
SOFTWARE DESIGN TECHNIQUES
Nagalaxmi Telkar

CSCI 5828
Presentation Slides

CONTENTS
  Introduction
  Software Design Life Cycle
  Software Design Process

  Tackling Design Problems
  Architectural Design
  Abstract Specification
  Interface Design
  Component Design
  Data structure Design
  Algorithm Design

  Software Design Methodologies
  data flow model
  Entity Relationship Model
  structural model

  Software Design Strategies
  Science of Design

  Design Quality

  Software Tools
  Software Design Failure.
  Conclusion
  References

INTRODUCTION

 Computers do not make mistakes, but computer
software is written by human beings, who
certainly do make mistakes.

 As complex computer systems influence every
facet of our lives - the cars we drive, the airplane
and trains we rely on others to drive for us, and
even everyday machinery such as domestic
washing machines, the need for reliable and
dependable software systems has become
apparent.

 Developing a complex computer system
follows a development process, or a life cycle
similar to building a house.

SOFTWARE DESIGN LIFE CYCLE

SDLC - WATERFALL MODEL

SDLC - WATERFALL MODEL

 Requirement Elicitation and Analysis
involves the determination of the exact
requirements of the system.

 System Specification is used in deriving what
the system should do, without saying how this is
to be achieved.

 Design phase is intended towards addressing
how the system is to be implemented.

  Implementation phase is traditionally
described as programming.

 Unit and System testing aims to trap bugs.
 Maintenance keeps the system updated for new

changes that need to be implemented.

SOFTWARE DESIGN PROCESS

WHY SHOULD THE SOFTWARE BE DESIGNED AT ALL?

  We can’t just throw few dozens of programmers to
start programming without any detailed plans.

  Design is highly creative stage in software
development where the designer plans
  how the system or program should meet the customer’s

needs
  how to make system effective and efficient.

TACKLING DESIGN PROBLEMS

 Any design problems must be tackled in three
stages;
  Study and understand the problem
  Identify gross features of at least one possible solution
  Describe each abstraction used in the solution

DESIGN PROCESS

  Software designers do not arrive at a finished design
immediately. They develop design iteratively through
number of different versions. The starting point is
informal design which is refined by adding
information to make it consistent and complete as
shown in the figure below:

DESIGN PROCESS

 A general model of design process

ARCHITECTURAL DESIGN-1

  Identifying the sub-systems and establishing
framework for sub-system control and
communication.

 Explained using the following architecture

ARCHITECTURE DESIGN – 2

 Activities necessary for architectural designing;
  System Structuring
  Control modeling
  Modular decomposition

 The output of the architectural design process is
an architectural design document.

ARCHITECTURE DESIGN – 3
NULL SPACE GAME SHOOTER

 Client and Server are
the subsystems that
are controlling the
other modules.

 Other modules are
the rectangles in
white. Ex, Network
Prediction, Play,
Chat Room, Game
Room etc.

ABSTRACT SPECIFICATION - 1

 For each sub-system, an abstract specification of
the services it provides and the constraints under
which it must operate is produced.

ABSTRACT SPECIFICATION – 2
CLIENT SIDE OF NULL GAME SHOOTER

  Orange Boxes are
the subsystems.

  White Boxes are the
services provided by
the subsystems.

  Services include
  Visual

Representation
  Communication

Layer
  User I/O
  Client Side Copy

INTERFACE DESIGN - 1

 For each sub-system, its interface is designed and
documented.

1)  Move (…)
2)  GetPosition(…)
3)  GetShip(…)
4)  CalculateDamageCollision(…)
5)  RotateShip(…)
6)  GetVelocity(…)

The text box below shows
a few functions in the
interface for the client.
These are used by the
player object. There will
be separate interfaces for
each module.

COMPONENT DESIGN - 1

 Services are allocated to different components
and the interfaces of the components are
designed.

 This phase entails detailed implementation
design of the interfaces that are identified in the
interface design.

 Services that are allocated to each subsystem are
designed as to be implemented.

DATA STRUCTURE DESIGN - 1

 The data structures used in the system
implementation are designed in detail and
specified.

 Example
Client information is

stored in the buckets by
mapping them to the
buckets via a hash

function

ALGORITHM DESIGN - 1

 The algorithms used to provide services are
designed in detail and specified.

SOFTWARE DESIGN
METHODOLOGIES

DESIGN METHODOLOGIES - 1

  J. Christopher Jones, taken from classis work,
Design Methods: Seeds of Human Futures(Jones
1970.)

  ‘The fundamental problem is that designers are
obliged to use current information to predict a
future state that will not come about unless their
predictions are correct. The final outcome of
designing has to be assumed before the means of
achieving it can be explored: the designers have to
work backwards in time from an assumed effect
upon the world to the beginning of a chain of
events that will bring the effect about.’

