (IRP). http://www.3gpp.org/ftp/Specs/archive/
32_series/32.521/. (2016).

[3] Alcatel Lucent. 2013. 9900Wireless NetworkGuardian. http://www.alcatel-lucent.
com/products/9900-wireless-network-guardian. (2013).

[4] Alcatel Lucent. 2014. 9959 Network Performance Optimizer. http://www.
alcatel-lucent.com/products/9959-network-performance-optimizer. (2014).

[5] Alcatel Lucent. 2014. Motive Big Network Analytics. http://www.alcatel-lucent.
com/solutions/motive-big-network-analytics. (2014).

[6] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Srinivasan
Seshan, Shobha Venkataraman, and He Yan. 2014. Modeling Web Quality-of-
experience on Cellular Networks. In Proceedings of the 20th Annual International
Conference on Mobile Computing and Networking (MobiCom ’14). ACM, New York,
NY, USA, 213–224. https://doi.org/10.1145/2639108.2639137

[7] Raquel Barco, Volker Wille, Luis Díez, and Matías Toril. 2010. Learning of Model
Parameters for Fault Diagnosis in Wireless Networks. Wirel. Netw. 16, 1 (Jan.
2010), 255–271. https://doi.org/10.1007/s11276-008-0128-z

[8] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
2003. Gigascope: a stream database for network applications. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data (SIGMOD
’03). ACM, New York, NY, USA, 647–651. https://doi.org/10.1145/872757.872838

[9] Bassam Eljaam. 2005. Customer satisfaction with cellular network performance:
Issues and analysis. (2005).

[10] Ericsson. 2012. Ericsson RAN Analyzer Overview. http://www.optxview.com/
Optimi_Ericsson/RANAnalyser.pdf. (2012).

[11] Ericsson. 2014. Ericsson RAN Analyzer. http://www.ericsson.com/ourportfolio/
products/ran-analyzer. (2014).

[12] Tin Kam Ho. 1995. Random Decision Forests. In Proceedings of the Third
International Conference on Document Analysis and Recognition (Volume 1) -
Volume 1 (ICDAR ’95). IEEE Computer Society, Washington, DC, USA, 278–.
http://dl.acm.org/citation.cfm?id=844379.844681

[13] Chi-Yao Hong, Matthew Caesar, Nick Duffield, and Jia Wang. 2012. Tiresias:
Online Anomaly Detection for Hierarchical Operational Network Data. In Pro-
ceedings of the 2012 IEEE 32Nd International Conference on Distributed Computing
Systems (ICDCS ’12). IEEE Computer Society, Washington, DC, USA, 173–182.
https://doi.org/10.1109/ICDCS.2012.30

[14] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. MorleyMao,
Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on Performance. In Proceedings of
the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). ACM, New
York, NY, USA, 363–374. https://doi.org/10.1145/2486001.2486006

[15] Anand Iyer, Li Erran Li, and Ion Stoica. 2015. CellIQ : Real-Time Cellular Network
Analytics at Scale. In 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 15). USENIX Association, Oakland, CA, 309–322. https:
//www.usenix.org/conference/nsdi15/technical-sessions/presentation/iyer

[16] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling
Bufferbloat in 3G/4G Networks. In Proceedings of the 2012 ACM Conference on
Internet Measurement Conference (IMC ’12). ACM, New York, NY, USA, 329–342.
https://doi.org/10.1145/2398776.2398810

[17] Yan Liu, Jing Zhang, M. Jiang, D. Raymer, and J. Strassner. 2008. A model-based
approach to adding autonomic capabilities to network fault management system.
In Network Operations and Management Symposium, 2008. NOMS 2008. IEEE.
859–862. https://doi.org/10.1109/NOMS.2008.4575232

[18] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[19] Feng Qian, Zhaoguang Wang, Alexandre Gerber, Zhuoqing Mao, Subhabrata Sen,

and Oliver Spatscheck. 2011. Profiling Resource Usage for Mobile Applications:
A Cross-layer Approach. In Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’11). ACM, New York, NY,
USA, 321–334. https://doi.org/10.1145/1999995.2000026

[20] Sudarshan Rao. 2006. Operational Fault Detection in Cellular Wireless Base-
stations. IEEE Trans. on Netw. and Serv. Manag. 3, 2 (April 2006), 1–11. https:
//doi.org/10.1109/TNSM.2006.4798311

[21] Sanae Rosen, Haokun Luo, Qi Alfred Chen, Z. Morley Mao, Jie Hui, Aaron
Drake, and Kevin Lau. 2014. Discovering Fine-grained RRC State Dynamics and
Performance Impacts in Cellular Networks. In Proceedings of the 20th Annual
International Conference on Mobile Computing and Networking (MobiCom ’14).
ACM, New York, NY, USA, 177–188. https://doi.org/10.1145/2639108.2639115

[22] Jari Salo. 2013. Mobility Parameter Planning for 3GPP LTE: Basic Concepts
and Intra-Layer Mobility. www.lteexpert.com/lte_mobility_wp1_10June2013.pdf.
(2013).