DESIGN METHODOLOGIES - 2

  A more methodical approach to software design is
proposed by structured methods which are sets of
notations and guidelines for software design.

  Two major rules of this method
  Programs were to be broken into functions and subroutines
  There was only a single entry point and a single exit point

for any function or routine.

  Structured methods often support some or all of the
following models of a system:
  A data-flow model
  An Entity-relationship model
  A structural model
  An object-oriented model

DESIGN METHODOLOGIES - 3

 Rounded rectangles represents functions which
transform inputs to outputs.
  The transformation name indicates its functions.

 Rectangles represents data stores.
 Circles represents user interactions with the

system which provide input and receive output.
 Arrows show the direction of the data flow.

DATA FLOW MODEL

 Example for data flow model.
Object gets the

keystroke and moves
the ship in the game
accordingly. Based on
the positions of other
ships, collision will be

decided.

ENTITY RELATIONSHIP NOTATIONS- 1

ENTITY RELATIONSHIP MODEL - 1

 Example for
Entity Relationship Model

STRUCTURAL MODEL - 1

 Example for structural model

SOFTWARE DESIGN STRATEGIES

DESIGN STRATEGIES-1

 Function Oriented
  Design is decomposed into set of interacting units

where each unit has clearly defined function
  Conceals the details of an algorithm in a function but

system state information is not hidden.

 The activities of this strategy;
  Data-flow design
  Structural decomposition
  Detailed design description

DESIGN STRATEGIES-2

 Object-oriented design
  Is based on the idea of information hiding.
  System is viewed as a set of interacting objects, with

their own private state.
  Dominant design strategy for new software systems.
  Objects communicate by calling on services offered by

other objects rather than sharing variables. This
reduces the overall system coupling.

  Message passing model allows objects to be
implemented as concurrent processes.

 Kinds of concurrent object implementation
  Passive objects
  Active objects

SCIENCE OF DESIGN

  Don Batory argues that a fundamental problem in
software engineering is the abject lack of a science for
software design.

  In October 2003, he attended a National Science
Foundation (NSF) workshop in Virginia on the
“Science of design”.

  Fred Brookes, “We don’t know what we’re doing,
and we don’t know what we’ve done”

  Software design process is an art or an inexact
science.

  If it is purely a mechanical process by which a
specification is translated into a design of an efficient
program, then this process follows an exact or
deterministic science.

DESIGN QUALITY-1

 Budgen(1993) describes some of the ‘ilities’ that
form a group of quality factors that need to be
considered when making any attempt to assess
design quality.
  Reliability
  Efficiency
  Maintainability
  Usability.

DESIGN QUALITY-2

 For the systems to be reliable, the designers
should count on completeness, consistency and
robustness.

 Efficiency of a system can be measured through
its use of resources such as processor time,
memory, network access and so on.

 By separating the concerns, designers can help
the future maintainers to gain clear
understanding of their original ‘mental models’.

 Design of user interface forms an important
component and will influence other design
decisions.

DESIGN QUALITY-3

  10 heuristics of user interface design;
  Visibility of system status
  Match between system and the real world
  User control and freedom
  Consistency and standards
  Error prevention
  Recognition rather than recall
  Flexibility and efficiency of use
  Aesthetic and minimalist design
  Help users recognize, diagnose, and recover from

errors
  Help and documentation

SOFTWARE TOOLS

 The productivity of engineering designers is
improved when they are supported by CAD
systems which take over tedious drawing chores
and which check for errors and omissions.

  The term CASE (Computer Aided Software
Engineering) is generally accepted as the name
for this automated support for engineering
process.

SOFTWARE DESIGN FAILURE.

 Software design flaws leading to mishap.
 The Ariane 5 was not flight tested because there

was so much confidence on part of the
management team. The error which ultimately
led to the destruction of the Ariane 5 launcher
was clearly identified in the report of the
investigating committee: a program segment for
converting a floating point number, representing
a measurement, to a signed 16 bit integer was
executed with an input data value outside the
range representable by a signed 16 bit integer.

 This is not a software issue, but a design flaw at
a much deeper level.

REFERENCES
  Software engineering techniques: design for quality By Krzysztof M. Sacha
  Software Design (2nd Edition) by D. Budgen
  High-Integrity System Specification and Design (Formal Approaches to Computing and

Information Technology (FACIT)) by Jonathan P. Bowen and Michael G. Hinchey
  Software Engineering (7th Edition) (Hardcover) Ian Sommerville
  A Science of Software Design. 3-18 Don Batory
  J. Christopher Jones, Design Methods: Seeds of Human Futures(Jones 1970.)