[23] Muhammad Zubair Shafiq, Jeffrey Erman, Lusheng Ji, Alex X. Liu, Jeffrey Pang,
and Jia Wang. 2014. Understanding the Impact of Network Dynamics on Mobile
Video User Engagement. In The 2014 ACM International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS ’14). ACM, New York, NY,
USA, 367–379. https://doi.org/10.1145/2591971.2591975

[24] Muhammad Zubair Shafiq, Lusheng Ji, Alex X. Liu, Jeffrey Pang, Shobha
Venkataraman, and JiaWang. 2013. A First Look at Cellular Network Performance
During Crowded Events. In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’13).
ACM, New York, NY, USA, 17–28. https://doi.org/10.1145/2465529.2465754

[25] Nawanol Theera-Ampornpunt, Saurabh Bagchi, Kaustubh R. Joshi, and Rajesh K.
Panta. 2013. Using Big Data for More Dependability: A Cellular Network Tale. In
Proceedings of the 9th Workshop on Hot Topics in Dependable Systems (HotDep ’13).
ACM, New York, NY, USA, Article 2, 5 pages. https://doi.org/10.1145/2524224.
2524227

[26] Guan-Hua Tu, Yuanjie Li, Chunyi Peng, Chi-Yu Li, Hongyi Wang, and Songwu Lu.
2014. Control-plane Protocol Interactions in Cellular Networks. In Proceedings of
the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY,
USA, 223–234. https://doi.org/10.1145/2619239.2626302

[27] He Yan, A. Flavel, Zihui Ge, A. Gerber, D. Massey, C. Papadopoulos, H. Shah,
and J. Yates. 2012. Argus: End-to-end service anomaly detection and localization
from an ISP’s point of view. In INFOCOM, 2012 Proceedings IEEE. 2756–2760.
https://doi.org/10.1109/INFCOM.2012.6195694

Paper Session II: Can You Hear Me Now? MobiCom’17, October 16-20, 2017, Snowbird, UT, USA

87

https://www.sdxcentral.com/articles/news/cord-partners-xran-bring-sdn-ran/2017/02/
https://www.sdxcentral.com/articles/news/cord-partners-xran-bring-sdn-ran/2017/02/
http://www.3gpp.org/ftp/Specs/archive/32_series/32.521/
http://www.3gpp.org/ftp/Specs/archive/32_series/32.521/
http://www.alcatel-lucent.com/products/9900-wireless-network-guardian
http://www.alcatel-lucent.com/products/9900-wireless-network-guardian
http://www.alcatel-lucent.com/products/9959-network-performance-optimizer
http://www.alcatel-lucent.com/products/9959-network-performance-optimizer
http://www.alcatel-lucent.com/solutions/motive-big-network-analytics
http://www.alcatel-lucent.com/solutions/motive-big-network-analytics
https://doi.org/10.1145/2639108.2639137
https://doi.org/10.1007/s11276-008-0128-z
https://doi.org/10.1145/872757.872838
http://www.optxview.com/Optimi_Ericsson/RANAnalyser.pdf
http://www.optxview.com/Optimi_Ericsson/RANAnalyser.pdf
http://www.ericsson.com/ourportfolio/products/ran-analyzer
http://www.ericsson.com/ourportfolio/products/ran-analyzer
http://dl.acm.org/citation.cfm?id=844379.844681
https://doi.org/10.1109/ICDCS.2012.30
https://doi.org/10.1145/2486001.2486006
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/iyer
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/iyer
https://doi.org/10.1145/2398776.2398810
https://doi.org/10.1109/NOMS.2008.4575232
https://doi.org/10.1145/1999995.2000026
https://doi.org/10.1109/TNSM.2006.4798311
https://doi.org/10.1109/TNSM.2006.4798311
https://doi.org/10.1145/2639108.2639115
www.lteexpert.com/lte_mobility_wp1_10June2013.pdf
https://doi.org/10.1145/2591971.2591975
https://doi.org/10.1145/2465529.2465754
https://doi.org/10.1145/2524224.2524227
https://doi.org/10.1145/2524224.2524227
https://doi.org/10.1145/2619239.2626302
https://doi.org/10.1109/INFCOM.2012.6195694

	Abstract
	1 Introduction
	2 Background
	2.1 LTE Network Architecture & Protocols
	2.2 Data Collection
	2.3 RAN Performance Troubleshooting

	3 Methodology
	3.1 Problem Isolation to RAN
	3.2 Classification of RAN Problems
	3.3 Root Cause Diagnosis

	4 Bearer-Level Modeling
	4.1 Connection Drops Model
	4.2 Throughput Model
	4.3 Detecting False Positives of KPI Changes
	4.4 Summary

	5 Discussion & Future Work
	6 Related Work
	7 Conclusion
	Acknowledgments
	References



